
Impr oving Defect Prediction Using
Temporal Features and Non Linear Models

Abraham Bernstein
Department of Informatics

University of Zurich
Switzerland

bernstein@ifi.unizh.ch

Jayalath Ekanayake
Department of Informatics

University of Zurich
Switzerland

jayalath@ifi.unizh.ch

Martin Pinzger
Department of Informatics

University of Zurich
Switzerland

pinzger@ifi.unizh.ch

ABSTRACT
Predicting the defects in the next release of a large soft-
ware system is a very valuable asset for the project manger
to plan her resources. In this paper we argue that temporal
features (or aspects) of the data are central to prediction per-
formance. We also argue that the use of non-linear models,
as opposed to traditional regression, is necessary to uncover
some of the hidden interrelationships between the features
and the defects and maintain the accuracy of the prediction
in some cases.
Using data obtained from the CVS and Bugzilla reposito-
ries of the Eclipse project, we extract a number of temporal
features, such as the number of revisions and number of re-
ported issues within the last three months. We then use
these data to predict both the location of defects (i.e., the
classes in which defects will occur) as well as the number of
reported bugs in the next month of the project. To that end
we use standard tree-based induction algorithms in compar-
ison with the traditional regression.
Our non-linear models uncover the hidden relationships be-
tween features and defects, and present them in easy to un-
derstand form. Results also show that using the temporal
features our prediction model can predict whether a source
file will have a defect with an accuracy of 99% (area under
ROC curve 0.9251) and the number of defects with a mean
absolute error of 0.019 (Spearman’s correlation of 0.96).

Categoriesand Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance
and Enhancement; D.2.8 [Software Engineering]: Metrics

Keywords
Mining Software Repository, Defect Prediction, Decision Tree
Learner

1. INTRODUCTION
One of the central questions in software engineering is how
to write bug-free software. Given that it is virtually im-

Permissionto make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IWPSE’07, September 3-4, 2007, Dubrovnik, Croatia.
Copyright 2007 ACM ISBN 978-1-59593-722-3/07/09...$5.00.

possible to do so researchers are striving to develop ap-
proaches for predicting the location, number, and severity of
future/hidden bugs. Such predictions can be used by soft-
ware development managers to (among other things): (1)
identify the most critical parts of a system that should be
improved by respective restructuring, (2) try to limit the
gravity of their impact by, e.g., ”avoiding” the use of these
parts, and/or (3) to plan testing efforts (parts with most
defects should be tested most frequently).

Several approaches have been developed to predict future
faults using historical data [2, 3, 5, 11], however many of
them have not been evaluated or are not applicable to large
software systems. Addressing these two issues our long term
objective is to develop an easy-to-use tool for predicting fu-
ture defects in source files akin to the Hatari tool described
in [16]. In this paper we present a number of experiments
to investigate the significance of temporal features and the
applicability of non-linear models for predicting whether a
source file will have a defect and the number of defects. A
well performing prediction model is key for our tool.
For our experiments we employ six plugins of the Eclipse
project. For each plugin we obtain historical data from the
issue tracking system Bugzilla1 and the version control sys-
tem CVS.2 Based on these data we compute a number of
features of the actual source code, past defects (bugs), and
modifications. In our experiments we test different feature
sets to find out the most significant one. For the prediction
of the location of defects we use a decision tree learner as
has been also used in one of our previous experiments pre-
sented in [7]. For the prediction of the number of defects
in source files we use a regression tree learner (in addition
to traditional regression). Referring to the previous appli-
cation examples we used the results of our predictions to
identify the Eclipse plugins (out of the six) that should be
refactored and tested with care.

The results of experiments show that the use of temporal
features significantly improves the performance of predic-
tion models (both, location and number of defects). Fur-
thermore, we show how the use of non-linear models helps
to uncover some of the non-linear relationships between fea-
tures as well as between the feature and the target vari-
ables (i.e., defect location and number of defects) improving
prediction performance. Our model exhibits excellent re-
sults: we are able to predict the defect location with an

1http://www.bugzilla.org/
2http://www.nongnu.org/cvs/

11

11

http://www.nongnu.org/cvs/
http://www.bugzilla.org/

accuracy of 99% (given a base rate of 96.3% and 3.6%) re-
sulting in a distribution independent area under the ROC
curve of 0.9251 (see [12]). The number of defects prediction
model also exhibits an excellent prediction resulting in a
Spearman’s correlation of 0.96 and a mean absolute error of
0.0194. Furthermore, we observed that (1) the best predic-
tor for defects in a source file was the past existence thereof
[3], (2) some features collected were actually detrimental to
the overall performance, and (3) the process measures based
on the change history were better predictors than the tra-
ditionally used code-metrics, which is supported by several
recent studies [2, 7].

The remainder of the paper is organized as follows: After
discussing the related work in the following Section 2, we
describe the experimental setup in detail (Section 3), which
is followed by a discussion of the results. We close with
a discussion of the limitations of our study, some possible
avenues of future work, and concluding remarks.

2. RELATED WORK
The historical data of software systems is a valuable asset
used for research ranging from software design to software
development, software maintenance, software understand-
ing, and many more. A number of researches use the histor-
ical data of software projects for their research in the above
fields. We list here few of the studies similar to our study.

Khoshgoftaar et al.[5] used a history of process metrics to
predict software reliability and to prove that the number of
past modifications of a source file is a significant predictor
for its future faults.
Mockus et al.[9] studied a large software system to test the
hypothesis that evolution data can be used to determine
the changes of the software systems and to understand and
predict the state of software projects. Our approach also
supports this idea.
Graves et al. [2] developed statistical models to find which
features of a module’s change history were the best pre-
dictors for future faults. They developed a model called
weighted time damp model which predicted the fault poten-
tial using changes made to the module in the past. We use
similar features but employ non-linear models.
Hassan et al. [3] developed a set of heuristics which high-
lights the most susceptible subsystems to have a fault. The
heuristics are based on the subsystems that were most fre-
quently and most recently fixed. Our approach provides
some matrices to represent the above heuristics.
Nagappan et al.[10] presented a method to predict defect
density based on code churn metrics. They found out that
source files with a high activity rate in the past will likely
have more defects than source files with a low activity rate.
They pointed out that the relative measures are better pre-
dictors for defects than the absolute measures. In our exper-
iment, all the measures are relative and moreover we used
machine learning techniques in addition to the linear regres-
sion model to predict the number of defects.
Ostrand et al. [11] used a regression model to predict the lo-
cation and number of faults in large industrial software sys-
tems. The predictors for the regression model were based on
the code length of the current release, and fault/modification
history of the file from previous releases. Our study also sup-
ports the significance of the modification reports and the

number of reported problems for defect prediction but does
not support the significance of the code length.
Knab et al. [7] presented a method to predict defect den-
sities in source code files using decision tree learners. This
approach is quite smiler to our approach. However they pre-
dicted only the number of problems reported. In our models,
we predict both the number of problems and the locations.
They used both product and process measures for the de-
fect prediction and revealed that process measures are more
significant indicators for fault prediction than product mea-
sures, which is also supported by our findings.
Askari et al. [1] presented three probabilistic models to pre-
dict the number of defects of source files. They used an
information theoretic approach and pointed out that the
predictive rate of modification in a file is incremented by
any modification to that file and decay exponentially. In
our study we also use past modification reports as an indi-
cator of defects.
Finally, Zimmermann et al. [18] proposed a statistical model
to predict the location and the number of bugs. They used
logistic regression model to predict the location of bugs and
the linear regression model to predict the number of bugs.
Further they heavily used product metrics such as McCabe
cyclomatic complexity as predictors than process metrics.
In this study, we use non-linear decision tree models to pre-
dict the location and the number of bugs and show that they
are superior to linear ones. Furthermore, we heavily rely on
process metrics than product metrics.

Our approach takes guidance from these approaches. It
seems to be the first to combine the use of temporal fea-
tures with non-linear models.

3. EXPERIMENTAL SETUP
In this section we succinctly introduce the overall experi-
mental setup. We discuss the data used and measures used
to judge the quality of the results.

3.1 The Data - CVS and Bugzilla for Eclipse
The data for the experiment was extracted from six plugins
of the Eclipse open source project: updateui, updatecore,
search, pdeui, pdebuild, and compare. For each plugin we
considered the CVS and Bugzilla data from the first releases
up to the last one released in January 2007 as provided by
the MSR Mining Challenge 2007.3 Table 1 lists the release
dates and the number of files (taken from the last release).

Plugin First Release Last Release #Files
updateui Jan 03, 2001 Jan 18, 2007 757
updatecore Jan 03, 2001 Jan 18, 2007 459
search May 02, 2001 Jan 30, 2007 540
pdeui Mar 26, 2001 Jan 30, 2007 1621
pdebuild Dec 11, 2001 Jan 12, 2007 198
compare May 02, 2001 Jan 30, 2007 315
Total 3890

Table 1: Eclipse plugins considered

Of the 3890 files we omitted 59 as they did not have a
sufficient number of revisions to provide temporal infor-
mation for our experiment. Other examples for exclusion

3http://msr.uwaterloo.ca/msr2007/challenge/

12

12

http://msr.uwaterloo.ca/msr2007/challenge/

Name Description
1 LOC Number of lines of codes
2 LineAddedIRLAdd Number of lines added to fix a bug relative to total number of lines added
3 LineDeletedIRLDel Number of lines deleted to fix a bug relative to total number of line deleted
4 AlterType Amount of modification done relative to LOC
5 AgeMonths Age of a file in months
6 RevisionAge Number of revisions relative to the age of a file
7 DefectReleases Number of releases of a files with defects relative to total number of releases
8 Revision1Month Number of revisions of a file from Dec 1 to 31 of 2006
9 DefectAppearance1Month Number of releases of a file with defects from Dec 1 to 31 of 2006
10 ReportedI1Month Number of reported problems of a file from Dec 1 to 31 of 2006
11 Revision2Months Number of revisions of a file from Nov 1 to Dec 31 of 2006
12 DefectAppearance2Months Number of releases of a file with defects from Nov 1 to Dec 31 of 2006
13 ReportedI2Months Number of reported problems of a file from Nov 1 to Dec 31 of 2006
14 Revision3Months Number of revisions of a file from Oct 1 to Dec 31 of 2006
15 DefectAppearance3Months Number of releases of a file with defects from Oct 1 to Dec 31 of 2006
16 ReportedI3Month Number of reported problems of a file from Oct 1 to Dec 31 of 2006
17 Revision5Months Number of revisions of a file from Aug 1 to Dec 31 of 2006
18 DefectAppearance5Months Number of releases of a file with defects from Aug 1 to Dec 31 of 2006
19 ReportedI5Month Number of reported problems from Aug 1 to Dec 31 of 2006
20 ReportedIssues Total number of reported problems
21 Releases Total number of releases
22 RevisionAuthor Number of revisions per author

Table 2: The features (or measures) used in our experiment

were files with modification reports that do not contain lines
added/deleted information or with a wrong or unavailable
release date. We exported all the information into the evo-
lution ontology format EvoOnt data [6], which integrates
the code, release, and bug information in a single knowledge
base. For each of the investigated 3831 source files we used
the information in the EvoOnt knowledge base to compute
the number of lines of code (LOC) code and several process
features (or measures) as listed in Table 2. Features 8–19
contain temporal/historical information about the project.
Essentially, they consider different sizes of windows (1, 2, 3,
and 5 months) backwards from the December 2006 releases.
If a defect is not fixed in one release and transferred to later
releases, then we count them in all releases where they oc-
cur.
Since lines of codes are added/deleted both when fixing a
bug and when adding new features they need to be sepa-
rated. Features LineAddedIRLAdd and LineDeletedIRLDel

represent the number of lines added/deleted to fix a bug rel-
ative to total number of lines added/deleted.
Feature 4, AlterType, classifies each modification into large,
medium, and small according its size relative to the lines of
code modified in the source files. If the sum of lines added
and deleted is more than double of the code length then
AlterType of this modification is large. If the modifica-
tion relative to the code length is between 1 and 2 then
Altertype is medium. If the size of the change is below 1
than AlterType is small. This reflects the way modifica-
tions are handled by CVS, which stores for a modified line
1 line deleted and 1 line added.

3.2 Experimental Procedure
All experiments were carried out using the Weka data min-
ing toolkit [17]. To test the quality for our prediction models
we computed the features shown in Table 2 once for releases
until December 31 2006 for learning/inducing the model –

the training set – and once for the period until the end of
January as a test set.
Since choosing a good feature set for the prediction model
is imperative for a good prediction performance we used a
number of wrapper-based feature selection methods such as
sequential forward selection [8]. These methods compare the
prediction performance of different subsets of the features
within the training set to find the best performing subset.
The best performing subset of features was then used to in-
duce the prediction model, which was then tested on the test
set. This procedure ensures that only information available
on December 31, 2006 was used to predict the location of
defects or the number of bugs in January of 2007.

3.3 Performance Measures
For the location prediction experiment we learned a class
probability estimation model (CPE), which computes the
probability distribution over the two possible classes: hasBug
and hasNoBug. Since CPE’s are usually used to predict
classes we picked the class with the higher probability and
computed the confusion matrix of the model, which can
(partially) be summarized with accuracy of the model’s clas-
sification. The problem of the accuracy as a measure is that
it does not relate the prediction the prior probability of the
classes. This is especially problematic in heavily skewed dis-
tributions such as the one we have. Therefore, we also used
the receiver operating characteristics (ROC) and the area
under the ROC curve, which relate the true-positive rate to
the false-positive rate resulting in a measure uninfluenced of
the prior (or distribution) [12, 17].
Given the skewed distribution the traditional Pearson cor-
relation is inappropriate. For the regression experiment
we, therefore, report Spearman’s Rank correlation (ρ), root
mean squared error (RMSE), and mean absolute error (MAE).

13

13

4. EXPERIMENTS
In our experiments we investigate the suitability of our ap-
proach for two tasks. First, we looked if the features selected
are sufficient to predict the files that will have defects in fu-
ture versions. Second, we explore how well our approach
predicts the number of bugs per each file.

4.1 Defect Location Prediction
The goal of this experiment is to predict the locations of de-
fects of source code files. To that end we learn a model using
the training data that predicts the probability of defect oc-
currence for any given file from the test set. We used Weka’s
J48 decision tree learner (a re-implementation of C4.5 [13]).
To test our proposition—that temporal features would im-
prove the prediction quality—we learned the model with
different base-sets of features either using no temporal data
whatsoever (i.e., excluding features 8-19 of Table 2) or us-
ing the temporal features for different window sizes of 1, 2,
3, and 5 months (i.e., choosing a selection of features 8-19
representing the window size under investigation).
Table 3 summarizes the results of these experiments. It
shows the list of features chosen by the feature selection
method, the accuracy, and the area under the ROC curve
of the prediction for each of the learned models. It is inter-
esting to observe that the only feature chosen for all models
is the LineAddedIRLAdd (Feature 2), which relates the num-
bers of lines added due to bug fixing to the number of lines
added due to adding new features. Even though this feature
is chosen by all models it does not seem to play a pivotal
role in the models, as it does not show in none of the trees’
first two levels. Another interesting observation is the dom-
inance of the temporal features (numbers 8-19): not only do
they get chosen whenever possible, they also show up at the
root of the tree (see column 3) whenever available.
When looking at the target performance measures accuracy
and area under the ROC curve (AUC) we clearly see the
dominance of the prediction that can take advantage of tem-
poral features compared to the one that cannot. In terms
of accuracy we can clearly see that temporal information
boosts the performance, but that more recent temporal data
is more useful than older one. We can, hence, hypothesize
that modules with bugs are likely to have bugs in later ver-
sions, but that over longer periods of time those bugs could
be fixed. In other words: Bugs are likely to survive some
versions, but are fixed after some.

One might argue that the difference between 96.58% (no
temporal features) and 99.16% (significant features) in ac-
curacy is not significant enough to warrant the computa-
tion of the temporal measures. Note, however, that the
sole use of accuracies is misleading since they are heavily
dependent on the prior distribution of the data. In our
case, where the class distribution is highly skewed (we have
140 buggy classes versus 3691 non-buggy ones), it is sim-
ple to attain a high accuracy: ”just” assigning ”non-buggy”
to every file (the default strategy) one gets an accuracy of
96.35% (= 3691

3691+140
) according to the confusion matrix for

the best model (including significant features) shown in Ta-
ble 4. Hence, the use of accuracy as a measure for the qual-
ity of the prediction is misleading. We, therefore, computed
the receiver operating characteristics (ROC) for each of the
methods and the area under the ROC-curve (AUC), which
both provide a prior-independent approach for comparing

the quality of a predictor [12].
Figure 1 graphs the ROC curves for all the chosen meth-
ods. The x-axis shows the false-positive rate and the y-axis
the true positive rate. Note, that a random bug assignment
is also shown as a line form the origin (0, 0) to (1, 1) and
that the ideal ROC curve would be going from the origin
straight up to (0, 1) and then to (1, 1). The Figure clearly
shows that all prediction methods provide a significant lift
in predictive quality over the random assignment. But the
methods have very interesting differences in terms of quality.
Since one method dominates another when its ROC-curve
is closer towards the upper left corner, we can see how the
non-temporal prediction model is dominated along almost
the whole frontier by the temporal models. The figure also
shows how the method using significant features dominates
the other methods along almost the whole frontier whilst
employing fewer features (see Table 3). Lastly note, that
the dominance of the ROC-curve is reflected by a larger
area under the ROC curve (AUC) as listed in Table 3.

predicted buggy predicted bug free
has bugs 117 23

has no bugs 9 3682

Table 4: Confusion Matrix for the significant fea-
tures model

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
ru

e
P

os
iti

ve
 R

at
e

Figure 1: ROC-curves of defect prediction methods.

To further improve our understanding of the structure of
the prediction methods, we succinctly compare the two top
levels of the prediction trees for the non-temporal, the 1-
month, and the significant feature model. As the top levels
of the trees depicted in Figure 2 show even the model with-
out temporal features (a) heavily relies on the quasi tem-
poral feature DefectReleases, which computes the fraction
of past releases with bugs. The next most important non-
temporal feature seems to be LineDeletedIRLDel signifying
the importance to distinguish between changes due to bug
fixing versus changes due to the addition of new features.
Not that this seems to be a very important distinction, as
the related LineAddedIRLAdd feature is the most important
non-temporal feature in the tree (b).

14

14

Name of method Features chosen Root Node of Tree Accuracy Area under ROC curve
no temporal features 2,3,4,6,7,20,21,22 DefectReleases 96.5805% 0.8611
1-month features 2,8,10,20,22 ReportedI1Month 99.1125% 0.8948
2-months features 2,4,11,12,13,20,22 ReportedI2Month 98.8776 % 0.8933
3–months features 2,3,4,6,7,14,15,16,20,21,22 DefectAppearance3Months 98.6427% 0.9039
5-months features 2,3,4,5,6,7,17,19,20,21,22 ReportedI5Months 97.7813% 0.8663
significant features 2,3,8,9,11,16,19 DefectAppearance1Month 99.1647% 0.9251

Table 3: Results of different models for defect location prediction (Accuracy of default strategy 96.35%)

DefectReleases <= 5.263158: NO (3423.0/11.0)
DefectReleases > 5.263158
| DefectReleases <= 21.9 5122
| | L i n eDeleted I RL DE l <= 17 .518248: NO (222.67 /35.0)
| | L i n eDeleted I RL DE l > 17 .518248
| | | Releases <= 206: NO (34.33/10.0)
| | | Releases > 206
| | | | Rev i si o n A u th o r <= 3.125: Y E S (7 .0)
| | | | Rev i si o n A u th o r > 3.125: NO (3.0/1.0)
| DefectReleases > 21.9 5122
| | DefectReleases <= 67 .142857
| | | A lter T y p e = lar g e

(a) No temporal features

ReportedIssues1Month <= 0: NO (3692.0/21.0)
ReportedIssues1Month > 0
| Rev i si on1Month <= 1: Y E S (105 .0/2.0)
| Rev i si on1Month > 1
| | L i neA ddedIRL A D D <= 3.636364 : NO (16. 0/2.0)
| | L i neA ddedIRL A D D > 3.636364
| | | ReportedIssues <= 7 : Y E S (15 .0/1.0)
| | | ReportedIssues > 7 : NO (3.0)

(b) 1-month temporal features

DefectAppearance1Month <= 0
| R eported I 5 m onths <= 0: N O (3 5 9 9 . 0/ 9 . 0)
| R eported I 5 m onths > 0
| | R ev i s i on2 Months <= 4 : N O (8 6 . 0/ 7 . 0)
| | R ev i s i on2 Months > 4
| | | L i neAd d ed I R L ADD <= 1. 3 5 9 2 2 3 : N O (2 . 0)
| | | L i neAd d ed I R L ADD > 1. 3 5 9 2 2 3 : Y E S (5 . 0)
DefectAppearance1Month > 0
| R ev i s i on1Month <= 1: Y E S (105 . 0/ 2 . 0)
| R ev i s i on1Month > 1

(c) significant features

Figure 2: Top levels of induced defect location trees

Summarizing, we can say that the experiment for defect lo-
cation prediction clearly shows that one can, indeed, predict
the location of bugs with a high accuracy. We can also say
that this accuracy bases (to a large extent) on temporal
features. We hypothesize that one reason for the effective-
ness of temporal values is that bugs usually survive more
than one release. Other reasons might be the fact that com-
plicated/complex or badly engineered classes are likely to
exhibit bugs repeatedly unless they are re-engineered. Fur-
thermore, we observe that the most important non-temporal
features for prediction are the relation between line changes
due to feature additions versus line changes due to bug fixing
in the past – a type of feature not yet largely investigated
in the literature, which clearly deserves more attention.

4.2 Predicting the Number of Bugs
The goal of the second group of experiments is to establish
if our approach can amply predict the number of bugs that
occur in any given file. This task is more difficult than the
last, as it not only has to predict the existence of bugs (i.e.,
if #bugs > 0) but the actual numbers of bugs. Since we be-
lieve that the task of predicting the number of bugs exhibits
non-linear properties (a belief, for which we show evidence

in section 4.3) we decided to use a non-linear regression ap-
proach. To preserve the comprehensibility of the model as
well as the comparability of the model to the defect location
prediction above we chose the Weka implementation of the
M5 tree regression algorithm [14] called M5P. A regression
tree model combines a decision tree an a linear regression by
partitioning the feature space with a decision tree and then
providing a linear regression equation for each of the tree’s
leafs. The model can, thus, predict a number by assign-
ing any instance (i.e., entity to predict) to a leaf and then
performing the associated regression to compute a number.
This approach has the advantage that the regressions at the
leafs do not have to be linearly connected – the tree pro-
vides the non-linear partition, the linear regressions predict
the number.

The predictive power of temporal features. To test our propo-
sition – that temporal features improve the prediction qual-
ity – we followed the same procedure as above: we learned
the model with different base-sets of features either using
no temporal data whatsoever (i.e., excluding features 8-19
of Table 2) or using the temporal features for different win-
dow sizes of 1, 2, 3, and 5 months.
Table 5 summarizes the results for this comparison. Like
Table 3 it Lists the name of the model, the features chosen
by the feature selection algorithm and the root node of the
regression tree. As performance measures it lists the Pear-
son correlation between the prediction and the actual data,
the mean absolute error (MEA), and the root mean square
error (RMSE). The results mostly mirror the ones form the
location prediction experiments.
The models that can rely on the temporal features do so
and even use it as the main feature for the decision tree.
In contrast to the the location prediction, though, the root
nodes of the tree do not have the most recent available
number of reported issues or bugs (i.e., ReportedI1Month,
ReportedI2Month, ReportedI2Month, DefectAppearance1-
Months, or alternatively DefectAppearance3Months), but ex-
clusively uses the number of available (i.e., RevisionXMonth,
where X is the most recent available number for learning).
While this is surprising at the surface further investigation
clarifies the issue: when investigating the features chosen by
the feature selection algorithm we can clearly see that the
elements chosen as root nodes in the defect location predic-
tion are used in the defect number prediction. In contrast to
the defect location prediction they are not at the root of the
partitioning decision tree but are mostly used in the regres-
sion function at the leafs. Consider, for example, the model
induced for significant-features model as shown in Figure 3.
At the top we can clearly see the decision tree that partitions
the feature space using only some of the features. Below, the

15

15

Name of model Features chosen Root Node Spearman’s ρ MAE RMSE
no temporal features 3,5,7,20,21,22 LineDeletedIRLDel 0.863 0.0524 0.1898
1-months features 2,3,5,6,7,10,8,9,10,20,21,22 Revision1Month 0.941 0.0226 0.1272
2-months features 3,5,6,7,11,12,13,21,22 Revision2Months 0.950 0.0249 0.133
3-months features 2,5,7,14,15,16,21 Revision3Months 0.966 0.0241 0.1298
5-months features 2,3,5,17,18,19,22 Revision5Months 0.942 0.0326 0.1575
significant features 5,7,8,9,12,14,15,16,21,22 Revision1Month 0.963 0.0194 0.1119

Table 5: Results of different models for defect location prediction with M5P

figure shows the first of 8 linear regression models. this par-
ticular model is called if the rule at the root of the tree
(Revision1Month 6 0.5) is true. As the regression shows
it uses the root node of the defect prediction decision tree
DefectAppearance1Month with the second strongest weight
in the regression.

Revision1Month <= 0.5 : LM1 (1348/0%)
Revision1Month > 0.5 :
| LineAddedIRLADD <= 0.098 :
| | AgeMonths <= 33.667 :
| | | Releases <= 65.5 : LM2 (343/0%)
| | | Releases > 65.5 :
| | | | AgeMonths <= 15.95 : LM3 (112/87.619%)
| | | | AgeMonths > 15.95 : LM4 (266/26.955%)
| | AgeMonths > 33.667 : LM5 (975/0%)
| LineAddedIRLADD > 0.098 :
| | Defectappearance3Months <= 0.5 : LM6 (619/42.644%)
| | Defectappearance3Months > 0.5 :
| | | Revison3Months <= 1.5 : LM7 (81/171.567%)
| | | Revison3Months > 1.5 : LM8 (87/210.532%)

LM num: 1
NumberofErroresLastMonth =

0 * LineAddedIRLADD
+ 0 * AgeMonths
+ 0.0005 * Revison3Months
- 0.0005 * Defectappearance3Months
- 0.0013 * ReportedI3Months
- 0 * Releases
+ 0 * RevisionAuthor
- 0.0002 * Revision5Months
+ 0.0002 * DefectAppearance5Months
- 0.0002 * Revision1Month
+ 0.0019 * DefectAppearance1Month
+ 0.0043 * ReportedI2Months
- 0.0003

Figure 3: Excerpt of bug prediction model relying
on significant features

Like in the bug prediction case Table 5 also clearly shows
how the models with temporal features dominate the model
without them. The difference in the Spearman’s ρ (0.963
for temporal features vs. 0.863 without temporal features)
is striking. The error rates MAE and RMSE mirror this
behavior. Therefore, the results support our argument that
the temporal data improve the accuracy of prediction model.

Exploring the prediction error. A closer look at the error
rates in Table 5 also reveals that the RMSE is an order of
magnitude larger than the MAE for all the models. This in-
dicates that there are some large errors, which weigh in more
heavily in the RMSE. Table 6 shows the histogram analysis
of residual error of the significant-features model. As the ta-
ble shows the bulk of the prediction has no (74.07%) or little
(i.e., error 6 0.5; in 98.69%). Nonetheless, a few predictions
exhibit an error larger than 1. It is these predictions that

mostly influence the error. When removing the file with a
prediction error of 2.93, the MAE is lowered to 0.0194, but
the RMSE is lowered to 0.0014, a full order of magnitude
smaller. It is, hence, this one outlier that mostly contributes
to the RSME. When, furthermore, removing all 5 files with
an error larger than 1 we get a MAE of 0.0177 and a RMSE
of 0.0095. We can, thus, conclude that the prediction error
of our method is, in general, very small.

Error Interval Frequency Absolute Cumulative
0 2838 74.08 % 74.08 %

0 < e 6 0.5 943 24.61 % 98.69 %
0.5 < e 6 1 45 1.17 % 99.87 %
1 < e 6 1.5 4 0.10 % 99.97 %
1.5 < e 6 2 0 0 % 99.97 %
2 < e 6 2.5 0 0 % 99.97 %
2.5 < e 6 3 1 0.03 % 100.00 %

Table 6: Residual error histogram for significant-
feature model

Comparison with other defect predictions using the same
data set The MSR Mining Challenge 2007,4 which provided
the data we used for our study, had a similar task as its
Challenge #2. The main difference between our approach
and the challenge task is that we chose to make our predic-
tions on the file level and the Challenge task required par-
ticipants to predict the number of bugs for 32 plug-ins5 (i.e.,
summarizing the bugs for all their classes). Two methods,
one in two versions were submitted to the mining challenge.
C-ESSEN by Adrian Schröter [15] predicted the bugs based
on the import statements used in the files. This is a measure
we did not use at all. ULAR by Joshi et. al [4] uses features
computed in the last month to make a prediction for next
month. A second version of ULAR extends those predic-
tions with a trend analysis. Last, an ad-hoc method used as
an comparison by Thomas Zimmermann (called 1 Year ago)
simply takes the measures from 2006 to make the prediction
for 2007. Table 7 shows the Spearman’s rank correlation (ρ)
for all the methods as well as our significant-feature model.
The results clearly show that our approach is better at rank-
ing the files according to their expected bugs. The ranking,
rather than the precise prediction of the number of bugs, is
actually an important task when one tries to make an op-
timal assignment of resources (i.e., programmers) to tasks
(i.e., the fixing of bugs) [12]. Note, however, that the other
models are making their prediction on 32 modules whereas
we limit ourselves to only 6, which is a much simpler task.

4
http://msr.uwaterloo.ca/msr2007/challenge/
5
http://msr.uwaterloo.ca/msr2007/challenge/plugins.txt

16

16

http://msr.uwaterloo.ca/msr2007/challenge/plugins.txt
http://msr.uwaterloo.ca/msr2007/challenge/

Model n ρ

C-ESSEN (imports) [15] 32 0.67
ULAR (Last month + trends) [4] 32 0.81
ULAR (Last months) [4] 32 0.84
1 Year Ago 32 0.91
significant-features model 6 1.00

Table 7: Spearman’s ρ for MSR Mining Challenge
2007 results, where n is the number of components

Summarizing, we can say that our non-linear bug prediction
model supports our proposition that temporal features are
imperative for an accurate prediction – without them the
Spearman’s rank correlation ρ between the predictions and
the actual error numbers is lowered from 0.963 to 0.863.
Second, we can clearly see how our model is highly accurate
for most predictions and that most of the residual error is
introduced by 5 predictions of 3831. Third, we tried to
compare the performance of our approach to similar tasks
(as we did not find any work on the same task): We find that
our approach exhibits a superior performance compared to
others with respect to the Spearman’s rank correlation.

4.3 The Predictive power of linear and non-
linear prediction methods

The second of our guiding propositions is that non-linear
models should provide a superior prediction that the usu-
ally used linear ones. Specifically, we stated that the non-
linear models are able to exploit the non-linear relationships
between the features to make more accurate bug number
predictions. By non-linear we mean here a relationship that
cannot be captured by a weighted sum of simple, continuous
functions of the single features (as done by a linear regres-
sion), but may require functions of two or more features. To
explore this hypothesis we re-ran experiments outlined in
sub-section 4.2 with a standard linear regression algorithm.

Table 8 shows the results of this analysis comparing the
Spearman’s rank correlation (ρ), the mean absolute error
(MAE), and the root mean squared error (RSME) for the
linear model (LM) – a standard linear regression – and the
non-linear model in the form of the M5P algorithm. The
results show that the non-linear significantly outperforms
the linear model for all performance measures (results for
pairwise t-test significant at: p = 1.09% for ρ, p = 0.29%
for MEA, and p = 2.42% for RMSE). The dominance is,
however, not constant. For the data sets without temporal
features the LM and M5P have a very similar performance.
The more recent temporal features the more pronounced is
the dominance of the non-linear model. This would lead
us to hypothesize that the non-temporal features exhibit a
non-linear relationship to the number of bugs. If we ex-
plore the actual model this hypothesis is confirmed. Con-
sider again Figure 3, which shows the bug prediction model
for significant-features. As the model clearly shows the tem-
poral features are heavily used within the non-linear element
of the model: the decision tree that partitions the feature
space. Nonetheless, the temporal features are also reused in
the linear part of the model: the leaf-based regressions. We
can, thus, conclude that (1) the temporal features have both
linear and non-linear elements with respect to the number of

bugs and (2) the M5P’s capability to exploit both linear and
non-linear elements clearly results in more accurate results.

4.4 Identifying the critical Eclipse plugins
We applied the best performing prediction model to identify
the most critical Eclipse plugins (out of the six). These
plugins need be considered first when planning refactoring
and testing efforts. With critical we mean plugins for which
our model predicts the highest number of bugs for January
2007. Table 9 lists the results with the actual number of
bugs, the predicted number of bugs, and the accuracy of the
prediction model.

Pugin #Actual #Predicted Accuracy
pdeui 83 68.8999 83.0119%
compare 36 29.5561 82.1002%
pdebuild 20 16.7421 83.7106%
updateui 10 8.6371 86.3718%
updatecore 8 7.1928 89.9104%
search 1 1.0663 93.7836%

Table 9: Predicted and actual number of bugs for
the six Eclipse plugins in January 2007.

From a managers point of view the number of predicted bugs
clearly indicates that refactoring as well as testing effort
needs to be dedicated to the two plugins pdeui and compare.
In particular, pdeui is indicated as a critical plugin that
according to our model will be affected by around 69 bugs
in January 2007. This mirrors the actual number of bugs,
which was 83. From that we conclude that such predictions
provide a valuable input for software project managers to
plan refactorings and tests.

5. LIMITATIONS AND CONCLUSIONS
Our findings for the Eclipse evolution data are very promis-
ing. The use of a non-linear model basing on temporal fea-
tures selected by an automated feature selection algorithm
could predict defect location and numbers with a very high
accuracy. The findings are, however, hampered with a num-
ber of limitations.
First and foremost, the chosen Eclipse data set represents
only one project-family. While we followed good data mining
practice to ensure the generalizability of the our findings the
data might behave Eclipse idiosyncratic such as a common
culture of bug-reporting or code documentation/fixing, pro-
gramming language dependencies (Eclipse only uses Java),
etc. Furthermore, we only looked at the predictions for the
last month (January 2007) of the data set. We intend ascer-
tain the generalizability of our findings by (1) exploring the
quality of the prediction for other months within the Eclipse
data set and for other projects altogether.
Second, we “only” used one off-the-shelf feature selection
and non-linear induction algorithm. It might, therefore, be
that the resulting feature set and model are suboptimal.
Following good data analysis practice we should try a whole
set of algorithms to determine the most predictive model –
a task that we will undertake in the near future. Nonethe-
less, we are confident that the use of other algorithms will
not substantially change our findings. Much more we expect
them to potentially make them even more pronounced than
currently.
Third, our candidate features were chosen by our study of

17

17

LM M5P
Name of model ρ MAE RMSE ρ MAE RMSE
without temporal features 0.844 0.0569 0.1902 0.863 0.0524 0.1898
1-Month 0.935 0.0306 0.1311 0.941 0.0226 0.1272
2-Months 0.919 0.039 0.1421 0.950 0.0249 0.133
3-Months 0.891 0.0471 0.1523 0.966 0.0241 0.1298
5-Months 0.918 0.0423 0.1611 0.942 0.0326 0.1575
Significant Features 0.929 0.0319 0.1227 0.963 0.0194 0.1119

Table 8: Comparison of linear model (LM) and Non-linear model (M5P), ρ is the Spearman’s rank corr.

the literature and some of our own thoughts regarding tem-
poral features. In order to ensure an optimal performance
of the resulting models we need to explore the full space of
possibly applicable measures (or features) reported in the lit-
erature. We hope to investigate the full feature space in the
future. Like with the feature selection, however, we think
that such an exploration would make our finding more pro-
nounced but not change the inferred conclusions.
Last and most importantly, our attempt could be seen as
a post-prediction rather than a pure prediction. After all,
we could employ some “current” information in building our
models. We intend to address this problem in the future by
completely temporally disentangling training from test set.
In the future we intend to embed this approach into a tool,
which seamlessly integrates into an IDE and highlights files
that have a high probability of defects or a large number of
bugs. Such an integration would simplify the use of the al-
gorithm by software managers and developers, which would
allow to investigate their use in practice.
We also intend to pursue the avenue of temporal depen-
dencies/relationship between code/bug-measures and future
performance. To that end we also intend to explore the use
of temporal data mining techniques such a Markov models.
In closing we should highlight that our approach - employ-
ing temporal features and non-linear models for defect pre-
diction shows a clear advantage over others. We hope that
this method will help to contribute to improved bug number
predictions and, therefore, help to ensure the development
of software with fewer bugs.

6. ACKNOWLEDGMENTS
This work was partially supported by a grant of the Sri
Lankan government. We would like to thank Thomas Zim-
mermann for making available the data for the 2007 MSR
mining challenge as well as the anonymous reviewers whose
comments helped to improve this paper.

7. REFERENCES
[1] M. Askari and R. Holt. Information theoretic
evaluation of change prediction models for large-scale
software. In MSR ’06: Proceedings of the 2006
international workshop on Mining software
repositories, pages 126–132, New York, NY, USA,
2006. ACM Press.

[2] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy.
Predicting fault incidence using software change
history. IEEE Trans. Softw. Eng., 26(7):653–661, 2000.

[3] A. E. Hassan and R. C. Holt. The top ten list:
Dynamic fault prediction. In ICSM ’05: Proceedings of
the 21st IEEE International Conference on Software
Maintenance (ICSM’05), pages 263–272, Washington,
DC, USA, 2005. IEEE Computer Society.

[4] H. Joshi, C. Zhang, S. Ramaswamy, and C. Bayrak.
Local and global recency weighting approach to bug

prediction. In MSR 2007: International Workshop on
Mining Software Repositories, 2007.

[5] T. M. Khoshgoftaar, E. B. Allen, N. Goel, A. Nandi,
and J. McMullan. Detection of software modules with
high debug code churn in a very large legacy system.
In Proceedings of the Seventh International
Symposium on Software Reliability Engineering, pages
364–371, White Plains, NY, 1996. IEEECS.

[6] C. Kiefer, A. Bernstein, and J. Tappolet. Analyzing
software with isparql. In Proceedings of the 3rd
International Workshop on Semantic Web Enabled
Software Engineering (SWESE 2007). Springer, June
2007. to appear.

[7] P. Knab, M. Pinzger, and A. Bernstein. Predicting
defect densities in source code files with decision tree
learners. In MSR ’06: Proceedings of the 2006
international workshop on Mining software
repositories, pages 119–125, New York, NY, USA,
2006. ACM Press.

[8] R. Kohavi and G. H. John. Wrappers for feature
subset selection. Artificial Intelligence,
97(1-2):273–324, 1997.

[9] A. Mockus and L. G. Votta. Identifying reasons for
software changes using historic databases. In ICSM
’00: Proceedings of the International Conference on
Software Maintenance (ICSM’00), page 120,
Washington, DC, USA, 2000. IEEE Computer Society.

[10] N. Nagappan and T. Ball. Static analysis tools as
early indicators of pre-release defect density. In ICSE
’05: Proceedings of the 27th international conference
on Software engineering, p580–586, 2005.

[11] T. J. Ostrand, E. J. Weyuker, and R. M. Bell.
Predicting the location and number of faults in large
software systems. IEEE Trans. Softw. Eng.,
31(4):340–355, 2005.

[12] F. J. Provost and T. Fawcett. Robust classification for
imprecise environments. volume 42, pages 203–231,
2001.

[13] J. R. Quinlan. C4.5: Programs for Machine Learning.
Morgan Kaufmann Publishers, 1993.

[14] R. J. Quinlan. Learning with continuous classes. In
5th Australian Joint Conference on Artificial
Intelligence, pages 343–348, Singapore, 1992.

[15] A. Schröter. Predicting defects and changes with
import relations. In Proceedings of MSR 2007:
International Workshop on Mining Software
Repositories, 2007.

[16] J. Sliwerski, T. Zimmermann, and A. Zeller. Hatari:
Raising risk awareness (research demonstration). In
Proceedings of the 10th European Software Engineering
Conference held jointly with 13th ACM SIGSOFT
International Symposium on Foundations of Software
Engineering, pages 107–110. ACM, September 2005.

[17] I. H. Witten and E. Frank. Data Mining: Practical
machine learning tools and techniques. Morgan
Kaufmann, second edition, 2005.

[18] T. Zimmermann, R. Premraj, and A. Zeller.
Predicting defects for eclipse, May 2007.

18

18

	Introduction
	Related work
	Experimental Setup
	The Data - CVS and Bugzilla for Eclipse
	Experimental Procedure
	Performance Measures

	Experiments
	Defect Location Prediction
	Predicting the Number of Bugs
	The Predictive power of linear and non-linear prediction methods
	Identifying the critical Eclipse plugins

	Limitations and Conclusions
	Acknowledgments
	References

