Softw Syst Model (2017) 16:55-76
DOI 10.1007/s10270-015-0472-2

@ CrossMark

THEME SECTION PAPER

Analysing the Linux kernel feature model changes using FMDiff

Nicolas Dintzner! - Arie van Deursen! - Martin Pinzger?

Received: 17 October 2014 / Revised: 8 March 2015 / Accepted: 25 April 2015 / Published online: 22 May 2015
© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract Evolving a large scale, highly variable system is
a challenging task. For such a system, evolution operations
often require to update consistently both their implementa-
tion and its feature model. In this context, the evolution of
the feature model closely follows the evolution of the system.
The purpose of this work is to show that fine-grained feature
changes can be used to guide the evolution of the highly vari-
able system. In this paper, we present an approach to obtain
fine-grained feature model changes with its supporting tool
“FMDiff”. Our approach is tailored for Kconfig-based vari-
ability models and proposes a feature change classification
detailing changes in features, their attributes and attribute
values. We apply our approach to the Linux kernel fea-
ture model, extracting feature changes occurring in sixteen
official releases. In contrast to previous studies, we found
that feature modifications are responsible for most of the
changes. Then, by taking advantage of the multi-platform
aspect of the Linux kernel, we observe the effects of a fea-
ture change across the different architecture-specific feature
models of the kernel. We found that between 10 and 50 % of
feature changes impact all the architecture-specific feature

Communicated by Andrzej Wasowski and Thorsten Weyer.

B Nicolas Dintzner
N.J.R.Dintzner @tudelft.nl

Arie van Deursen
Arie.vanDeursen @tudelft.nl

Martin Pinzger
Martin.Pinzger @aau.at
Software Engineering Research Group, Delft University of

Technology, Delft, The Netherlands

Software Engineering Research Group, University of
Klagenfurt, Klagenfurt, Austria

models, offering a new perspective on studies of the evolu-
tion of the Linux feature model and development practices
of its developers.

Keywords Software product line - Feature model -
Evolution

1 Introduction

Software product lines are designed to maximize reuse of
development artefacts while reducing development costs,
through the identification and formalization of what is com-
mon and variable between different members of a product
family [9]. Features, as configuration units, represent func-
tionalities or characteristics that may be included in products
of a product line. Available features are often formalized
in a feature model, describing both the options themselves
and their allowed combinations. The choice of features to
offer to customers and their allowed configurations will influ-
ence every step of the development of the product line: its
design, architecture, implementation techniques and applica-
ble methods to instantiate products from a set of assets
(source code, scripts, resources) [9].

Over time, as a software product line evolves, features
are added, removed or modified and the associated assets
should be updated accordingly. Software product lines are
often long-lived systems, and the complexity of the system
increases over time to the point where evolution opera-
tions become error prone and specific approaches and tools
become necessary [39,42,44]. We can find in the literature
accounts of the issues arising during the evolution of such
systems [1,19,42]. In a different domain, it has been shown
that the analysis of fine-grained source code changes facili-
tates software maintenance [14]. Encouraged by such results,

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-015-0472-2&domain=pdf

56

N. Dintzner et al.

we propose to explore a similar idea in the context of highly
variable software: observing the details of the fine-grained
evolution of a feature model to derive information about the
evolution of the system.

Feature model evolution has been extensively studied in
the past [15,26,41,44]. These studies provide insights on
which operations may occur on features, detailed examples
of transformations occurring on large scale product lines—
industrial and open source, and the evolution of feature model
structural metrics (number of leaves, nodes, constraints). But
itis interesting to note that studies detailing feature evolution
scenarios, such as [21,25,30], tend to focus on transformation
leading to (dis)appearance of complete features, not covering
changes to existing features or constraints, leaving us with
little knowledge about the details of such changes.

In this paper, we propose to elaborate and apply our
existing tool supported approach to extract and classify fine-
grained feature model changes in the Linux kernel feature
model [12]. While the Linux kernel is not a software prod-
uct line per se, it has the technical characteristics of such
systems, among which an explicit variability model, which
we assimilate to a feature model following the work by Sin-
cero et al. [36,37], making this system an interesting case of
highly variable software. We rely on our existing classifica-
tion of feature changes, based on the Kconfig language.!
We improved FMDiff, the supporting tool, to extract a
larger corpus of data covering more than twenty architecture-
specific feature models applied for over sixteen releases of
the Linux kernel, from release 2.6.39 until release 3.14. We
use the collected data to draw lessons about the evolution of
the Linux kernel.

First, we are interested in discovering the frequent change
operations affecting the feature model that developers per-
form over time. This data will allow us to see whether the
most commonly studied feature changes are also the most
common change operations occurring on the features of
Linux kernel. Several studies (e.g. [17,21,27]) quantified
the addition and removal of features in the Linux kernel
over time or present structural metrics of the kernel’s feature
model, such as the depth of feature structures or the number
of leaf features in each release, but despite being often stud-
ied, more detailed information can be obtained. This leads to
our first research question: RQ1: What are the most common
operations performed on features in the Linux kernel feature
model? Over the studied time period, we found that the most
common feature change operation on this system is also the
one that is the least described by current research on vari-
able system evolution, namely the modification of existing
features (instead of merely adding or removing them).

! https://www.kernel.org/doc/Documentation/kbuild\discretionary-/
kconfig-language.txt.

@ Springer

Secondly, we know that the Linux kernel is designed to
support many different processor architectures, each poten-
tially differing widely from others in terms of supported
features. In this study, we extract the Linux feature model on
a per architecture basis. While we study the evolution of all
of those models, some studies restrict themselves to the study
of one of them to extrapolate their findings on others [21].
We also note that developers working on the Linux feature
model have, except in trivial cases, no means to know which
architecture can be impacted by a feature change. We use
FMDif f to compare the evolution of those different models
and answer the following research question: RQ2: To what
extent does a feature change affect all architecture-specific
feature models of the Linux kernel? Our data show that the
different architecture feature models follow very different
evolution paths and that between 10 and 50 % of feature
changes affect all architectures depending on the release. This
suggests that extrapolation of observations done on the evo-
lution of one architecture-specific feature model should be
conducted with care, and points to a potential caveat in the
Linux development process.

The key contribution of this paper is FMDiff, an approach
to extract and automatically classify feature model changes
from the versioning history of Kconfig-based feature mod-
els. Furthermore, the paper contributes (1) a feature model
change classification scheme, focused on Kconfig-based
variability models; (2) the FMDiff tool; (3) two studies with
the Linux kernel feature model showing that changes to exist-
ing features constitute a large proportion of feature changes
of the Linux feature model and showing that the evolution of
architecture-specific feature models of Linux follow different
evolution path.

The remainder of this paper is organized as follows. Sec-
tion 2 provides some background information on the Linux
kernel, its feature model, and the tools we rely on to extract it.
We present our feature change classification and its rationale
in Sect. 3. FMD1 £ f is introduced and evaluated in Sect. 4. We
illustrate the capability of our tool in Sect. 5 by answering our
two research questions. We reflect on the use of FMDi f £ and
fine-grained feature changes in the context of the evolution
of highly variable systems and product lines in Sect. 6. Sec-
tion 7 presents related work. Finally, we conclude this paper
and elaborate on potential future applications of FMDiff
in Sect. 8.

2 Background: the Linux kernel variability model

The approach described in this paper is based on the extrac-
tion of feature models (FMs) declared with the Kconfig
language. In this section, we present general information
regarding the Kconfig language, the Linux kernel that we

https://www.kernel.org/doc/Documentation/kbuilddiscretionary {-}{}{}/kconfig-language.txt
https://www.kernel.org/doc/Documentation/kbuilddiscretionary {-}{}{}/kconfig-language.txt

Analysing the Linux kernel feature model changes using FMDiff

57

used as a case study, and the model transformation we per-
form on the Linux feature model before analysis.

2.1 The Kconfig language

Kconfig is a variability modelling language used to describe
configuration options (features) and their composition rules
(cross-tree constraints). Listing 1 exemplifies the declaration
of a configuration option in the Kconfig language.

In this work, we assimilate configuration options declared
in the Kconfig language to features and the set of options with
their constraints to a feature model [37]. The models created
using Kconfig will differ from more standard feature models
declared using FODA notation [18], but the constructs of
both notations of can be mapped to one another [34].

In the Kconfig language, features have at least a name
(following the config keyword on line 3) and a type. The
type attribute specifies what kind of values can be associated
with a feature. A feature of type Boolean can either be
selected (with value v for ‘yes’) or not selected (with value
n for ‘no’). Tristate features have a second selected state (m
for ‘module’), implying that the features are selected and are
meant to be added to the kernel in the form of a loadable ker-
nel module. Finally, features can be of type integer (int or
hex)ortype string. Inourexample, the ACPI_AC feature
isof type tristate (line 4). Features can also have default
values, in our example the feature is selected by default (v
on line 5), provided that the condition following the i f key-
word is satisfied. The text following the type on line 4 is the
prompt attribute. It defines whether the feature is visible in
the configuration tools during the configuration process. The
absence of such text means the feature is not visible.

Kconfig supports two types of dependencies. The first one
represents prerequisites, using the depends (or depends
on) statement followed by an expression of features (see
line 6). If the expression is satisfied, the feature becomes
selectable. The second one, expressing reverse-dependencies,
is declared by the select statement. If the feature is
selected, then the target of the select will be selected as
well (POWER_SUPPLY is the target of the select state-
ment on line 7). The select statement may be conditional.
In such cases, an if statement is appended. depends,
select and constrained default statements are used to
specify the cross-tree constraints of the Linux kernel FM. A
feature can have any number of such statements.

Furthermore, Kconfig provides the means to express
constraints on sets of features, such as the if statement
shown on line 1. This statement implies that all features
declared inside the if block depend on the ACPTI feature.
This is equivalent to adding a depends ACPI statement
to every feature declared within the if block. Another
possibility is to use choices. Such statement provides
constructs similar to “alternative” (1 of) and “or” feature

if ACPI

1
2
3l config ACPI_AC

4 tristate "AC Adapter"
5 default y if ACPI

6 depends X86

7 select POWER_SUPPLY

8

help
9 This driver supports the AC Adapter
10 object, (...).
11
12| endif

Listing 1 Example of a feature declaration in Kconfig

constraints (1 or more of) found in the FODA feature
modelling notation [18]. A choice itself can also be sub-
jected to constraints and have dependencies expressed using
depends statement.

Finally, features can have the “option” attribute, allowing
the definition is a wide range of key/value pairs associated
with features. This is used to flag features to be used in default
(or generated) configurations for instance—option with the
key “def_conf_list”. Another usage is to tune the module
resolution mechanism or import additional variables.

Kconfig offers the possibility to define a feature hierar-
chy using menus and menuconfigs. Those objects are used to
express logical grouping of features and organize the presen-
tation of features in the kernel configurator. The configurator
may also rely on the dependencies declared between fea-
tures to create the displayed hierarchy. Constrains defined
on menus and menuconfigs are applicable to all elements
within. Menu can have the “visible” attribute, associated
with a Boolean expression of features, complementing the
“prompt” attribute. More details about the Kconfig language
can be found in the official documentation.”

2.2 The Linux kernel

An example of system relying on the Kconfig language to
manage its variability is the Linux kernel. Linux users can
tailor their own kernel with Menuconfig (among other
tools), the kernel configurator. This tool displays available
configuration options in the form of a tree, and as the user
selects or unselects options, the tree is updated to show only
options that are compatible with the current selection.

Such tools use the textual descriptions of the Linux fea-
tures contained with Kconfig files as an input and provide a
collection of selected features as an output, in the form of a
list of feature names. During the configuration process, the
configurator identifies the files to include and the features
to display, depending on constraints expressed in those files.

2 https://www.kernel.org/doc/Documentation/kbuild/kconfig-langua
ge.txt.

@ Springer

https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt

58

N. Dintzner et al.

Constraints on file selection, or selectability of features, are
resolved using naming convention based on feature names.

The choice of the target hardware architecture (e.g. X860,
ARM, SPARC) does not follow this rule. Because the choice
of target architecture defines which file should be read first,
it uses another mechanism. The name of the chosen archi-
tecture is defined during start-up (and can be modified later
on) and stored in a variable used to build the first visualiza-
tion of the FM ($SRCARCH, visible in “./Kconfig”). If no
target architecture is given when starting the tool, it uses the
architecture of the machine on which it is run by default. As
aresult, no parts of the Linux kernel FM represent the choice
between architectures, while the architectures themselves are
present as features.

This becomes important when rebuilding the Linux FM:
without knowing which hardware architecture is being con-
sidered, we do not know which files to consider when
rebuilding the FM. To avoid this problem, the methodology
commonly applied is to rebuild a partial Linux FM per sup-
ported hardware architecture [21,23]. In this study, we use
this specific approach when rebuilding the Linux FMs and
analysing FM changes.

2.3 Feature model representation

A prerequisite to our approach is to be able to extract feature
definitions from Kconfig files. For this, we use an existing
tool, Undertaker, to translate Kconfig features into an
easier to process format [43]. This tool has been used in the
past for similar purposes. Undertaker uses it to reformat
the Kconfig model before using it to determine feature pres-
ence conditions. It produces a set of “.rsf” files, containing
annotated triplets formatted according to the “Rigi Standard
Format” [40]. Each file contains an architecture-specific FM,
i.e. an instance of the Linux FM where the choice of hard-
ware architecture is predetermined.

Listing 2 shows the example of the feature declared in
Listing 1 in rsf triplets as output by Undertaker.

The first line shows the declaration of a feature (Item)
with name ACPI_AC and type tristate. The second line
declares a prompt attribute for feature ACPT_AC and its value
is set to true (1). The third line declares the default value
of the ACPI_AC feature, which is set to y if the expres-
sion X86 && ACPI evaluates to true. Line 4 adds a select
statement reading when ACPI_AC is selected the feature
POWER_SUPPLY is selected as well, if the expression X86
&& ACPI evaluates to true. Finally, the last line adds a
cross-tree constraint reading feature ACPI_AC is selectable
(depends) only if X86 && ACPI evaluates to true.

Undertaker eases feature extraction but modifies their
declaration. Among the applied modifications, two are most
important for our approach: first, Undertaker flattens
the feature hierarchy and then resolves features depends

@ Springer

Item ACPI_AC tristate

Prompt ACPI_AC 1

Default ACPI_AC "y" "X86 && ACPI"

ItemSelects ACPI_AC POWER_SUPPLY "X86 && <«
ACPI™"

5| Depends ACPI_AC "X86 && ACPI"

AW =

Listing 2 Representation of the feature declaration of Listing 1 in .rsf
format

statements. Concerning the flattening of the hierarchy,
Undertaker modifies the depends statement of each
feature to mirror the effects of its hierarchy. For instance,
Undertaker propagates surrounding i £ conditions to the
depends statements of all features contained in the if-block.
This explains the addition of ACPTI to the condition of the
depends statement on line 5 of Listing 2. Concerning the
resolution of depends statements, Undertaker propa-
gates conditions expressed in the depends statement of
a feature to its default and select conditions. This
explains the condition X86 && ACPT that has been added
tothe select (ItemSelects)and default value (Default)
statements. Such transformations will influence the results of
the comparison process and the interpretation of the captured
changes. However, it has to be noted that the changes pre-
serve the Kconfig semantics as described in [33].

3 Change classification

As mentioned in Sect. 2, the Linux feature model is expressed
in Kconfig, describing both forward and backward dependen-
cies with the “selects” and “depends” statements. We aim at
classifying feature changes occurring in the Linux kernel
feature model (FM), capturing as accurately as possible the
different changes that might occur on its statement. Existing
feature change classifications [8,26] do not consider some
specificities of the Kconfig grammar (e.g. select relationships
with conditions). For this reason, we devise a new classifica-
tion scheme, based on existing work, but specifically tailored
for the Kconfig language.

We present a three-level classification scheme of fea-
ture changes, namely change category, change sub-category
and change type. Each category describes a feature change
on a different level of granularity. Items on each level are
named based on the modified entity (feature, statement and
statement fragment), such as a default statement and
the change operation applied i.e. addition (ADD), removal
(REM) or modification (MOD). Figure 1 depicts our change
classification scheme.

The first level, change category, describes changes at a FM
level. Here, features can be either added, removed or modi-
fied. The corresponding change categories are

Analysing the Linux kernel feature model changes using FMDiff 59
Change Entity
Operation
Object Feature
Add Attribute<—_ Depend Default T Seleat

Remove Statement ttribute epends efau elec

Modify 7\
Statement ¥ X ¥ X \ N » v
fragment Type Prompt Expression References Default Value Condition References Target Condition References

CHANGE CATEGORY: {Change Operation, Object}
CHANGE SUB-CATEGORY: {Change Operation, Statement}
CHANGE TYPE: {Change Operation, Statement Fragment}

Fig. 1 FMDiff 3-level feature model changes classification scheme

ADD_FEATURE, REM_FEATURE and MOD_FEATURE. In
the following, we abbreviate lower-level change types by
prefixing the feature property that can change with the three
change operations ADD, REM, and MOD.

The next level, change sub-category, describes which
property of the feature changed. We differentiate between
attribute changes (i.e. type or prompt properties), and
changes in the dependencies, default value, and select state-
ments. The corresponding twelve change sub-categories
are {ADD, REM, MOD}_ATTR, {ADD, REM, MOD}_
DEPENDS, {ADD, REM, MOD}_DEF_VALand {ADD, -
REM, MOD}_SELECT.

Finally, change types detail which attribute, or part of a
statement, is modified. The change types are as follows:

— Attribute change types: we track changes occurring on the
type and prompt attributes. Combined with the three pos-
sible operations, we have {ADD, REM, MOD}_TYPE
and {ADD, REM, MOD}_PROMPT.

— Depends statement change types: depends statements
contain a Boolean expression of features. We use a set of
change types describing changes occurring in that expres-
sion, namely {ADD, REM, MOD}_DEPENDS_EXP.
In addition, we further detail these changes by recording
the addition and removal of feature references (mentions
of feature names) in the Boolean expression with the two
change types {ADD, REM}_DEPENDS_REF.

— Default statement change types: default statements are
composed of a default value and a condition. Both the
condition and the value can be Boolean expressions of
features. Default values can be either added or removed
recorded as {ADD, REM}_DEF_VAL change types.
Changes in the default statement condition are stored as
{ADD, REM, MOD}_DEF_VAL_COND. Finally, we
track feature references changes in the default value
using {ADD, REM}_DEF_VAL_REF and in the default
value condition using change types {ADD, REM}_
DEF_VAL_COND_REF.

— Select statement change types: select statements are com-
posed of a target and a condition which, if satisfied,
will trigger the selection of the target feature. Similar

Format of feature change classification: {Change category, Change sub-category, Change type}
Example of classification (modification of a feature depends expression):
{MOD_FEATURE, MOD_DEPENDS, MOD_DEP EXPR.}

to the default statement change types, we record {ADD,
REM, MOD}_SELECT_TARGET changes. Changes to
the select condition are recorded as {ADD, REM,MOD}
_SELECT_COND. Finally, to track changes in feature
references inside a select condition, we use the {ADD,
REM}_SELECT_REF change types.

The three change categories, twelve change sub-categories
and twenty-seven change types form a hierarchy allowing
us to classify changes occurring in FMs expressed in the
Kconfig language. Note that feature references contained
in depend statements, select statements and default value
statements can only be added or removed as reference is
either present or not. This leaves us with seven entities on
which three operations are possible and three for which
we will consider only two—for a total of twenty-seven
change types.

As an example consider an existing feature with a default
value definition to which a developer adds a condition. The
change will be fully characterized by the change category
MOD_FEATURE and the sub-category MOD_DEF_VAL,
since the feature and default value declaration already
existed, and finally the ADD_DEF_VAL_COND change type
denoting the addition of a condition to the default value state-
ment, and a ADD_DEF_VAL_REF change type for each of
the features referenced in the added default value condition.

Kconfigprovides several additional capabilities, namely
menus to organize the presentation of features in the Linux
kernel configurator tool, range attribute on features and
options such as env,defconfig_list ormodules. We
do not keep track of menu changes, but we do capture the
dependencies induced by menus. Undertaker propagates
feature dependencies of menus to the features a menu con-
tains in the same way it propagates if block constraints.
Undertaker does not export the range attribute of fea-
tures; therefore, we cannot keep track of changes on this
attribute and do not include them in our feature change clas-
sification scheme. We plan to address this issue in our future
work. Furthermore, Undertaker does not export options
such as env, defconfig_list or modules, and we

@ Springer

60

N. Dintzner et al.

cannot track changes in such statements. But, because those
options are not properties of features and do not change their
characteristics, we consider the loss of this information as
negligible when studying FM evolution.

Regarding our classification scheme, note that some com-
binations of change category, sub-category and change types
are not possible or do not occur in practice. For instance, the
change types denoting that a depends or a select statement
was added cannot occur together with the change category
REM_FEATURE denoting that the feature declaration was
removed. Some combinations are also constrained by Kcon-
fig, such as the change type ADD_TYPE can only occur in the
context of a feature creation, i.e. with the change category
ADD_FEATURE.

Currently, our change classification does not explic-
itly describe more complex feature model changes e.g.
merge featureormove feature. Suchchangescan
be viewed as a combination of simple changes described
by our change classification. A merge operation would then
result in the deletion of a feature and probably changes in the
constraints of another one. The semantic of the change oper-
ation is lost (we cannot know that it was a merge operation),
but its effect on the FM itself is captured in the form of a set
of change types.

4 FMDiff

In this section, we present our approach to automate fea-
ture change extraction and the tool that supports it: FMD1i f f.
We then compare feature changes captured by FMD1i f £ and
changes observed in the original model. This allows us to
evaluate the consistency of the changes captured with our
approach and verify that FMDiff provides more informa-
tion than textual differencing.

4.1 FMDiff overview

The main objective of FMD1 f f is to automate the extraction
of changes occurring on the Linux FM and classify those
changes according to the scheme presented in the previous
section. The extraction of feature changes is performed in
several steps as depicted in Fig. 2.

4.1.1 Feature model extraction

The first step of our approach consists in extracting the
Linux FM from Kconfig files. We first obtain the Kconfig
files of selected Linux kernel versions from its source code
repository.> Next, we use the Undertaker tool to extract

3 Official Linux kernel Git repository: https:/github.com/torvalds/
linux.

@ Springer

[Linux kernel repository]

2

| Kconfig feature extraction

¥

(Extracted architecture specific variability models J
FMDiff 1
| Model reconstruction @ |

Feature changes

Database

Legend: | Process | (Data)

Fig. 2 Change extraction process overview

architecture-specific FMs for each version. Undertaker out-
puts one “.rst” file per architecture per version, in the format
described in Sect. 2.

We perform a few noteworthy transformations when
loading rsf triplets into FMDiff. The rsf triplets contain
Kconfig choice structures, which are not always named
in the Kconfig files. They are automatically renamed by
Undertaker (e.g. CHOICE_32) guaranteeing the con-
sistency of the rsf representation. Because the naming
process is an automatic and does not depend on the con-
tent of choice, or its attributes, the same choice struc-
ture can be renamed differently in different versions. As
a consequence, we cannot rely on naming to identify
uniquely and reliably evolving choice structures. For those
reasons, we ignore all choices when reconstructing the
feature model from “.rsf” files. Note that the hierarchy con-
strains imposed by the choices are still reported on the
relevant features during the hierarchy flattening process.
However, we do lose information regarding mutually
exclusive features.

Features can declare dependencies on those choice,
referring to them by their generated name. We replace all

https://github.com/torvalds/linux
https://github.com/torvalds/linux

Analysing the Linux kernel feature model changes using FMDiff

61

choice identifiers in feature statements by CHOICE. Doing
this, we cannot trace the evolution of choice structures but
prevent polluting the results with changes in the choice name
generation order while we still are able to track changes in
feature dependencies on choices.

4.1.2 FMDiff feature model reconstruction

As a second step, we reconstruct FMs from two consecutive
versions of a “.rsf” file. FMDiff compares FMs that are
instances of the meta-model shown in Fig. 3.

FeatureModel represents the root element having two
attributes denoting the architecture and the version of the
FM. A FeatureModel contains any number of features
represented as Feature. Each feature has a name, type
(Boolean, tristate, integer, etc.) and prompt attribute. In
addition, each feature contains a Depends attribute rep-
resenting the depends statements of a Kconfig feature
declaration. All features referenced by the depends state-
ment are stored in a collection of feature names, called
DependsReferences.

Each feature can have any number of Default
Statements, containing a default value and its associ-
ated condition. Furthermore, a feature can have any number
of Select Statements containing a select target and
a condition. The condition of both statements is recorded
as string by the attribute Condition. The features ref-
erenced by the condition of each statement are stored in
the collection DefaultValueReferences or Select
References respectively.

The “.rst” output also allows a feature to have multiple
depends statements, but in our meta-model, we allow fea-
tures to have only one. In the case where FMD1 f £ finds more
than one for a single feature, it concatenates those statements
using a logical AND operator. This preserves the Kconfig
semantics associated with multiple depends statements.

It is possible for a feature to have two default value state-
ments, with the same default value (“y” for instance) but with
different conditions. In such cases, our matching heuristic
would be unable to distinguish between the two. The same
is true for features that have two select statements with the
same target. To circumvent this problem, we concatenate
conditions of default statements with a logical OR opera-
tor if their respective default values are the same. We do the
same transformation for select statement conditions, for the
same reasons.

By using Undertaker and the rsf format as an input, we
make a trade-off. The simple structure of the “.rsf” files
facilitates the reconstruction of the Linux feature model.
The hierarchy flattening give us, locally on each feature,
additional information about constraints imposed by the
hierarchy—allowing us to capture such changes later on. On
the other hand, we cannot capture all feature attributes and

FeatureModel
Architecture (string)
Revision (string)
veontains” |0
‘contains Select Statement
* n
eontains" Target (string)
Feature) ¥ Condition (string)
SelectConditionReferences (list of strings
Type (string)
4 "contains"
Prompt (bool.edn) Default Statement
Depends (string) 0 * -
DependsReferences (list of strings) DefaultValue (string)
Condition (string)
DefaultValueReferences (list of strings)
DefaultValueConditionReferences (list of strings)

Fig. 3 FMDiff feature metamodel

we lose some information regarding choice structures—but
preserve their induced constraints, and regrouping default
value statements does not always respect Kconfig semantics.
The consequences of this choice on the approach and the
collected data are discussed in Sect. 6.

In the context of this study, we extended our data set
by including in it every rebuilt architecture-specific feature
model. Once we obtain the .rsf representation of a Linux
architecture-specific model, we can proceed with the change
identification and extraction.

4.1.3 Comparing models

For the comparison of two FMs, FMD1 £ £ builds upon the
EMF Compare” framework. EMF Compare is part of the
Eclipse Modelling Framework (EMF) and provides a cus-
tomizable “diff” engine to compare models. It is used to
compare models in various domains, like interface history
extraction [31], or IT services modelling [13], and is flexible
and efficient. EMF Compare takes as input a meta-model, in
our case the meta-model shown in Fig. 3, and two instances
of that meta-model each representing one version of an
architecture-specific Linux FM. EMF Compare outputs the
list of differences between them.

The algorithm provided by EMF Compare is a two step
process: first a matching phase and then a diffing phase. The
first step, the “matching” phase, identifies which objects are
conceptually the same in the two instances. The diffing step
uses items considered to be identical in two model instances
to generate a list of model differences. Both steps need to
be specialized for our study: we must provide matching
rules, and a translation from EMF model changes to feature
model changes.

To match features in two FMs, we rely on their name only:
two features in two models represent the same concept if they
have the same name. Note that this allows us to match fea-
tures even if their dependencies or type have been modified.
Similarly, we need to provide rules to identify whether two
default or select statements are the same. For default value

4 http://www.eclipse.org/emf/compare/.

@ Springer

http://www.eclipse.org/emf/compare/

62

N. Dintzner et al.

statements, we use a combination of the feature name and
the default value. For select statements, we use the targeted
feature name and the feature name. Our choices of matching
rules have consequences on how differences are computed. A
renamed feature cannot be matched in two models using our
rules. Its old version will be seen as removed, and the new one
as added. Default or select statements can only be matched if
their associated feature and its default value (or select target
respectively) are the same in both models. Changes in default
values (select target) are captured as the removal of a default
value (select) statement and the addition of a new one.
During the second phase, the “diffing” EMF Compare
generates a list of the differences between the two models,
expressed using concepts from the FMDiff feature meta-
model. For instance, a difference can be an “addition” of
a string in the DependsReferences attribute of a fea-
ture. Another example is the “change” of the Condition
attribute of a Select Statement element, in which case
EMF Compare gives us the old and new attribute value.

4.1.4 Classifying changes

The last step of our process consists in translating the dif-
ferences obtained by EMF Compare into feature changes as
defined by our classification scheme.

The translation process comprises four steps. First, we run
through differences pertaining to the “contains” relationship
of the FeatureModel object to identify which features
have been added and removed, giving us the feature change
category. Then, we focus on differences in “contains” rela-
tionships on each Feature to extract changes occurring at
a statement level, providing us with the change sub-category.
The differences in attribute values of the various proper-
ties are then analysed to determine the change type. Finally,
changes are regrouped by feature name, creating for each
feature change the three-level classification.

The results are stored in a relational database. We record
for each feature change: the architecture and version of the
FM in which the change occurred, the name of the feature
affected, the change classification and the old and new values
of the attribute. We extract the information per architecture-
specific FM. We build one database per architecture in which
we store both the changes and the FMs.

4.2 Evaluating FMDiff

FMDiff’s value lies in its ability to accurately capture
changes occurring on the Linux feature model (consis-
tency) and its ability to provide information that would be
otherwise difficult to obtain (interestingness). To evaluate
FMDiff with respect to those two aspects, we compare it
with the information on changes that we obtained by manu-
ally analysing the textual differences between two versions

@ Springer

of Kconfig files. We consider FMD1 £ £ data to be consistent
if it contains all changes seen in Kconfig files, and its data
interesting if it provides more information than what can
be obtained using textual differences. We start by describ-
ing the data set used for the evaluation and then assess
them separately.

4.2.1 Data set

Using Git, we can navigate in the history of the Linux FM
and extract snapshots that will be used for later compari-
son. It has been shown that the Linux FM is modified for
corrective reasons during a release cycle [17,21]. To avoid
comparing feature model that might not be consistent with
implementation, or simply do not reflect what was initially
intended by the developer (a bug), we chose to compare only
tagged releases. We noticed that few feature model changes
were operated between the first release candidate version
of a kernel and its last stable revision. For those reasons,
we believe sufficient details can be obtained by extracting
changes between stable official releases.

For all releases of the Linux Kernel from 2.6.28 to 3.14, we
rebuild 26 architecture-specific FMs. We extract the changes
occurring in 16 releases, over a time period of 3 years (from
March 2011 for 2.6.38 to April 2014 for 3.14). This range of
releases covers the first release supported by our infrastruc-
ture (Undertaker) up to the latest available release at the time
of the study.

Between release 2.6.38 and 3.14, five new architectures
were introduced (Unicore32 in 2.6.39, Openrisc in 3.1,
Hexagon in 3.2, C6X in 3.3, and arm64 in 3.7). We include
those architectures in our study to capture the effects of
the introduction of new architectures on the Linux FM. We
extract the feature history of 21 architectures present in ver-
sion 2.6.38 and follow the addition of new architectures, for
a total of 26 in 3.14. Our data set contains 2,734,353 records
describing the history of the Linux kernel FM.

4.2.2 Consistency

As mentioned in Sect. 4, the extraction and reconstructions of
the Linux FM affect the data at our disposal during the com-
parison process, preventing us from obtaining certain types
of changes (choices, range attributes, ...). But, those excep-
tions aside, all other feature changes that can be observed
in Kconfig files history should be also visible in FMDiff
data set. Changes not meeting this criteria would be signs of
inconsistencies between the two representations of the same
changes. To evaluate the consistency of the captured changes,
we verify that a set of feature changes observed in Kconfig
files are also recorded by FMDi ff.

Method we randomly pick twenty-five Kconfig files from
different sub-systems (memory management, drivers, and so

Analysing the Linux kernel feature model changes using FMDiff

63

on) modified over five releases. We then use the Unix “diff”
tool to manually identify the changed features.

Because FMDiff captures feature changes per architec-
ture, we first determine in which architecture(s) those feature
changes are visible. Then, we compare Kconfig files diff’
with the feature changes captured by FMDiff for one of
those architectures. We pick architectures in such a way that
all architectures are used during the experiment.

For each feature change, FMDiff data (1) matches the
Kconfig modification if it contains the description of all
feature changes—including attribute and value changes; (2)
partially matches if FMD1ff records a change of a feature
but that change differs from what we found out by manually
analysing the Kconfig files; (3) mismatches if the change is
not captured by FMD1i f £.

A partial or mismatch would indicate that FMD1 f £ misses
changes; hence, the more full matches, the more consistent
FMDiff data are. We also take into account that renamed
features will be seen in FMD1i f £ as “added” and “removed”.

Results In the selected twenty-five modified Kconfig files, 51
features were touched. Forty-eight of those feature changes
could be matched to FMD1i f f data, described by 121 records
of our database. A single partial match was recorded, caused
by an incomplete “.rsf” file. A default value statement
(def_bool_y) was not translated by Undertaker in any
of the architecture-specific “.rsf” files. In two cases, the
FMDi f £ changes did not match the Kconfig feature changes.
In both cases, developers removed one declaration of a fea-
ture that was declared multiple (2) times, with different
default values, in different Kconfig files. In FMDiff, a
change in the feature default value was recorded, which is
consistent with the effect of the deletion on the architecture-
specific FM. Based on this, we argue that FMD1 £ £ accurately
described this change.

Over our sample of feature changes, FMDiff did cap-
ture all the changes occurring in “.rsf” files. Moreover, a
large majority (94 %) of Kconfig file changes were reflected
in FMDiff’s data. In the remaining cases, FMDiff still
captures accurately the effects of Kconfig file changes on
Linux FM. We conclude, based on our sample, that the data
set obtained with FMD1ff is consistent with respect to the
changes occurring on the Linux FM.

4.2.3 Interestingness

Developers and maintainers of the Linux kernel often work
on features. Changes on features might affect the ones
they work on, or their direct dependencies. To identify
such changes, textual differencing tools in combination with
repository history navigation facilities can be used (such as
GitK for Git repositories). Inspired by the work of Ying et

al. [46], we propose here to compare the information that
can be obtained by textual differences and using FMDif £
to evaluate the interestingness of the collected data. We will
consider that FMD1 f f provides “interesting”” information for
developers and maintainers if it makes available information
otherwise difficult to obtain.

Method We trace 100 feature changes randomly selected
from the FMDiff data set to the Kconfig file modifica-
tions that caused them. For each change, we determine
the set of Kconfig files of both versions of the Linux FM
that contain the modified feature. We then perform the tex-
tual diff on these files and manually analyse the changes.
If the diff cannot explain the feature change recorded by
FMDi f £, we move up the Kconfig file hierarchy and analyse
the textual differences of files that include this file via the
source statement.

The comparison between FMDi f £ changes and Kconfig
file changes can either (1) match if the change can be traced
to a modification of a feature in a Kconfig file; (2) indirectly
matchif the change can be explained by a Kconfig file change,
but the feature or attribute seen as modified in the Kconfig
file is not the same as the one observed in FMD1iff data;
or finally, (3) mismatch if it cannot be traced to a Kconfig
file change.

We observe an indirect match when a FMDiff change
is the result of Undertaker propagating dependency
changes onto other feature attributes or onto its subfeatures
(e.g. when a depends statement is modified on a parent
feature). Here, indirect matches indicate that FMD1 ff cap-
tures side effects of changes made on Kconfig files, more
difficult to observe using textual differences.

Results Among the hundred randomly extracted changes,
four were modifications of feature Boolean expressions,
adding or removing multiple feature references. We traced
each reference addition/removal separately, resulting in 108
tracked feature changes.

We successfully traced 107 changes out of 108 back to
Kconfig files changes. A single mismatch was found, involv-
ing a choice statement that could not be explained; but the
change was consistent with the content of Undertaker’s
output. We obtained 26 matches, 79 indirect matches, and
finally 2 features were renamed and those changes were
successfully captured as deletion and creation of a new fea-
ture. Among the indirect matches, 61 are due to hierarchy
expansion and 18 due to depends statement expansion on
other attributes.

The large number of indirect matches is explained by an
over-representation in our sample of changes induced by
the addition of new architectures. Architectures are added
by creating, in an architecture-specific folder (e.g. /arch),
a Kconfig file referring existing generic Kconfig files in
other folders (e.g. /drivers). Hence, we observe feature addi-

@ Springer

64

N. Dintzner et al.

tions in an architecture-specific FM without modifications to
feature declarations.

A total of 79 feature changes captured by FMDi f £ could
not be directly linked to feature changes in Kconfig files but to
changes in the feature hierarchy or other feature attributes.
We argue that even if FMDiff data do not always reflect
the actual modifications performed by developers in Kconfig
files, it captures the effect of the changes on the Linux FM.
In fact, those 79 indirect matches indicate that FMD1 f £ data
contain more information than what can be obtained from the
textual differences between two versions of the same Kconfig
file, where such effects need to be reconstructed manually.

5 Using FMDiff to understand feature changes in
the Linux kernel feature model

FMDi f f captures changes occurring on features of the Linux
kernel and stores each individual change in a database.
Thanks to this format, we can easily query the gathered infor-
mation to study the evolution of the kernel feature model
(FM) over time. We use this information to identify the
most common change operations performed on features and
study the pervasiveness of feature changes across the mul-
tiple architecture-specific FMs of the kernel, and to answer
the research questions as raised in the introduction.

5.1 High-level view of the Linux FM evolution

FMs, as central elements of the design and maintenance
of SPLs, have attracted substantial attention over the past
few years in the research community. For example, several
studies describe practical SPL evolution scenarios related to
FM changes [25,30,32], focusing mostly on addition and
removal of features. An open question, however, is whether
the changes commonly studied are also the most frequent
ones on large scale systems. This leads us to our first research
question, which we answer using FMD1 £ £ data. RQ1: What
are the most common operations performed on features in
the Linux kernel feature model?

Let us consider the highest level of changes that FMDi f £
captures: addition, removal and modification of features. We
use our database to query, for a given architecture, features
that were changed during a specific release. Listing 3 shows
an example of such query, giving us the number of features
modified during release 3.0 for a single architecture. We
compute, for sixteen releases, the total number of changed
features and the number of modified, added and removed
features in each architecture-specific FM, using only the first
level of our change classification. To obtain an overview of
the changes occurring in each release, we average number of
modified, added and removed features per architecture.

@ Springer

1| select count (distinct feature_name)

2 from fine_grain_changes

3 where revision='v3.0"'

4 and change_category='MOD_FEATURE '

Listing 3 Example of query on FMDiff data: modified features in
release 3.0

As shown in Fig. 4, during release 3.0, the average num-
ber of feature changes in architecture-specific FMs were 722.
About 70 % of those changes are modifications of existing
features, 22 % are additions of new features, and only about
8 % of those changes are feature removals. Note that the total
number of architectures taken into account varies over time.
In Fig. 4, the number of architectures used for the computa-
tion of the graph is noted in parenthesis above each column.

Over the 14 studied releases, on average per architecture,
creation of new features accounts for 10-50% of feature
changes. Deletion of features accounts for 5-20 % of all fea-
ture changes, and modification of existing features accounts
for 30-80 % of all feature changes.

In this case, modifications of existing features include
modification of their “depend statement”. Such statements
are affected by direct developer action (edition of the fea-
ture attribute in a Kconfig file) or by changes in the feature
hierarchy, as the hierarchy is used during FM extraction
(see Sect. 2).

With this information, we can answer our first research
question. Modifications of existing features account, on aver-
age, for more than 50% of the feature changes in most
releases (13 out of 16), making them the most frequent high-
level feature change occurring on the Linux kernel FM. This
clearly shows that modifications of existing features is a
common operation during the evolution of the Linux FM
compared to the other changes (adding and removing fea-
tures). This conclusion above is specific to certain types of
representations of FMs. In the most common FODA nota-
tion, cross-tree constraints refer to features, but are attached
to a FM rather than to the features themselves. A modifi-
cation to a cross-tree constraint is arguably different than a
feature modification. In this specific case, because cross-tree
constraints are part of the definition of a given, well-specified
feature, we can make such claim.

5.2 Evolution of architecture-specific FMs

In this section, we compare the evolution of the different
architecture-specific FMs. Our aim is to assess how similar
their evolution is and answer our second research ques-
tion: RQ2: To what extent does a feature change affect all
architecture-specific FMs of the kernel?

Analysing the Linux kernel feature model changes using FMDiff

65

481 760 384 1729 599 482 738 596
21 (22 (23) (24) (25)

Total number of feature change operations averaged over architectures
(number of architectures)

1055 531 1403 717 681 713 361 395

(26)

100%

90%

80%

70%

60%

50%

40% I I
30% l

Feature change category distribution

0%
2.6.39 3.0 3.1 32 33 3.4 3.5

O l I
20% O
[
10% I
3.6 3.7 3.8 39 3.10

Modifications
. " Deletions
® Additions

311 312 3.13 3.14

Linux kernel releases

Fig. 4 Evolution of the feature change category distribution (averaged over architectures)

5.2.1 Motivation

The Linux kernel feature model (FM) has been extensively
studied as an example of highly variable system. In order
to analyse the evolution of its FM, a common assumption
is that all hardware architecture-specific FMs supported by
the kernel evolve in a similar fashion [21]. This implies that
observations made on a single architecture can be, and are,
extrapolated to the entire kernel. Such approaches are justi-
fied by the fact that the different architectures share up to 60 %
of their features [11] and that the growth rate of architecture-
specific FMs are similar [21]. By comparing the evolution of
the different architecture-specific FMs, we see under which
condition such extrapolations hold.

‘We propose here to observe the evolution of those feature
models in regard to the development practices applied by
developers. The Kconfig file structure makes a clear distinc-
tion between features that are meant to be used for a single
architecture (organized in a subfolder of the main “arch”
directory) and the others. This provides guidance to devel-
opers during maintenance, about where to declare those very
specific features. However, every subsystem of the kernel
(memory, file system, drivers,...) can contain architecture-
specific features.

In practice, when a change is applied to a configura-
tion option in a Kconfig file, there is no guarantee that this

change is affecting all architecture-specific FMs in a sim-
ilar way. Concrete examples of such changes can be found
by browsing through the Linux kernel source code repository
history. During release 3.0, feature ACPI_POWER_METER
was removed and replaced by SENSORS_ACPI_POWER
contained in another code module.> We can observe that
the ACPI_POWER_METER feature is removed from the
file “/drivers/acpi/Kconfig” file and that SENSORS_ACPI_-
POWER is added to “/drivers/hwmon/Kconfig”. The same
change is captured by FMD1i f f in the form of the removal of
ACPI_POWER_METER and the addition of SENSORS_-
ACPI_POWER. Using our database, we can observe that
the removal of the ACPI_POWER_METER only affected
two architectures: x86 and IA64. However, the addition of
SENSORS_ACPI_POWER can be seen in x86, IA64 and
ARM. Given the commit message, it is unclear whether this
was the expected outcome or not. The change does not seem
to have been reverted since then.

Another example is the addition of an existing feature to an
existing architecture-specific FM. Also in release 3.0, feature
X86_E_POWERSAVER pre-existing in the X86 architecture
was added to other architectures and its attribute modified. By
searching the Git history, we identified the commit® remov-

5 commit: 7d0333.
6 commit: bb0a56.

@ Springer

https://github.com/torvalds/linuxcommit/7d0333653840b0c692f55f1aaaa71d626fb00870
https://github.com/torvalds/linux/commit/bb0a56ecc4ba2a3db1b6ea6949c309886e3447d3

66

N. Dintzner et al.

ing this feature from “arch/x86/kernel/cpu/cpufreq/Kconfig”
and moving it to “drivers/cpufreq/Kconfig.x86” with a mod-
ification to “drivers/cpufreq/Kconfig” to include the new file,
with a guard statement checking the selection of the X86 fea-
ture. Using FMD1 f f data, we can observe that in release 3.0,
the depend statement and select condition attributes of these
features were modified in X86 (adding references to the X86
feature) in the X86 FM as a result of a change in the feature’s
hierarchy. However, it is, for instance, also seen as added in
ARM and other architecture-specific FMs.

Such changes can be problematic as a thorough testing
practice would require validating a change for all archi-
tectures. The first level of verifications that developers can
use is simply to compile a specific configuration. Errors
in the Linux feature model often result in errors during
compiling certain configurations [1]. When a developer mod-
ifies the behaviour or capabilities of the kernel for multiple
architectures, he needs to “cross-compile” their modifica-
tions and ensure that the modifications behave appropriately
on all of them. This is also true when a modification of
the FM affects an architecture-specific feature, or if an
architecture-specific change is applied to a feature. However,
the cross-compilation process is non-trivial.’

Even with a specific tool chain, it appears that cross-
compilation is inconsistently done during the development
process as reported by the Linux development team in com-
mit messages, such as

“Untested as I don’t have a cross-compiler.” ®

“We have only tested these patchset on x86 platforms,
and have done basic compilation tests using cross-
compilers from ftp.kernel.org. That means some code
may not pass compilation on some architectures.”

or this message posted by Linus Torvalds in the Linux kernel
mailing list

“I didn’t compile-test any of it, I don’t do the cross-
compile thing, and maybe I missed something.” '°

We find ourselves in a situation in which, following a
feature modification, identifying the impact across architec-
tures is non-trivial, and cross-compilation, the first mean to
validate such changes, is not applied consistently. There are
many developers working on the kernel, and a few not cross-
compiling might not affect the quality of the end product.
However, if we consider a practical evolution scenario, a
change will affect only certain combinations of features. If

7 Linux cross-compilation manual: http://landley.net/writing/docs/
cross-compiling.html.

8 commit: 2ee91e.

9 commit: cfalle.

10 https://lkml.org/1kml1/2011/7/26/490.

@ Springer

a developer does not cross-compile; then, others will have
to know which configurations were affected in order to vali-
date them on different platforms. Considering the number of
configurations of the kernel, we can wonder how likely it is
for others to test the appropriate configurations. But if such
cross-architecture feature changes are rare, such practices
would be reasonably safe.

The comparison of the evolution of the different
architecture-specific feature models of the Linux kernel
allows us to assess the validity of extrapolations of observa-
tions based on feature changes of one architecture to others,
and reflect on the development practices mentioned above.

5.2.2 Methodology

To analyse the discrepancy between the evolution of the dif-
ferent architecture-specific FMs, we compare the changes
occurring on the features of the different FMs during the
same release. We proceed as shown in Fig. 5.

We first identify which features were changed in all archi-
tectures for a given release. This is achieved by querying all
changes of all architecture-specific FMs for a given release
from the FMD1 f £ database. Then, we isolate unique feature
names from that set. We obtain a first list of feature names
(marked as “1” in Fig. 5). We split that set into two: features
that are seen as changed in FMDi f £ data in all architecture-
specific FMs, and those that are seen changed in only some
architectures. This gives us the feature sets marked as “2.1”
and “2.2” in Fig. 5.

Using the set of features that appear in all architecture-
specific FM changes, we compare the change categories
associated with those features. This way, we check whether
the main change operation (add/remove/modify) is the same
on that feature in all architecture-specific FMs. Once again,
we split the initial set of features in two: those that have

{ All changed features }

Same attribute value change in all arch. different attribute value change

D)
@ Present in all arch. } { Present in some arch. @
@ Same change category in all arch. } { Presemé?‘::ga;clgé‘tiﬁov:;rsdlﬁerem @
. Same change category in all archs., but @
Same change subcategory in all arch. } { different change subcategory
. Same change subcategory in all archs.,
@ Same change type in all arch. } { but different change type

’ { Same change type in all archs., but

set of features

} \ division in subsets

Legend

Fig. 5 Extracting feature changes affecting all architectures

http://landley.net/writing/docs/cross-compiling.html
http://landley.net/writing/docs/cross-compiling.html
https://github.com/torvalds/linux/commit/2ee91e54bd5367bf4123719a4f7203857b28e046
https://github.com/torvalds/linux/commit/cfa11e08ed39eb28a9eff9a907b20913020c69b5
https://lkml.org/lkml/2011/7/26/490

Analysing the Linux kernel feature model changes using FMDiff

67

the same change category in all architectures (set “3.1”) and
those that have different change categories (set “3.2”).

We continue in a similar fashion by comparing the change
category, sub-ategory, change type and attribute change,
always starting with the set of feature changes common to
all architectures. Ultimately, we obtain the number of fea-
tures that are seen as changed exactly in the same way in all
architectures (set “6.1” in Fig. 5). We repeat those steps for
all available releases in the FMD1 f f data set.

The comparison process is different when comparing
feature changes based on attribute value changes, as this
comparison is not sensible for all attributes. Because of the
flattening of the Linux feature hierarchy, the same feature
can have different attribute values (depend statements for
instance) in different architecture-specific FMs. If a change
is performed on such a statement, checking if the old and
new values of a feature attribute are the same in different
architectures will yield negative results: the value is different
to start with, so even if the same change is applied, attribute
values remain different.

This applies to all attributes consisting of Boolean expres-
sion of features: depend statements, select and default value
conditions: 9 out of the 27 change types we identified in
Sect. 3. Those attributes are ignored during the construction
of the last sets (“6.1” and ““6.2”"). Because we capture changes
in feature references on those attributes, we can still identify
if a change affected such attributes in a similar fashion in
all architectures. In fact, comparing these attribute changes
would require to perform a semantic differencing on those
attributes, rather than the textual comparison we do at the
moment. We defer this to future work.

5.2.3 Experimental setup

To answer our second research question using the methodol-
ogy just described, we consider the following architecture-
specific FMs: alpha, arm, arm64, avr32, blackfin, c6x, cris,
frv, hexagon, ia64, m32r, m68k, microblaze, mips, mn10300,
openrisc, parisc, powerpc, $s390, score, sh, sparc, tile, uni-
core32, xtensa and finally x86. We remove from the set of
considered changes; all changes caused by the introduction
of a new architecture. For instance, when the architecture
C6X is introduced in release 3.3, we observe in our data set
the creation of this FM and the creation of all of its fea-
tures. During our comparison, all features will be seen as
added in the C6X architecture-specific FM, introducing a
large number of architecture-specific changes, while in real-
ity, the features have not been touched. To avoid this, we
only include an architecture-specific FM one release after its
initial introduction.

For analysis purposes, we isolate the intermediate results
so that features that evolved differently in different archi-
tectures can be isolated and the differences later manually

All changed features (2.6.39)
1016

Present in some arch.:

Present in all arch.:
732

v T

Same change category in all arch.:] Present in all arch, but with different
281

change categories : 3

[Same change subcategory in all arch.] [Same change category in all archs., but }
269

different change subcategory: 72

v T

Same change subcategory in all archs.,
but different change type: 0

Same change type in all arch.: 269

v o

Same attribute value change in all arch.: Same change type in all archs., but
different attribute value change: 0

Fig. 6 Example of architecture evolution comparison for release
2.6.39

reviewed. The analysis is performed using R scripts, directly
querying the FMD1 f £ database. The scripts are available in
our code repository.!!

5.2.4 Results

By applying the methodology described in Sect. 5.2.2 for a
single release, we obtain the information depicted in Fig. 6.
We can read this figure as follows: in release 2.6.39, 1016 fea-
tures were changed. Out of those, 284 are seen as changed
in all architectures (generic), while 732 are seen as changed
in only some of them (architecture-specific). A total of 281
of the features changed in all architectures have the same
change category. Three of them have different change cate-
gories in different architectures. This occurs when a feature
is seen as added in an architecture-specific FM and modified
in others for instance. A total of 269 features have the same
change category and change subcategory in all architecture-
specific FMs, 12 do not. This occurs when features with
different attributes in different FMs are deleted for instance.
All those 269 changed features have the same change type and
their attributes are changed in the same way in all architec-
tures. Finally, we can see that out of 1016 changed features,
only 269 changed in the exact same way in all architecture-
specific FMs.

We apply the same methodology for all 16 official
releases of the Linux kernel and compile the results in
Table 1. In this table, each release column is read like
the diagram depicted on Fig. 6, presenting the number
of changed features affecting all (generic) or some (arch-
specific) architecture-specific FMs, decomposed by change
operation granularity—touched, change category, sub-categ-
ory, types and down to attribute value. From this table, we
learn the following.

11 https://github.com/NZR/Software-Product- Line-Research.

@ Springer

https://github.com/NZR/Software-Product-Line-Research

68

N. Dintzner et al.

Table 1 Quantitative comparison of generic and “architecture-specific” feature changes

Release 2.6.39 3.0 3.1 3.2
Number of changed features 1016 1020 567 2361
generic | arch-specific | generic | arch-specific | generic | arch-specific | generic | arch-specific
Touched 284 732 600 420 213 354 931 1430
Change category 281 3 600 0 212 1 922 9
Sub category 269 12 596 4 202 10 921 1
Change type 269 0 596 0 202 0 921 0
Attr. value 269 0 596 0 202 0 921 0
Release 3.3 3.4 3.5 3.6
Number of changed features 946 778 1103 823
generic | arch-specific | generic | arch-specific | generic | arch-specific | generic | arch-specific
Touched 232 714 274 504 455 648 298 525
Change category 231 1 265 9 435 20 287 11
Sub category 228 3 257 8 434 1 285 2
Change type 228 0 257 0 434 0 285 0
Attr. value 228 0 252 0 432 0 281 0
Release 3.7 3.8 3.9 3.10
Number of changed features 1385 963 1773 1299
generic | arch-specific | generic | arch-specific | generic | arch-specific | generic | arch-specific
Touched 415 970 299 664 1042 731 430 869
Change category 412 3 292 7 1034 8 428 2
Sub category 406 6 284 8 1029 5 420 8
Change type 406 0 284 0 1029 0 420 0
Attr. value 403 0 283 0 1024 0 417 0
Release 3.11 3.12 3.13 3.14
Number of changed features 4556 1406 620 704
generic | arch-specific | generic | arch-specific | generic | arch-specific | generic | arch-specific
Touched 615 3941 678 728 329 291 379 325
Change category 380 235 678 0 329 0 378 1
Sub category 375 5 678 0 328 1 378 0
Change type 375 0 678 0 328 0 378 0
Attr. value 370 0 674 0 326 0 374 0

First, the total number of changed features in each release,
shown in the second row of Table 1, is very variable. Over the
studied period of time, the release with the smallest amount
of changed features is 3.1, with only 567 changed features,
and the release with the largest number of changed features
is release 3.11, with 4556. If we consider that the Linux ker-
nel feature model contains approximately 12,000 features;
in each release between 4 and 38 % of the total number of
features are touched.

Secondly, the difference between the evolution of archi-
tecture-specific FMs lies in the features being changed, not
in the nature of the change applied. We can see in Table 1 that
for each release, the largest difference between the number
of generic and architecture-specific feature changes is found
at the highest comparison level: a feature is touched in all
architectures if it is seen as added, removed or modified in all
architectures—regardless of the exact change type (as shown
in the third row of Table 1).

Finally, no features have architecture-specific change type
and attribute value changes. In all releases, the number

@ Springer

of architecture-specific change types and attribute value
changes is zero. If a feature saw its statements changed in
the exact same way in all architectures; then, according to
our data set, the details of those changes will be the same in
all architectures as well (change type and attribute value).

As mentioned in Sect. 5.2.2, we do not isolate changes
made to all attributes. This causes small discrepancies in
the values shown in Table 1. For instance in release 3.4, we
can see 257 features that have the same change type in all
architectures but 252 with the same attribute changes in all
architectures and 0 with different attribute changes. In this
release, five features saw their attributes modified in slightly
different ways in different architectures; however, none of
those attributes are tracked—relating only to Boolean expres-
sion of features. Such features are removed from the data set
before the comparison of attribute values, hence the potential
drop in the number of features during this step.

The number of observed changed features in release 3.11
is surprisingly high compared to other releases. The archi-
tecture that changed the most during this release is the CRIS

Analysing the Linux kernel feature model changes using FMDiff

69

(...)
-source
+source

"drivers/char/Kconfig"
"drivers/Kconfig"
source "fs/Kconfig"

—-source

(...)

"drivers/usb/Kconfig"

% 9 U AW —

Listing 4 Extract of the diff of file “/arch/cris/Kconfig” in release 3.11

Table 2 Evolution of the ratio of feature changes impacting consis-
tently all architectures supported by the Linux kernel

Linux Kernel Total number of % of changed fea-
release changed features tures affecting all
architectures
2.6.39 1016 26.47
3.0 1020 58.43
3.1 567 35.62
32 2361 39.00
33 946 24.10
34 778 32.39
3.5 1103 39.16
3.6 823 34.14
3.7 1285 29.09
3.8 963 29.38
39 1773 57.75
3.10 1299 32.10
3.11 4556 8.12
3.12 1406 47.93
3.13 620 52.58
3.14 704 53.12

(Code Reduced Instruction Set) architecture. By manually
inspecting the changes using Git and our data set, we found
a commit'? modifying the CRIS architecture configuration
file (/arch/cris/Kconfig). The modification, shown in List-
ing 4, removed the inclusion of a specific set of drivers and
replaced it by the inclusion of all standard drivers. This is
a major contributor to the number of added features in the
CRIS architecture-specific FM.

Finally, we consolidate our results in Table 2. For each
release, we present the total number of changed features and
the percentage of those features that are seen as changed
exactly in the same way in all architecture-specific FMs. We
can read Table 2 as follows: in release 3.12, and 47.93 % of
the 1406 changed features were seen as changed consistently
in all architecture-specific FMs of the Linux kernel.

12 commit: acf836.

5.2.5 Architecture-specific evolution

With the gathered data, we can answer our second research
question. RQ2: To what extent does a feature change affect
all architecture-specific FMs of the kernel?

The data shown in Table 2 highlight that for a specific
feature change in a release, it is very likely that this fea-
ture change affects only certain architecture-specific FMs.
In that sense, observations related to FM evolution obtained
by the study of a single architecture-specific FM cannot be
generalized to all architectures, or help draw conclusions on
the evolution of the overall Linux FM. Table 1 emphasizes
that most feature changes might not even be seen in other
architectures. It is interesting to note that, during release
3.11, while 4556 features were changed during the release,
the average number of changed features per architecture is
681 (see Fig. 4). This further supports our assumption that
architecture-specific FMs evolve differently.

Table 1 also shows that if a feature is seen as changed in all
architectures, in a large majority of cases, the change applied
to the feature is the same. A good example of this is release
3.12, where among the 678 changed features that affected all
architectures, all had the same change category, change sub-
category, change type and attribute changes. In other cases,
when there are discrepancies between how a changed fea-
ture affects different architectures, the discrepancy is in the
change category: a feature is seen as modified in one archi-
tecture and added to another. In release 3.11 where 615
changed features affected all architectures, 235 had incon-
sistent change categories across architecture-specific FMs.
This matches our observation regarding the addition of many
drivers to the CRIS architecture FM in Sect. 5.2.4.

To conclude and answer RQ2, we can say that relatively
few feature changes affect all architecture-specific FMs of the
Linux kernel. We also note that a large majority of changes
affecting all architecture-specific FMs affect them in the
exact same way.

6 Discussion

The main objective of this paper is to support the maintenance
and evolution of large scale software product lines (SPLs).
We first reflect on the capabilities of FMDiff, the nature of the
captured information, the results of our data analysis. Then,
we continue by discussing the threats to validity of this study.

6.1 Fine-grained feature changes

Thanks to Undertaker hierarchy and attribute expansion,
FMDi f £ not only captures changes visible in Kconfig files,
but also the side effects of those changes (indirect matches).
It makes explicit FM changes that would otherwise only be

@ Springer

https://github.com/torvalds/linux/commit/acf836301e4b8f3101c5f83e4a52dbb6c3899314

70

N. Dintzner et al.

visible by manually expanding dependencies and conditions
of features and feature attributes. Such an analysis requires
expertise in the Kconfig language as well as in-depth knowl-
edge of Linux feature structures. As mentioned in Sect. 4.2,
FMDiff captures accurately a large majority of feature
changes applied to the Linux kernel FM. Using FMDiff, fea-
ture changes are stored as lists of statement changes with the
attribute values before and after the change (following our
classification). Developers and maintainers modifying Kcon-
fig files can use our tool to assess the effect of the changes
they perform on the feature hierarchy. By querying FMD1i f £
data, they can obtain the list of feature changes between their
local version and the latest release. This will give them insight
on the spread of a change by answering questions such as
“which features are impacted?” and “should this feature be
impacted?”. Moreover, developers can follow the impact of
changes performed by others on their subsystem, by looking
at changes occurring on features of their sub-system.

The extraction of fine-grained feature changes allowed
to show that modification of existing features was a very
frequent change occurring on the Linux feature model. If we
look at previous research on the evolution of highly variable
systems [17,21,25,27,30], we can see that the focus is put
mostly on scenarios leading to the apparition or removal of
features (such as add, remove, merge or split). In the context
of Linux, extending those studies to cover the modification of
existing features would be beneficial. The data collected by
FMD1 £ £ will help in such endeavours, pinpointing instances
of such scenarios in this history of Linux kernel FM.

6.2 Architecture-specific evolution

The comparison of architecture-specific FMs evolution
showed us that those FMs evolved differently. The proportion
of feature changes affecting all architectures varies between
releases from 10 to more than 50 %. We also see that, if a
change affects all architectures, in almost every cases, the
change is the same in all architectures. This limits the valid-
ity of extrapolating observations about FM evolution from
one architecture to others. However, it is interesting to note
that, once we determine that a change is visible in all archi-
tectures, we can safely assume that the modification is the
same. Future studies of the Linux kernel feature model evo-
lution using a similar feature model reconstruction technique
should be clear about the studied architectures, as this will
influence the results.

For this study, we focused on feature changes that affected
exactly all architectures. An alternative would have been
to identify clusters of architectures evolving more similarly
than others. For instance, we can imagine that the evolu-
tion of the ARM has more in common with the ARM64
architecture than the X86. Then, it would be possible to
extrapolate observations, not to all, but to a well- defined

@ Springer

set of architecture-specific FMs. The data collected during
this study could be of use to identify such clusters.

The amount of changes affecting all architectures puts
us at odd with respect to the development practices of the
Linux developers. On the one hand, our data show that fea-
ture changes visible in all architectures occur in every release,
in large proportion. On the other hand, in Sect. 5.2, we
show anecdotal evidence that developers are not inclined
to cross-compile. We can assume that the delivered assets
compile—at least for the architecture on which the developer
was working. With more than 13,000 features, the number
of possible configurations of the kernel is immense. Given
that modifications to features will only affect specific con-
figurations, only the developers and experts will know which
configurations should be tested. So the changes might remain
untested and a faulty feature could be delivered. Then, if this
happens, the criticality of such problems will depend on how
frequently this feature is used on the various platforms. We
have to keep in mind that as long as the feature is not manda-
tory for a system, the problem can simply be fixed by not
including it in the configured kernel image. Perhaps such
errors are not critical nor frequent enough to warrant the use
of much heavier testing practices.

Nonetheless, as shown by our data, cross-architecture fea-
ture changes occur frequently. In such situations, developers
do not seem to have the means to identify which architectures
might be affected by their changes and do not consistently
test. A tool, such as FMDiff, can capture the impact of
feature changes across architectures. With this additional
information, developers would have a better view of how
often their modifications affect different architectures, mak-
ing them more aware to such situations. If they wish to
cross-compile their code, then FMDiff would give them
a list of the impacted architectures to consider first.

6.3 Threats to validity

Construct validity We first discuss the methods we used to
extract changes from the Linux kernel feature model and
their impact on the usage of the resulting data to reflect on
the evolution of the Linux kernel FM.

A threat to the validity of our study is the representative-
ness of changes observed on a transformed version of the
Linux FM when reasoning about its evolution. After extract-
ing the Linux FM using Undertaker, the hierarchy is flattened
and the constraints propagated on feature attributes. As a
consequence, the changes captured by FMD1 f £ include the
edits performed by developers on Kconfig files as well as
their consequences on the other features of the model. After
the model transformation, we cannot differentiate between
developer edits in the Kconfig files (human operation) and
the propagated effect of those changes on other features.
Following this, we transform the Undertaker model into an

Analysing the Linux kernel feature model changes using FMDiff

71

EMF model for comparison purposes; further modifying the
data, we use for this study. We argue that both developer
edits and their propagated effects are relevant for the study
of the evolution of the Linux FM. The transformation per-
formed by Undertaker adheres to the Kconfig semantics as
described in [33] (except for the “range” attribute, which is
not extracted). This comforts us in the idea that the trans-
formed model in the “.rsf”” format produced by Undertaker
can be used as a mean to study the evolution of the Linux
FM. The model transformation from “.rsf”” to EMF does not
preserve the semantics of the Kconfig language, as we do not
keep track of the order of certain attributes (such as default
statements), and we do not consider CHOICE elements. Our
data set cannot be used to reflect on the evolution of the
allowed configurations of the Linux kernel: we cannot tell
which configurations were added or removed by looking at
the feature changes captured by FMDif £. But, as we have
shown in Sect. 4.2, the changes captured by FMDiff are
consistent with the changes observed in Kconfig files. For
those reasons, we are confident that the gathered data can be
used to observe and reflect on feature changes occurring in
Kconfig models.

Over time, the Kconfig language has evolved, and mod-
ifications to the constructs of the language should influence
our change classification and comparison process. We did
not take this into account for this study, and we might miss
new attributes or attempt to capture information no longer
relevant. This constitutes our second threat to validity. To mit-
igate the effects of potential language evolution, we restricted
the scope of releases we studied. Release 2.6.38, the first
of our study, is the oldest release for which our version
of Undertaker was able to extract all architecture-specific
FMs. We extended the scope of releases from there up to
the most recent release at the time of writing (3.14). Using
Git, we manually inspected the history of the Kconfig parser
and grammar in the Linux repository (the ““./scripts/kconfig”
folder). We found a minor modification to value attribute
(long integer allowed on value based features for instance).!3
We also found modifications to the allowed values on feature
attribute “option” '4 as mentioned in Sect. 2, irrelevant in the
context of this study. The other changes occurring during the
studied releases were, as far as we can see, modifications to
Kconfig internals, with no impact on the information cap-
tured by FMD1 f £. We have to consider that for a study over
a longer period of time, we would have to take into account
those changes, adapt the tool and classification in accordance
to the evolution of the language.

As reported in Sect. 3 and mentioned here, information
is lost during the model transformation and comparison
process. The third threat to validity we consider is the

13 commit: 129784ab.
14 commit: 6902dccfda.

influence of the missing information on our validity of
the resulting data set. The “range” feature attribute is not
extracted and as such not used during comparison. CHOICE
structures, present but with a specific naming convention, are
removed from our intermediate model. However, the range
attribute is not used widely (less than 170 occurrences in
3.10 kernel, for over 12,000 features), and for this reason,
we do not believe that this influenced our results or conclu-
sions. During our manual evaluation of FMDiff, we found no
occurrence of changes on CHOICE structures, comforting us
in the idea that this is not a common change. But we assume
that such changes can occur and would be overlooked by
FMDiff. Changes to CHOICE structure would impact the
contained features—the hierarchy flattening transformation
ensures this. While we do not capture CHOICE changes, we
can still observe their effects on features. For those reasons,
we believe the loss of information has a minimal impact on
our observations but must be taken into account for further
analysis.

Internal validity With those limitations in mind, we reflect
on the limits of our conclusions on the evolution of the
Linux FM.

A threat to the internal validity of our study is the
effect of the hierarchy flattening transformation on the
number of observed feature modifications. When a Menu,
Menuconfig, Choice or If construct is modified by
developers, changes to its dependencies will be reflected
on the features it contains. As direct consequence, we will
observe more feature modifications than if we looked at the
actual edits performed by the developers, increasing the num-
ber of observed modifications of existing features. We would
argue here first that the modifications do occur: the fea-
tures are indeed modified, but indirectly. In that sense, the
captured information is accurate and does reflect the actual
state of features in the feature model. Considering the over-
whelming majority of modification of existing features in
certain releases (more than 70 % in release 3.7), we believe
that our conclusion holds: feature modifications are, if not
the most, at least a very common type of change on every
observed release.

Concerning the comparison of architecture-specific FMs,
we can question the model reconstruction process. The fact
that a feature is included in an architecture-specific FM does
not necessarily mean that the feature is selectable (dead fea-
ture). We might observe cross-architecture feature changes,
that, in practice, do not affect the possible configurations of
architecture-specific kernel images. As we do not take this
into account, this constitutes the second threat to the internal
validity of this study: a number of cross-architecture fea-
ture changes we observe in our data set do not affect the
allowed configurations described by those FMs. As men-
tioned as a threat to construct validity, our change extraction

@ Springer

https://github.com/torvalds/linux/commit/129784ab
https://github.com/torvalds/linux/commit/6902dccfda

72

N. Dintzner et al.

cannot capture semantic changes occurring on Kconfig-based
systems. For this study, we restrict ourselves to capturing
syntactic changes on features and offering a different view
of those changes, leaving the semantic interpretation of the
changes to experts. We consider in this study that a change
to a non-selectable (but present and declared) feature could
actually lead to making it selectable and should be reported
and accounted for as a cross-architectural change, despite
their potential lack of effects on the configurations of the
architecture-specific FM. For this reason, the absence of dis-
tinction between selectable and non-selectable features in our
approach does not influence our conclusion. However, this
further supports the fact that FMDiff data should not be
used to reflect on the possible configurations of the system,
but only on feature changes.

External validity We now reflect on the generalizability of
our approach and its applicability in different contexts.

The first threat to the external validity of this approach
is the use of a specific Kconfig-centred change classifica-
tion. Our feature change classification is tightly linked to the
Kconfig language and would be difficult to reuse in other
contexts. However, Kconfig is used in a number of highly
variable systems [6], all of which could reuse directly our
change classification.

The second threat to the external validity is the lack of
application of FMDiff on other systems than Linux. The
implementation of FMD1 f f ties us to a specific type of sys-
tem. Moreover, the Kconfig-based change classification has
a pervasive effect on the different components of the tool,
making adaptation potentially complicated. But the approach
presented in this paper could be applicable to highly variable
systems having an explicit variability model, as often found
in the software product line domain for instance. While the
Linux kernel is not a software product line, it does have the
main technical characteristics of such systems [36] hinting
that our approach could be applicable in this larger context.
Existing feature change classifications [8,26] can be adapted,
as we did in this work, to match other feature notations. Then,
one will have to adapt the feature model comparison process
to support that new classification. Previous work on feature
models showed that their maintenance can be complex and
error prone [5,15]. With an approach such as FMDiff, it
would be possible to extract new information about the evo-
lution of the features using already existing artefacts, at the
cost of adapting our tool.

Finally, the last threat to the external validity of our study
concerns the Linux-specific character of the comparison of
the evolution of architecture-specific FMs. While not all
SPLs are affected by the hardware architecture they run on,
we can often find a set of high-level features that can be used
to define “sub-product lines” as we did using the architec-
tures with the Linux kernel FM. In such cases, one can apply

@ Springer

the methodology presented in this work to analyse the co-
evolution of those different “sub-product lines”. For instance,
in the automotive domain, one can use this approach to iden-
tify which feature changes affected the variability model of
the “sport”, “city”” and “family” variants of a car, where each
variant is a product line on its own. Such view of the effect

of changes can be of use in area other than the Linux kernel.

7 Related work

The idea of using features as first-class entities during highly
variable system development and evolution has been consid-
ered many times in the past. Using features as evolutionary
units is a key concept of the feature-oriented development
paradigm [4]. Existing approaches also propose to manage
the evolution of large variability models by describing series
of delta in terms of features [7,45]. Finally, several stud-
ies highlight the relationship between the evolution of a SPL
implementation and its feature model in open-source projects
[30] and in industrial contexts [16]. While not directly related
to our work, those studies exemplify the role feature changes
play in the evolution of complex systems.

In the context of this work, we designed a new feature
change classification scheme, similar to what can be found
in other studies. In [32], Seidl proposes a classification of
evolution scenarios on SPLs based on the impact of feature
changes in the mapping between features and other models
(class diagram), as a mean to preserve a consistent mapping
between features and model elements. Furthermore, in the
work of Neves et al. on the safe evolution of SPLs [25],
we can observe that the change scenarios described in this
work intertwine evolution of the variability model and its
implementation. Finally, in [28], Passos et al. envision that
adopting a feature-oriented view on software evolution could
enable easier traceability, analysis and generally facilitate
evolution management. All of those studies comfort us in the
idea that feature evolution is tightly coupled to the evolution
of its associated product line, and as a consequence that the
evolution of the feature model reflects the evolution of the
product line as a whole, the main idea behind of our study.

Several FM change classifications have been proposed
in the past. In his thesis, Paskevicius describes [26] several
transformations that can be applied to a FM. Similarly, FM
change patterns have been identified by Alves et al. in [3]
and Neves et al. in [25]. In his study of the co-evolution of
models and feature mapping [32], Seidl also describes a set
of operations applied to FMs. Thiim et al. [44] classify fea-
ture changes based on their impact on the possible products
that can be generated from the FM—a change can increase or
decrease the number of products that can be obtained from a
product line. More recently, Passos et al. [29,30] compiled a
catalogue of the evolution patterns occurring specifically on

Analysing the Linux kernel feature model changes using FMDiff

73

the Linux kernel. We did not use those classifications in our
study for two main reasons. First, according to She et al. [35],
adepends statement can be either interpreted as a cross-tree
constraint or a hierarchy relationship. As a consequence, we
cannot automatically decide how a depend statement should
be mapped to more standard FODA notation [18] and reuse
the appropriate change classifier. Secondly, FMD1 £ f is able
to capture changes in feature attributes which are not consid-
ered by these classifications.

Variability models can become very large, and the com-
plexity of the relationships between features can make the
manual analysis of feature changes extremely complicated
[44]. To mitigate this, several variability model differencing
techniques were designed to facilitate change comprehen-
sion. In [2], Archer et al. present two differencing approaches
for feature models: syntactic and semantic, suggesting that
the semantic approach would yield more actionable results
than the syntactic. The syntactic approach amounts to tex-
tual differences, and in the case of Linux, this information is
already available to developers through the use of the Git
diffing toolset. In the semantic approach, the output can
be either sets of configurations or partial feature models
describing the sets of configurations that were possible before
the evolution and are invalid now, or vice-versa. Although
this might be possible, the number of features in the Linux
kernel might be problematic for existing semantic differenc-
ing approaches [22,24]. FMDiff performs a semi-structured
diff operation: we preserve the features and their statements
and perform textual comparison at an attribute level. This
approach provides additional benefits compared to textual
differences since using our approach, a developer can visual-
ize the effect of a hierarchy change on its features and observe
the spread of the changes across architectures. However, with
this approach we cannot obtain the semantic differences and
provide information about changes in allowed configura-
tions and cannot express feature model changes in terms of
features—we express them in terms of feature changes.

The Linux kernel has been used as an example of an evolv-
ing highly variable system many times in the past. Israeli et
al. show in [17] that the Linux kernel evolution follows some
of Lehman’s laws of software evolution [20], namely the con-
tinuing growth by measuring the number of lines of code over
time. Lotufo et al. [21] study the evolution of the Linux kernel
variability model over time through FM structural metrics
evolution (model size, number of leaves, etc.). They show
in their study that the number of features and constraints
increases over time, but also that maintenance operations are
performed to keep the complexity of the variability model
in check. However, they do not provide details on change
operations nor ways to capture them in an automated way.

In order to study the Linux Kernel FM structure, prop-
erties and evolution, several research teams have developed
tools to reconstruct a FM from Kconfig files. LVAT [35] and

Undertaker [10,38,42] are the main examples of such
tools. We chose to rely on Undertaker for its convenient
wrapping of kconfigdump, allowing us to use the same
tools that are also used by the Linux kernel development
team. LVAT could have allowed us to capture the feature
hierarchy. However, kconf igdump flattening of the hier-
archy facilitated capturing feature hierarchy changes through
changes of depends statements.

In recent work, Passos et al. built a data set of fea-
ture changes of Linux [27]. Focusing only on addition and
removal of features, this data set relates feature changes, com-
mit information and file changes. In comparison, FMDiff
captures feature changes but does not use nor rely on commit
information and file change details. We have shown that mod-
ifications played a major role in the evolution of the Linux
FM, and for this reason, the data set built using FMDiff
appears to be more suited to describe in details the evolution
of the Linux FM.

8 Conclusion

The main contribution of our work is an approach to extract
and classify changes from the history of a Kconfig-based
feature model. Our approach is based on a dedicated fea-
ture change classification scheme, focused on the Kconfig
language, describing feature changes at different levels
of granularity. Using this classification, we can describe
changes occurring on features, feature attributes and feature
attribute values.

As a second contribution, we proposed both the FMDi f £
tool, automating our approach, and the data set we built
during this study. We showed that the data obtained with
this tool is consistent with changes observed in the Kcon-
fig model and provides more comprehensive information
about feature changes than what could be obtained using tex-
tual differences. We used our tool to extract feature model
changes occurring in sixteen releases of the Linux kernel,
building a structured and detailed history of the Linux kernel
FM evolution.

We used the FMDiff data set to explore the evolution
of the Linux kernel feature model. Our findings regarding
the evolution of this model constitute our last two contri-
butions, highlighting the informative value of fine-grained
feature changes and approaches such as FMDiff.

We identified the most common feature change opera-
tions occurring on the Linux kernel feature model, namely
modification of existing features. We suggest this might
give a different orientation to future research as this type
change is under-represented in the current research on feature
model evolution.

We also relied on FMD1 f £ data to compare the evolution
of the different architecture-specific FMs of the Linux ker-

@ Springer

74

N. Dintzner et al.

nel. This allowed us to show that the different architectures
evolved differently and that feature changes affecting multi-
ple architectures were common. Based on this information,
we made the following two observations. First, we pointed
out that future research on the evolution of the Linux ker-
nel FM should specify which architectures were studied, as
observations made on a small subset of architecture-specific
FMs are not generalizable to all of them without careful con-
sideration. We then show that the gathered information allows
to reflect on the development practices of the kernel develop-
ers with respect to multi-architecture development processes.

We believe that the information captured by FMDiff
can be used to facilitate maintenance operations. The data
set built using FMD1 £ £ could be used to link the evolution
of variability models with the evolution of their implemen-
tation. Modifications of feature dependencies captured by
our approach could be valuable information when observing
changes in code dependencies for instance. Another pos-
sibility would be to explore the relationship between the
fine-grained changes and delta-oriented approaches used in
the management of product lines, where our representation
of changes could be of use. While we have shown here
that feature changes do not equally affect all architecture-
specific feature models of the Linux kernel, a subset of the
architecture-specific FMs might evolve similarly. The iden-
tification of such groups of architecture-specific FMs would
allow us to refine the extent to which conclusions drawn from
the observation of a single architecture-specific FMs can
be generalized.

Acknowledgements This publication was supported by the Dutch
national program COMMIT and carried out as part of the Allegio project
under the responsibility of the Embedded Systems Innovation group of
TNO.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecommons.
org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to
the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

1. Abal, I., Brabrand, C., Wasowski, A.: 42 variability bugs in
the Linux kernel: a qualitative analysis. In: Proceedings of the
29th ACM/IEEE International Conference on Automated Software
Engineering, ASE 14, pp. 421-432. New York, NY, USA. ACM
(2014)

2. Acher,M.,Heymans, P., Collet, P., Quinton, C., Lahire, P., Merle, P.:
Feature model differences. In: Ralyté, J., Franch, X., Brinkkemper,
S., Wrycza, S. (eds.) Advanced Information Systems Engineering.
Number 7328 in Lecture Notes in Computer Science, pp. 629-645.
Springer, Berlin (2012)

3. Alves, V., Gheyi, R., Massoni, T., Kulesza, U., Borba, P., Lucena,
C.: Refactoring product lines. In: Proceedings of the 5th Inter-
national Conference on Generative Programming and Component
Engineering, GPCE 06, pp. 201-210. ACM, (2006)

@ Springer

10.

11.

12.

13.

14.

15.

17.

18.

19.

20.

21.

. Apel, S., Kistner, C.: An overview of feature-oriented software

development. J. Object Technol. 8(5), 49-84 (2009)

. Benavides, D., Segura, S., Ruiz-Cortés, A.: Automated analysis of

feature models 20 years later: a literature review. Inf. Syst. 35(6),
615-636 (2010)

. Berger, T., She, S., Lotufo, R., Wasowski, A., Czarnecki, K.: A

Study of variability models and languages in the systems software
domain. IEEE Trans. Softw. Eng. 39(12), 1611-1640 (2013)

. Botterweck, G., Pleuss, A., Dhungana, D., Polzer, A., Kowalewski,

S.: EvoFM: feature-driven planning of product-line evolution.
In: Proceedings of the 2010 ICSE Workshop on Product Line
Approaches in Software Engineering, PLEASE 10, pp. 24-31.
ACM, (2010)

. Botterweck, G., Pleuss, A., Polzer, A., Kowalewski, S.: Towards

Feature-driven planning of product-line evolution. In: Proceedings
of the First International Workshop on Feature-Oriented Software
Development, FOSD *09, pp. 109-116. New York, NY, USA, ACM
(2009)

. Clements, P., Northorp, L.: Software Product Lines, 2nd edn.

Addison-Weasley, Reading (2002)

Dietrich, C., Tartler, R., Schroder-Preikschat, W., Lohmann, D.:
A robust approach for variability extraction from the Linux build
system. In: Proceedings of the 16th International Conference on
Software Product Line, SPLC *12, pp. 21-30. ACM, (2012)
Dietrich, C., Tartler, R., Schroder-Preikshat, W., Lohmann, D.:
Understanding Linux feature distribution. In: Proceedings of the
2012 Workshop on Modularity in Systems Software, MISS’ 12, pp.
15-20. ACM (2012)

Dintzner, N., Van Deursen, A., Pinzger, M.: Extracting feature
model changes from the Linux kernel using FMDiff. In: Proceed-
ings of the Eighth International Workshop on Variability Modelling
of Software-Intensive Systems, VaMoS ’14. ACM Press, (2013)
Giese, H., Seibel, A., Vogel, T.: A model-driven configuration
management system for advanced it service management. In Pro-
ceedings of the 4th International Workshop on Models at Runtime,
volume 509 of MRT 2009, pp. 61-70. (2009)

Giger, E., Pinzger, M., Gall, H.: Can we predict types of code
changes? An empirical analysis. In: Proceedings of the 9th IEEE
Working Conference on Mining Software Repositories, MSR’12,
pp. 217-226. ACM, (June 2012)

Guo, J., Wang, Y., Trinidad, P., Benavides, D.: Consistency main-
tenance for evolving feature models. Expert Syst. Appl. 39(5),
4987-4998 (2012)

. Hellebrand, R., Silva, A., Becker, M., Zhang, B., Sierszecki, K.,

Savolainen, J.: Coevolution of variability models and code: an
industrial case study. In: Proceedings of the 18th International
Software Product Line Conference, volume 1 of SPLC ’14, pp.
274-283. New York, NY, USA, ACM (2014)

Israeli, A., Feitelson, D.G.: The Linux kernel as a case study in
software evolution. J. Syst. Softw. 83(3), 485-501 (2010)

Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.:
Feature-Oriented Domain Analysis (FODA) Feasibility Study.
Technical report, Software Engineering Institute, Carnegie Mellon
University, (1990)

Kenner, A., Kistner, C., Haase, S., Leich, T.: TypeChef: toward
type checking #lfdef Variability in C. In: Proceedings of the
2nd International Workshop on Feature-Oriented Software Devel-
opment, FOSD 10, pp. 25-32. New York, NY, USA, ACM
(2010)

Lehman, M.M.: Laws of software evolution revisited. In: Mon-
tangero,C. (ed.) Software Process Technology. Lecture notes in
Computer Sciecnce, vol. 1149, pp. 108—124. Springer, Berlin, Hei-
dlberg (1996)

Lotufo, R., She, S., Berger, T., Czarnecki, K., Wasowski, A.: Evo-
lution of the Linux Kernel Variability Model. In: Bosch, J., Lee,
J. (eds.) Software Product Lines: Going Beyond. Number 6287 in

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Analysing the Linux kernel feature model changes using FMDiff

75

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Lecture Notes in Computer Science, pp. 136—150. Springer, Berlin
(2010)

Maoz, S., Ringert, J.O., Rumpe, B.: A Manifesto for Semantic
Model Differencing. In: Dingel, J., Solberg, A. (eds.) Models in
Software Engineering. Number 6627 in Lecture Notes in Computer
Science, pp. 194-203. Springer, Berlin (2011)

Nadi, S., Holt, R.: Mining kbuild to detect variability anomalies in
Linux. In Proceedings of the 16th European Conference on Soft-
ware Maintenance and Reengineering, CSMR 12, pp. 107-116.
(2012)

Nelson, T., Barratt, C., Dougherty, D.J., Fisler, K., Krishnamurthi,
S.: The Margrave tool for firewall analysis. In: Proceedings of
the 24th International Conference on Large Installation System
Administration, LISA’10, pp. 1-8, Berkeley, CA, USA, USENIX
Association (2010)

Neves, L., Teixeira, L., Sena, D., Alves, V., Kulezsa, U., Borba,
P.: Investigating the safe evolution of software product lines. SIG-
PLAN Not. 47(3), 33-42 (2011)

Paskevicius, P., Damasevicius, R., gtuikys, V.: Change Impact
Analysis of Feature Models. In: Skersys, T., Butleris, R., Butkiene,
R. (eds.) Information and Software Technologies. Number 319 in
Communications in Computer and Information Science, pp. 108—
122. Springer, Berlin (2012)

Passos, L., Czarnecki, K.: A Dataset of Feature Additions and Fea-
ture Removals from the Linux Kernel. In: Proceedings of the 11th
Working Conference on Mining Software Repositories, MSR 2014,
pp. 376-379. New York, NY, USA, ACM (2014)

Passos, L., Czarnecki, K., Apel, S., Wasowski, A., Kistner, C.,
Guo, J.: Feature-oriented software evolution. In: Proceedings of the
7th International Workshop on Variability Modelling of Software-
intensive Systems, VaMoS ’13, pp. 17:1-17:8, New York, NY,
USA, ACM (2013)

Passos, L., Czarnecki, K., Wkasowski, A.: Towards a cata-
log of variability evolution patterns: the Linux kernel case.
In: Proceedings of the 4th International Workshop on Feature
Oriented Software Development, FOSD °12, pp. 62-69. ACM,
(2012)

Passos, L., Guo, J., Teixeira, L., Czarnecki, K., Wasowski, A.,
Borba, P.: Coevolution of variability models and related artifacts:
a case study from the Linux kernel. In: Proceedings of the 17th
International Software Product Line Conference, SPLC 2013, pp.
91-100. ACM, (2013)

Romano, D., Pinzger, M.: Analyzing the evolution of web services
using fine-grained changes. In: Proceedings of the 19th Inter-
national Conference on Web Services, ICWS *12, pp. 392-399.
(2012)

Seidl, C., Heidenreich, F., ABmann, U.: Co-evolution of models
and feature mapping in software product lines. In: Proceedings of
the 16th International Software Product Line Conference, volume
1 of SPLC ’12, pp. 76-85. ACM, (2012)

She, S., Berger, T.: Formal semantics of the Kconfig language.
University of Waterloo. Technical note, Waterloo (ON) Canada,
(2010)

She, S., Lotufo, R., Berger, T., Wasowski, A., Czarnecki, K.: The
variability model of the Linux kernel. VaMoS 10, 45-51 (2010)
She, S., Lotufo, R., Berger, T., Wasowski, A., Czarnecki, K.:
Reverse engineering feature models. In: Proceedings of the 33rd
International Conference on Software Engineering, ICSE "11, pp.
461-470 (2011)

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

Sincero, J., Schirmeier, H., Schroder-Preikschat, W., Spinczyk, O.:
Is the Linux kernel a software product line. In: Proceedings of
the International Workshop on Open Source Software and Product
Lines, SPLC-OSSPL *07, p 30, (2007)

Sincero, J., Schroder-Preikschat, W.: The Linux kernel configurator
as a feature modeling tool. SPLC, pp. 257-260. (2008)

Sincero, J., Tartler, R., Lohmann, D., Schroder-Preikschat, W.:
Efficient extraction and analysis of preprocessor-based variability.
SIGPLAN Not. 46(2), 33-42 (2010)

Siy, H.P., Perry, D.E.: Challenges in evolving a large scale soft-
ware product. In: Proceedings of Principles of Software Evolution
Workshop at the International Software Engineering Conference,
ICSE’98, pp. 251-260 (1998)

Storey, M.-A., Wong, K., Fong, P., Hooper, D., Hopkins, K., Muller,
H.: On designing an experiment to evaluate a reverse engineering
tool. In: Proceedings of the Third Working Conference on Reverse
Engineering, WCRE ’96, pp. 31-40 (Nov. 1996)

Svahnberg, M.: Variability in Evolving Software Product Lines.
Ph.D. thesis, Research Board at Blekinge Institute of Technology,
(2000)

Tartler, R., Lohmann, D., Sincero, J., Schroder-Preikschat, W.: Fea-
ture consistency in compile-time—configurable system software:
facing the linux 10,000 feature problem. In: Proceedings of the 6th
Conference on Computer Systems, EuroSys "11, pp. 47-60. ACM,
(2011)

Tartler, R., Sincero, J., Schroder-Preikschat, W., Lohmann, D.:
Dead or alive: finding zombie features in the Linux kernel. In: Pro-
ceedings of the First International Workshop on Feature-Oriented
Software Development, FOSD ’09, pp. 81-86 (2009)

Thuem, T., Batory, D., Kaestner, C.: Reasoning about edits to fea-
ture models. In: Proceedings of the 31st International Conference
on Software Engineering, ICSE "09, pp. 254-264. IEEE Computer
Society, (2009)

White, J., Galindo, J.A., Saxena, T., Dougherty, B., Benavides, D.,
Schmidt, D.C.: Evolving feature model configurations in software
product lines. J. Syst. Softw. 87, 119-136 (2014)

Ying, A.T.T., Murphy, G.C., Ng, R., Chu-Carroll, M.C.: Predicting
source code changes by mining change history. IEEE Trans. Softw.
Eng. 30(9), 574-586 (2004)

Nicolas Dintzner is a Ph.D. can-
didate at the Technical Univer-
sity of Delft in The Netherlands.
He received an M.Sc. degree
from the E.P.F.,, France, in 2006.
He then worked for five years
as a software engineer. His cur-
rent research activities include
software product line evolution,
variability implementation meth-
ods and the software architecture
evolution.

@ Springer

76

N. Dintzner et al.

@ Springer

Arie van Deursen is a professor
at Delft University of Technol-
ogy, where he is head of the
Software Engineering Research
Group. He received a Ph.D.
degree from the University of
Amsterdam in 1994. His research
interests include software archi-
tecture, software testing, and
software evolution. He serves on
the editorial boards of Empiri-
cal Software Engineering, ACM
Transactions on Software Engi-
neering and Methodology, and
Peer] Computer Science.

Martin Pinzger is a professor
of Software Engineering and the
head of the Software Engineering
Research Group at the Univer-
sity of Klagenfurt, Austria. His
research interests are in software
engineering with focus on soft-
ware evolution, software qual-
ity, mining software repositories,
software visualization, software
design, and empirical studies in
software engineering.

	Analysing the Linux kernel feature model changes using FMDiff
	Abstract
	1 Introduction
	2 Background: the Linux kernel variability model
	2.1 The Kconfig language
	2.2 The Linux kernel
	2.3 Feature model representation

	3 Change classification
	4 FMDiff
	4.1 FMDiff overview
	4.1.1 Feature model extraction
	4.1.2 FMDiff feature model reconstruction
	4.1.3 Comparing models
	4.1.4 Classifying changes

	4.2 Evaluating FMDiff
	4.2.1 Data set
	4.2.2 Consistency
	4.2.3 Interestingness

	5 Using FMDiff to understand feature changes in the Linux kernel feature model
	5.1 High-level view of the Linux FM evolution
	5.2 Evolution of architecture-specific FMs
	5.2.1 Motivation
	5.2.2 Methodology
	5.2.3 Experimental setup
	5.2.4 Results
	5.2.5 Architecture-specific evolution

	6 Discussion
	6.1 Fine-grained feature changes
	6.2 Architecture-specific evolution
	6.3 Threats to validity

	7 Related work
	8 Conclusion
	Acknowledgements
	References

