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Abstract The evolution of highly configurable systems is known to be a challenging task.
Thorough understanding of configuration options their relationships, and their implemen-
tation in various types of artefacts (variability model, mapping, and implementation) is
required to avoid compilation errors, invalid products, or dead code. Recent studies focus-
ing on co-evolution of artefacts detailed feature-oriented change scenarios, describing how
related artefacts might change over time. However, relying on manual analysis of commits,
such work do not provide the means to obtain quantitative information on the frequency
of described scenarios nor information on the exhaustiveness of the presented scenarios for
the evolution of a large scale system. In this work, we propose FEVER and its instantiation
for the Linux kernel. FEVER extracts detailed information on changes in variability models
(KConfig files), assets (preprocessor based C code), and mappings (Makefiles). We apply
this methodology to the Linux kernel and build a dataset comprised of 15 releases of the
kernel history. We performed an evaluation of the FEVER approach by manually inspecting
the data and compared it with commits in the system’s history. The evaluation shows that
FEVER accurately captures feature related changes for more than 85% of the 810 manu-
ally inspected commits. We use the collected data to reflect on occurrences of co-evolution
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in practice. Our analysis shows that complex co-evolution scenarios occur in every studied
release but are not among the most frequent change scenarios, as they only occur for 8 to
13% of the evolving features. Moreover, only a minority of developers working on a given
release will make changes to all artefacts related to a feature (between 10% and 13% of
authors). While our conclusions are derived from observations on the evolution of the Linux
kernel, we believe that they may have implications for tool developers as well as guide
further research in the field of co-evolution of artefacts.

Keywords Highly variable systems · Co-evolution · Feature · Variability

1 Introduction

Highly configurable software systems allow end-users to tailor a system to suit their needs
and expected operational context. This is achieved through the development of configurable
components, allowing systematic reuse and mass-customization (van Gurp et al. 2001).
The benefits of such development strategies are to reduce the time to market, as mass-
customization facilitates the creation of tailored solutions, and improved software quality,
as re-used components are tested in various contexts (Clements and Northorp 2002). Exam-
ples of such systems can be found in various domains, such as database management
(Rosenmüller et al. 2008; Batory et al. 1988), SOA based systems (Kumara et al. 2013),
operating systems (Berger et al. 2010), and a number1 of industrial and open source software
projects (Liebig et al. 2010) among which the Linux kernel may be the best known.

A constraint of such a development strategy is the fragmentation of concerns among
development artefacts in such a way that re-use and customization can be achieved. Config-
uration options, or features, play a significant role in a number of inter-related artefacts of
different nature. For systems where variability is mostly resolved at build-time, features will
play a role in, at least, the following three spaces (Neves et al. 2015; Dietrich et al. 2012b):

1. the variability space - describing available features and their allowed combinations;
2. the implementation space, comprised of re-usable assets, among which configurable

implementation artefacts; and finally
3. the mapping space - relating features to assets and often supported by a build system

like Makefiles;

When such systems evolve, information about feature implementation across those three
spaces is actively sought by engineers (Heider et al. 2012). Consistent co-evolution of arte-
facts is a necessity adding complexity to an already non-trivial evolutionary process (Mens
et al. 2005), occurring in both industrial (Hellebrand et al. 2014) and open-source contexts
(Passos et al. 2015; Hunsen et al. 2015). Inconsistent modifications across the three spaces
(variability, mapping, and implementation) may lead to the incapacity to derive products,
code compilation errors, or dead code (Tartler et al. 2011; Nadi and Holt 2012; Abal et al.
2014).

1http://splc.net/fame.html

http://splc.net/fame.html
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Recent studies (Passos et al. 2015; Neves et al. 2015) described typical changes occurring
in such systems, giving insight on how each space could evolve, and revealing the relationship
between the various artefacts. In Passos and Czarnecki (2014), Passos et al. proposed a
dataset capturing the addition and removal of features.

Unfortunately, the most detailed change descriptions currently available (Passos et al.
2015; Neves et al. 2015) were obtained using extensive manual analysis of commits. More-
over, those studies focused on specific types of changes, such as addition and removal of
features (Passos et al. 2015), or product line refinement scenarios (Neves et al. 2015). Con-
sequently, the set of co-evolution scenarios documented is limited, and, saved by performing
a similar extensive manual analysis of a large number of commits, the identification of new
scenarios remains difficult. Finally, the current state of the art offers neither data nor meth-
ods to obtain information on the prevalence of co-evolution in practice nor the frequency of
those specific scenarios over a long period of time.

Such feature-related change information is important in various practical scenarios.

– (S1) A release manager is interested in finding out which commits participated in the
creation of a feature, to build the release notes for instance. In such cases, he would
be interested in commits introducing the feature, and the following ones, adjusting the
behaviour of the feature.

– (S2) A developer introducing a new feature to a subsystem is interested in finding how
similar features were supported by similar subsystems in the past. Then, (s)he needs to
look for changes in those subsystems, involving that such features.

– (S3) During bug triage, a maintainer is searching for a developer who might be able
to resolve a specific issue. The maintainer would then be looking for developers with
knowledge in the implementation on the possibly faulty features.

– (S4) Researchers focusing on feature-oriented evolution of systems are interested in
automatically identifying instances of co-evolution patterns or templates, or extending
the existing pattern catalog presented by Passos et al. (2015) and Neves et al. (2015)

– (S5) Researchers working in the field bug prediction for highly configurable systems
are interested in the relationship between variability changes and error-proneness. A
database of detailed feature-related change information could facilitate their work.

Unfortunately, given the current state of the art, obtaining the necessary information require
extensive manual analysis of changes and in-depth knowledge of the system under study.

We present in this paper the extension of FEVER (Feature EVolution ExtractoR)
(Dintzner et al. 2016), a tool-supported approach designed to automatically extract changes
in commits affecting artefacts in all three spaces. FEVER retrieves the commits from a ver-
sioning system and rebuilds a model of each artefact before and after their modification.
Then it extracts detailed information on the changes using graph differencing techniques.
Finally, relying on naming conventions and heuristics the changes are aggregated based on
the affected feature(s) across all commits in a release. The resulting data is then stored in a
database relating the features and their evolution in each commit.

We then manually compare the data obtained by FEVER and the commits as presented
in the source control system to first evaluate the improvement in terms of change extraction
accuracy obtained by the FEVER approach over its previous installment, and perform a
second complete evaluation on a larger set of commits. We use this evaluation to answer the
following research questions:
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– RQ1: To what extent is the new version of FEVER more accurate in capturing feature-
related changes?

– RQ2: To what extent does the new version FEVER data match changes performed by
developers?

We use the resulting dataset to perform an exploratory study of feature evolution over 15
releases of the Linux kernel. We focus on the co-evolution of artefacts during feature evolu-
tion, in terms of affected spaces, under two different points of view: a feature perspective,
focused on feature and the artefacts touched during their evolution, and an author-centric
view, focused on commit authors and the spaces affected during maintenance operations.
Using FEVER data, we aim at answering the following two research questions:

– RQ3: To what extent do artefact in different variability spaces co-evolve during the
evolution of features?

– RQ4: To what extent are developers facing co-evolution over the course of a release?

While the tool we built to extract changes is centered on the Linux kernel, the approach
itself is applicable to a larger set of systems (Berger et al. 2013; Hunsen et al. 2015) with
an explicit variability model, where the implementation of variability is performed using
annotative methods (pre-processor statements in our case), and where the mapping between
features and implementation assets can be recovered from the build system.

Through this paper, we make the following key contributions: (1) a model of feature-
oriented co-evolving artefacts, (2) an approach to automatically extract instances of the
model from commits, (3) a dataset of such change descriptions covering 15 recent releases
of the Linux kernel history (3.10 to 4.4 in separate databases), (4) an evaluation of the
accuracy of our heuristics showing that we can extract accurately the information out of
87% of the commits, (5) we show that most (69.27%) of features evolve solely through
their implementation, and that a majority of authors do not touch other spaces than the
implementation space. Finally, the tool and datasets used for this study are available on our
website.2

This study is an extension of our previous work on co-evolution of artefacts in highly
variable systems (Dintzner et al. 2016). In this paper, compared to Dintzner et al. (2016),
we improved the model to better describe complex changes, with additional relationships
between artefacts and information on artefact changes. We also improved the heuristics use
to capture changes, leading to a higher change extraction accuracy. We also extracted a
larger dataset, comprised of more detailed changes and over a longer period of time. Finally,
research questions RQ3 and RQ4, on the quantitative aspect of co-evolution, are entirely
new to this work.

We first provide background information on highly variable systems and the implemen-
tation of features in the Linux kernel in Section 2. Then, we present the FEVER approach,
its change meta-model and the change extraction process in Section 3. We evaluate our
approach by first comparing the performance of FEVER with its previous version presented
in Dintzner et al. (2016), and then provide a complete evaluation, including new change
attributes in Section 5. We show the usefulness of FEVER and the collected data in the
aforementioned scenarios in Section 6. With the collected data, we perform an exploratory

2http://swerl.tudelft.nl/bin/view/NicolasDintzner/

http://swerl.tudelft.nl/bin/view/NicolasDintzner/
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study of co-evolution occurrence in Section 7. We discuss our results and present the threats
to the validity of our approach and complete study in Section 8. Finally, we present related
work in Section 9 and conclude our work in Section 10.

2 Background

In this section, we present how variability is supported in the Linux kernel, the different
artefacts involved in its realization and their relationships.

2.1 Variability Model

A variability model (VM) formalizes the available configuration options (which we assim-
ilate to “features” in this work) of a system as well as their allowed configurations (Kang
et al. 1990). In the context of the Linux kernel, the VM is expressed in the Kconfig language.
An example of a feature in the Kconfig language is shown in Listing 1. Features have at least
a name (following the “config” keyword on line 3) and a type. The “type” attribute speci-
fies what kind of values can be associated with a feature, which may be “boolean” (selected
or not), “tristate” (selected, selected but compiled as a module, or not selected), or a value
(when the type is “int”, “hex”, or “string”). In our example, the SQUASHFS FILE DIRECT
feature is of type boolean (line 2). In the remainder of this work, we will refer to Boolean
and tristate features simply as “Boolean features”, while features with type “int”, “hex”, or
“string”, will be referred to as “value-based features”. The text following the type on line
3 is the “prompt” attribute. Its presence indicates that the feature is visible to the end user
during the configuration process. Features can also have default values. In our example the
feature is selected by default (y on line 4). The default value might be conditioned by an
“if” statement.

Kconfig expresses feature dependencies using the “depends on” statements (see line 5).
If the expression is satisfied, the feature becomes selectable during the configuration pro-
cess. In this example, the feature SQUASHFS must be selected. Reverse dependencies are
declared using the “select” statement. If the feature is selected then the target of the “select”
will be selected automatically as well (ZLIB INFLATE is the target of the “select” state-
ment on line 6). The selection occurs if the expression in the following “if” statement is
satisfied by the current feature selection (e.g., if SQUASHFS ZLIB is already selected).

In the context of this study, we consider additions and removals of features as well as
modifications of existing ones i.e., modifications of any attributes of a feature.

Listing 1 A feature declaration in Kconfig
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Listing 2 Mapping between features and assets as performed in the Linux kernel

2.2 Feature-asset Mapping

The mapping between features and assets determines which assets should be included in a
product upon the selection of specific features. In highly-configurable systems, the assets
could be source code, documentation, or any other type of resources (e.g., images). In the
context of this study, we consider the following types of assets : implementation artefacts
(i.e., source files), data artefacts (i.e., hardware description files), folders, and compilation
flags. The addition of the mapping between a feature and code in a Makefile, as per-
formed in the Linux kernel, is presented in Listing 2. In this example, the mapping is done
between features and object files (but may link source code directly on occasion). We use
the relationship between object files and source files to identify the mapped source file.

Upon feature selection, the name of the feature used in the Makefile (symbol prefixed
with CONFIG ) will be replaced by its value. As a result, the compilation units (“.o” files)
will be added to different lists “obj-y”, “obj-n”, and “obj-m” (for modules), based on the
value of the macros CONFIG SQUASHFS FILE DIRECT. Compilation units added to the
list “obj-y” are compiled into the kernel image while those in “obj-m” are compiled as
external modules, and objects in “obj-n” are not compiled.

Alternatively, a developer may chose to directly include “obj-y” list in his Makefile, in
which case, the content of the list will be included in the compilation process as soon as the
Makefile is included in the build process. The inclusion of a Makefile in the build process
may be subject to feature selection, via conditional inclusion, or more complex mechanism
relying on variables and file path reconstruction.

2.3 Assets

Many types of assets exists, such as images, code, or documentation. We consider only
configurable implementation assets (source files). We focus specifically on pre-processor
based variability implementation (using #ifdef statements), which, despite known limi-
tations (Spencer and Collyer 1992), is still widely used today (Liebig et al. 2010). An
example of an addition of a pre-processor statement is presented in Listing 3 where feature
SQUASHFS FILE DIRECT is used to condition the compilation of two code blocks, one

Listing 3 Creating an #ifdef block in Linux
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Listing 4 Referencing to a value feature where the variable DSL will take the value associated with feature
DE2104X DSL

pre-existing (line 2 to 7) and a new one (lines 9 to 13). As a result, based on the selection
of the feature SQUASHFS FILE DIRECT during the configuration phase, only one of the
two code blocks will be included in the final product.

Value-based features will be referenced in the implementation, acting as a place-holder
for a value defined during the configuration process, as shown in Listing 4.

3 Describing Co-evolution

The objective of this work is to obtain a consolidated view of changes occurring to features
and their implementation. This information is meant to be used for further analysis, and
should capture the most relevant aspects of the changes regarding features and their evolu-
tion in the different spaces. In this section, we present the meta-model we use to describe
feature-related changes in the different artefacts, and how we relate those changes to one-
another. We illustrate the usage of the model with an example of actual feature changes,
affecting all spaces, extracted from release v3.11. In this scenario, a developer commits a
new driver for an ambient light sensor, “APDS9300”. The commit3 message for that change
reads as follows:
iio: add APDS9300 ambilent light sensor driver

This patch adds IIO driver for APDS9300 ambient light sensor

(ALS).
http://www.avagotech.com/docs/AV02-1077EN

The driver allows to read raw data from ADC registers or

calculate lux value. It also can handle threshold interrupt.

3.1 FEVER Change Meta-model

An overview of the FEVER change meta-model is shown in Fig. 1. This overview highlights
the different entities we use to describe what occurs in a commit, from a feature perspective.

The commit represents a commit in a version control system. Commit entities are related
to one another through the “next” relationship, capturing the sequence of changes over time.
Each commit “touches” a number of artefacts, and those changes are captured in Arte-
factEdit entities. The commit may affect any of the three spaces, leading to SourceEdit
entities when code blocks related to features are modified, MappingEdit entities when the
mapping between feature and assets is affected, or finally FeatureEdit entities when the
variability model changes.

While the ArtefactEdit indicates a change to a file, Source-, Mapping- and Feature-
Edit entities are all representing the change related to individual features within those files.
We omitted the following relationship in the model for readability purposes: FeatureEdit,

3commit id: 03eff7b60d

http://www.avagotech.com/docs/AV02-1077EN
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Fig. 1 The FEVER change meta-model for feature-oriented change description

MappingEdit, and SourceEdit entities are linked to ArtefactEdit with a “in” relationship,
pointing to the artefact in which the change took place. This relationship is established at
a file level. The details of the changes within that artefacts are contained in the associated
Edit entity. Finally, Edit entities pertaining to the same feature are linked together through
TimeLine entity. This grouping changes per feature using TimeLine entities is done over
multiple commits (a complete release in our experiment). Therefore, the TimeLine of a
feature aggregates all changes that occurred to that feature over time i.e., across multiple
commits.

For a commit in the repository we record the commit id (sha1) to link our data with the
reference repository. We save the commit message which may contain information about the
rationale of a change. Finally, to keep track of who touches which feature, we record users-
related information such as commiter and author of each commit. Table 1 summarizes the
commit-related information stored in the FEVER database, examplified with the commit
adding the “APDS9300” feature.

3.2 Variability Model Changes

A FeatureEdit entity represents the change of one feature within the variability model
performed in the context of a commit. We are interested in the affected feature, as well

Table 1 FEVER Commit entity attributes

Attribute Details Example

hash 10 first digits of the commit unique ID 03eff7b60d

author author’s name Oleksandr Kravchenko

commiter commiter’s name Jonathan Cameron

message complete commit message, including
sign-offs

iio: add APDS9300 ambilent light sensor
driver (...)

time commit time Sat Aug 03 19:40:37 CEST 2013
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Fig. 2 Variability model change: addition of the feature APDS9300

as the change operation that took place (addition, removal, or modification of an existing
feature). The FeatureEdit entity also points to a more complete description of the feature,
FeatureDesc entities. FeatureDesc presents the feature as it “was” before the change (if
existing) and how it “is” after the edit operation (if existing).

In our example, the developer added a new feature, APDS9300, to the variability model.
The change that can be observed in the source control system is shown in Fig. 2.

The information recorded by FEVER on FeatureEdit entities are summarized in Table 2.
The possible values for the “change” attribute are: “ADDED”, “REMOVED”, or “MOD-

IFIED”. The type attribute matches the configuration option type in the Kconfig language
(“BOOLEAN”,“TRISTATE”, “INT”, “HEX”, or “STRING”). The feature is either “visible”
or “internal”. Note that the type, and visibility information stored on the FeatureEdit entity
correspond to the state of the feature after the edition takes place. For additional informa-
tion on the state of the feature before and after the change, one can refer to the FeatureDesc
entities connected to the FeatureEdit entity.

The FeatureDesc entity captures the information presented in Table 3.
For any feature change occurring at a variability model level, the change will be repre-

sented by a “FeatureEdit” entity, and at least one “FeatureDesc” entity in case of addition
or removal, and at most two in the case of the modification of an existing feature.

Table 2 FEVER FeatureEdit entity attributes

Attribute Details Example

name name of the touched feature APDS9300

change change operation affecting the feature ADDED

visibility feature visibility to user during configuration visible

type type of the feature, defines its possible values TRISTATE
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Table 3 FEVER FeatureDesc entity attributes

Attribute Details Example

Name name of the touched feature APDS9300

Type feature type TRISTATE

Visibility feature visibilty to the user during configuration visible

Depends on dependencies of the feature I2C

Selects the selected features (none)

Default values default values, with conditions if any (none)

3.3 Mapping Changes

Regarding the evolution of the mapping, we are mainly interested in the evolution of the
mapping between feature and asset. For this study, we consider the following types of assets:
implementation artefacts, data artefacts, folders, and compilation flags. The evolution of
the mapping space is represented by MappingEdit entities characterized by: the feature
involved and the type of artefacts it is mapped to. We describe the feature-mapping change
operation (added, removed, or modified), referring to the association of a feature to any
type of assets, and the change affecting the target within that mapping (added or removed).
Finally, if the asset is an artefact (file), then the change meta-model also includes the change
to the artefact itself. We can thus make the difference between a situation where a new
mapping is introduced (addition of a mapping with an added target) and an existing mapping
being extended (modification of a mapping with an added target). If the asset is not an
artefact (such as a folder or a compilation flag) the value of the “artefact change” attribute
is set to “NA”.

In our example, the developer adds a mapping between the newly created feature and a
newly added file by modifying an existing Makefile as shown in Fig. 3. The information
contained within the MappingEdit entity to represent this change are presented in Table 4.

3.4 Source Code Changes

Feature related changes within source code, such as modifications to conditionally com-
piled blocks and feature references, are captured as SourceEdit entities. Features in #ifdef
code block conditions and feature references within a given file are an indication that the
behaviour of the feature mapped is configurable, and its exact behaviour is determined by
other features.

Fig. 3 Mapping change: introduction of a new association between feature and asset
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Table 4 FEVER MappingEdit entity attributes

Attribute Details Example

Type element mapped to the asset FEATURE

Feature name of the feature involved APDS9300

Target target of the mapping apds9300.o

Target type type of the target (folder, flag, data, compilation unit) COMPILATION UNIT

Mapping change change to the mapping of the feature ADDED

Target change change to the target entity within the feature’s mapping ADDED

Artefact change change to the artefact pointed to by the target ADDED

Feature references are references to feature names within the code, meant to be replaced
by the feature’s value at compile-time. Such references may only be added or removed. In
such cases, the SourceEdits entity contains the name of the affected feature and the change
in question.

Conditionally compiled code blocks are identified by the conditions under which they
will be included in the final product. A change to such a block is represented by a
SourceEdit containing the condition of the block, the change to the block itself (added,
removed, modified), and the change of the implementation within that block: added if the
code is entirely new, removed if the whole block was removed, modified when the changed
block contains arbitrary edits, or finally preserved if the code itself has not been touched.
An example of the code change is depicted in Fig. 4.

In our example, two code blocks are added. Table 5 presents the information we obtain
for the creation of the else fragment of this change. A similar entity is created for the first
part of that new code block, the only different being the value of “interaction” attribute
which would reflect the condition of the first block, namely “defined(CONFIG PM)”

3.5 TimeLines: Aggregating Feature Changes

Changes pertaining to the same features are then aggregated into TimeLine entities. A
TimeLine entity aggregates all changes pertaining to a single feature in a number of com-
mits - this includes modification of artefacts mapped to the feature in question, FeatureEdit,

Fig. 4 Source change: addition
of conditionally compiled code
blocks
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Table 5 FEVER SourceEdit entity attributes

Attribute Details Example

Change change to the code block itself, or the feature reference ADDED

Interaction presence condition of the block, or feature name for
feature reference

!(defined(CONFIG PM SLEEP))

Code Edit transformation of the code inside the changed block,
“null” for references

ADDED

MappingEdit or changes to conditionally compiled code blocks whose conditions refer to
that feature. For this study, we created TimeLine entities for entire releases.

We divide the types of changes that may affect a feature into two broad categories: core
changes and influence changes.

A feature core update indicates that the behaviour of the feature itself or its definition
is being adjusted. This comprises changes to the feature definition in the VM, changes to
the mapping between the feature and assets, and changes affecting assets mapped to that
feature.

A feature influence update indicates that the feature is playing a role in the behaviour of
another feature. This occurs in two contexts: in the source code, as part of a SourceEdit,
or in the variability model as part of a FeatureEdit. For instance, in the first case, Feature
B plays a role in the implementation of A if we can find an #ifdef block refering to B in a
source file mapped to Feature A. Similarly, Feature B plays a role in the definition of feature
A if Feature B appears anywhere in the definition of A in the variability model (as part of a
default value, depends or select statement or any other attribute).

Figure 5 depicts all entities and relationships used to describe the changes occurring
in single commit 03eff7b60d. This is a partial view of the complete database. When fully
expanded, the “PM SLEEP” TimeLine points to any Edit entity which describe changes
to the “PM SLEEP” feature across an entire release. By navigating through those rela-
tionships, one can easily find what transformation occured on each feature and retrieve
contextual information regarding this change.

In Fig. 5, three TimeLine entities are depicted in pink, on the right hand side of the
diagram, annotated with the feature name. The first one relates to the feature that was intro-
duced. We can see that the “APDS9300” node is connected to the FeatureEdit, in red in the
diagram marked with the feature name “APDS9300”, the MappingEdit in gray annotated
with the name of the changed target (apds9300.o), and an ArtefactEdit (represented by a
small gray dot for visibility purpose) with a “feature core update” relationship. The con-
nection between the TimeLine for this feature and the ArtefactEdit is deduced from the
MappingEdit: because the new mapping assigns this artefact to feature APDS9300, then
the introduction of this artefact is a “core” update of this feature. The APDS9300 TimeLine
connects the different changes occurring in three different types of artefacts, all related to
the same operation: the addition of a feature.

We can also see that a TimeLine for feature PM SLEEP is present and connected to two
SourceEdit entities. This indicates that, at the creation time, the driver APDS9300 interacts
with the power management “sleep” feature, and this interaction occurs in two different
code blocks. Finally, a TimeLine for feature I2C point to the FeatureEdit introducing feature
APDS9300. Note that, APDS9300 depends on I2C, and that relationship is new. For that
reason, in this commit the influence of feature I2C was changed, however its implementation
was not modified.
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Fig. 5 FEVER representation of commit 03eff7b60d - all entities and relationships. For readability purposes,
ArtefactEdits are represented by small unlabelled gray dots. From top to bottom, they represent edits to
the following files: a documentation file, the source file containing the behavior of feature APDS9300, the
Makefile containing the new mapping, and the Kconfig file containing the new feature declaration. On the left
hand side, we see three commits. On the right hand side, we see three feature TimeLine entities, one for each
feature that was adjusted in the commit. In the middle, from top to bottom we see two source edits (labeled
“ADDED”) indicating that two #ifdef blocks were added, one MappingEdit, labeled “apds9300.o”, then a
FeatureEdit entity indicating taht feature APDS9300 was changed, and a FeatureDesc entity containing a
detailed description of how the feature “is” after the change

It is important to note that changes are extracted on an “per artefact basis”. This means
that entities being moved within the same artefacts (a feature in a Kconfig file, or a mapping
in Makefile) will be seen as modified. However, if an entity is moved from one artefact
to another, this is captured as two separate operations: a removal and an addition, and as
such, two Edits entities. Those two Edit entities are linked together by a TimeLine entity,
referring to the modified feature.

4 Populating FEVER

4.1 Overview

The FEVER approach starts from a set of commits and outputs an instance of the FEVER
change model covering the given commit range. Figure 6 presents an overview of the change
extraction process. From the initial set of commits, FEVER first analyses each commit
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Fig. 6 Overview of the FEVER change extraction and consolidation process
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Table 6 Artefact types: regular
expression used to identify the
different types of artefacts

Artefact type Expression used for identification

V.M. file “Kconfig.*”

Build file “Makefile.*”,“Kbuild.*”,“Platform.*”

Source file “*.c”, “*.h”, “*.s”, “*.S”

Binary file “*.dll”,“*.so”,“*.a”,“*.lib”

Data file “*.dts”,“*.dtb”

separately, and then consolidates the extracted change information. For each commit, Steps
1 to 4 are executed as follows:

Step 1 is the identification of the touched artefacts and the dispatch to the appropriate
change parser. In the Linux kernel, artefact types are characterized by naming conventions
and file extensions using the mapping presented in Table 6. Compared to our previous work
(Dintzner et al. 2016), we adjusted our artefact identification heuristics regarding source
files, with a more restrictive expression on “.S” files (rather than “.S*”). We also include
binary files (libraries), which were previously not taken into account.

Step 2 performs the artefact-specific data extraction processes. The next subsections
(Sections 4.2, 4.3, and 4.4) detail the process for each type of artefact, but all of them fol-
low the same general steps. First FEVER rebuilds a model of the artefact as it was before
the change, and a second one representing the same artefact after the change. Then, FEVER
uses the EMF Compare4 infrastructure to identify the differences between the two versions
of the model. EMF Compare identifies the differences between the two models, and extracts
them in terms of the EMF meta-model. FEVER then translates those changes into the dif-
ferent Edit entities depending on the artefact type. The reconstruction of the models, and
the identification of changes (based on EMF Compare results) are based on heuristics and
assumptions on the structure of the artefacts. We provide an evaluation of the accuracy of
those heuristics in Section 5.

Step 3 is the extraction of changes in artefacts for which we do not extract detailed
changes. This includes only commit-related information from which we create a commit
entity, and “untyped” artefacts (i.e., documentation, or scripts), represented by ArtefactEdit
entities.

In Step 4, FEVER creates the relationships between Edit entities, the Commit, and
ArtefactEdit.

Step 5 of our approach consists in creating entities and relationships spreading beyond
single commits: “next” relationships among commits to keep track of the sequence of
changes, and feature TimeLine entities with their respective relationships to edit entities.
This is done by navigating through every commit, and identifying touched feature(s), cre-
ating if necessary a new TimeLine entity and the appropriate relationships between the
TimeLine and relevant edits.

We continue this section by describing the heuristics we used to extract feature related
changes. Those heuristics are based on multiple sources of information, namely the work of
Neves et al. (2015), the work of Passos et al. (2015), the Linux official documentation, and
finally the authors’ expertise (Passos et al. 2015; Dintzner et al. 2015a).

4http://wiki.eclipse.org/EMF Compare

http://wiki.eclipse.org/EMF_Compare
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4.2 Extracting Variability Model Changes

We describe in this section the artefact-specific change extraction process (Step 2 in Fig. 6)
that takes place when a commit contains changes to the variability model of the system.

The characteristics of the changed features that we focus on are their type (Boolean or
value-based) and the change affecting the feature. We first reconstruct two instances of the
VM depicted in Fig. 7 per VM file touched, one representing the VM before the change,
the other after the change. If, like in the case of the Linux kernel, the VM is described in
multiple files, we reconstruct the parts of the model described in the touched files, i.e., the
model we rebuild is always partial with respect to the complete Linux variability model.
The extraction process follows the FMDiff approach (Dintzner et al. 2015a), including the
usage of “dumpconf”. This tool takes as an input a Kconfig file and translates it into XML.
“dumpconf” is designed to work on the complete Kconfig model, where the different files
are linked together with a “source” statement, similar to #include in C. To invoke “dump-
conf” successfully on isolated files, we remove the “source” statements as a pre-processing
steps. “dumpconf” also affects the attributes of features, and the details of the change oper-
ation are described in Dintzner et al. (2013). We use this XML representation of the Linux
VM to build the model shown in Fig. 7.

We then use EMF Compare to extract the differences and compile the information in a
FeatureEdit entity. To successfully compare two model instances, FEVER needs to provide
EMF with the capability to determine that two features in the two model instances are the
same entity. For this, we rely on the feature name as a unique identifier during the model
comparison phase.

We attach to this entity the snapshot of the feature as it was before and after the change
in FeatureDesc entities. If the feature is new, respectively deleted, we do not create a
“before”, respectively “after”, FeatureDesc entity. As mentioned, the “source” statement in
the Kconfig language is used to link Kconfig files together. Such statements can be used
in combination with other constructs, such as menus, or “if” blocks. In this situation, the
presence condition of the menu, or the condition of the “if” blocks, in practice applies to all
features within “sourced” file, and any of the files it might “source” itself. By working on a
file level (touched Kconfig file), FEVER will not capture such complex changes.

With respect to our previous work (Dintzner et al. 2016), we now handle cases where two
features within the same file have the same name. Whereas the previous heuristic yielded
a number of false positive, such cases are now handled by suffixing feature names by an
index if a feature name is encountered twice (or more) when rebuilding the EMF model we
use for change extraction.

Fig. 7 Representation of the variability model used for change extraction
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Fig. 8 Representation of the feature-asset mapping used for change extraction

4.3 Extracting Mapping Changes

We describe in this section the artefact-specific change extraction process (Step 2 in Fig. 6) that
takes place when a commit contains changes to the mapping between features and assets.

Similar to the extraction of VM changes, MappingEdit entities are created based on the
differences of reverse engineered models of a Makefile, before and after the change. We use
the model shown in Fig. 8.

The model contains a set of features and symbols mapped to targets. “Symbol” refers
to any variable mapped to any assets which is not a feature. We identify feature names in
Makefiles by their prefix “CONFIG ”. We scan the Makefiles and extract pairs of symbols
by searching for assignment operators (“+=” and “:=”). We consider that the symbol on the
left hand side is mapped to the symbol on the right hand side (target).

To determine the type of a targeted asset, we use the following rules: Compilation unit
names finish with either “.o”,“.c” or “.h”; mapped data artefacts in the Linux kernel are
identified by the extensions “.dts”, “.dtb”; compilation flags either start by the follwing
strings “-D”, “-L”, “-m”, or “-W”, “-I”, “-f”. We identify folder names by “/”, or single
words, not containing any special characters nor spaces.

Makefiles may contain lists of assets that will be included in the compilation as soon as
the Makefile itself is included. Those assets are assigned to Makefile variables whose names
depend on the implementation of the build process. In the Linux kernel, those are iden-
tified by5: “obj-y”,“lib-y”,“ccflags-y”,“asflags-y”, and “ldflags-y”. When we find assets
associated with such variables, we map them to a temporary variable, using the follow-
ing convention: we use the key word “guarded ” and append the name of folder containing
the Makefile. We later use this naming convention with the extracted information on fea-
tures mapped to folders to assign the changes of such Makefile variables to the appropriate
feature(s).

When features are found as part of “ifeq” or “ifneq” statements, we consider that they
are mapped to any targets contained within their scope. In Listing 5, both CONFIG OF and
CONFIG SHDMA will be mapped to the compilation unit “shdma.o”.

We also resolve aliases within Makefiles. An example of an alias is presented in Listing 5,
where feature CONFIG BLK DEV SWIM is mapped to the alias “swim mod.o” refer-
ring to two compilation units “swim.o” and “swim asm.o”. The association between
“swim mod” and the two compilation units is done the last line of the listing. We identify
such aliases based on the naming convention : name of the object file appended by “-y”.
Note that there are no concrete artefact corresponding to “swim mod” by itself in the Linux
source tree. This step is performed as a post-processing step for each build model instance,
and is based on heuristics, also evaluated in Section 5.

5https://www.kernel.org/doc/Documentation/kbuild/makefiles.txt

https://www.kernel.org/doc/Documentation/kbuild/makefiles.txt
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Listing 5 Example of an “ifeq” statement and aliases used in Makefiles

Finally, FEVER uses a Linux specific heuristic for mapping files contained within spe-
cific folders. Part of the mapping between feature and folder is done using variable names,
and dynamic path reconstruction. In general, FEVER does not attempt to recover this map-
ping, but for a specific set of folder in the Linux kernel, namely the architecture folders, this
mapping is important. Upon compilation, the chosen hardware architecture of the kernel
forces the selection of a given subfolder of the “./arch” folder. There is no explicit declara-
tions of that mapping in any Makefile (it uses variables and name reconstruction). For this
reason, FEVER assumes that any file within the “arch/x86” folder maps to feature “X86”
if no other mapping is found. The accuracy of this heuristic to recover the link between
features and artefacts is evaluated in the next section as the feature-file mapping change
attribute.

Our model reconstruction is based on heuristics and therefor do not take into account
all the possible constructs used in the Linux kernel to link artefacts to features, however,
FEVER focuses on those mentioned above. The constructs that FEVER does not capture
are based on variable name manipulation, to build artefacts names (e.g. folder names, or
file names), or combining lists of artefacts together. Then, as mentioned in Section 2, the
exact mapping between features and files is the result of a complex Makefile hierarchy. By
focusing on the mapping as described in a single Makefile, FEVER only captures a part of
the presence condition of each file.

Once the two instances of the model are reconstructed, we use EMF Compare to extract
the differences between them, giving us the list of feature mappings that were added or
removed in that commit. For the comparison of two instances of our mapping model, we
use the name of features as unique identifiers.

From the earlier version of this work (Dintzner et al. 2016), we now capture mapping
between features and more artefacts, and our coverage of compilation flags is more compre-
hensive. In addition, we now take into account the changes to the mapped artefact as well.
We can now determine whether a change in the mapping is also associated with changes
to the mapped artefacts themselves. Doing so, we can differenciate cases where a feature
change involves a new mapping to a new artefact, and cases where the new mapping points
to a pre-existing artefact.

4.4 Extracting Implementation Changes

We describe in this section the artefact-specific change extraction process (Step 2 in Fig. 6)
that takes place when a commit contains changes to the implementation (source code).

At the implementation level, we consider changes to #ifdef blocks and changes to feature
references in the code, as presented in Section 2. To extract those changes, we rebuild a
model of each implementation file in its before and after state following the model presented
in Fig. 9.

To rebuild the models, we rely on CPPSTATS (Liebig et al. 2010) to obtain starting and
ending lines of each #ifdef block as well as their guarding condition. It should be noted that
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Fig. 9 Representation of the feature-asset mapping used for change extraction

CPPSTATS provide the condition of each block by taking into account nesting. In practice,
if a block with condition B is nested inside a block with condition A, CPPSTATS will report
two blocks, one with condition A and one with condition “A&B”.

In the model, code blocks and their #else counter-parts are captured as two distinct enti-
ties. “Referenced value features” are obtained by scanning each modified source file looking
for the usage of the “CONFIG ” string outside of comments and #ifdef statements. Note
that we report reference changes once per feature and per file.

We then use EMF Compare to compare the two models and build the SourceEdit entities.
For this comparison, FEVER needs to use a unique identifier for each code block contained
within a source file. The condition on a block may not be unique, and hence cannot be
used to uniquely identify a block in two versions of the source model. The location of the
block within the file may change during a commit without the block being changed itself
(i.e., if code is added or removed above it). FEVER uses a combination of the condition of
the block combined with its content (the actual code) as a unique identifier. This proved to
be an efficient technique, but in the context of the Linux kernel a number of files contain
identical code blocks, with the same block condition. While this may seem surprising, one
may consider a logging mechanism: if the logger feature is selected, write an entry in the log
file. This might be repeated in multiple functions in a file. As a result, the EMF comparison
process cannot correctly identify changed blocks and returns a number of false positive
changes. To compensate for this, we add indices to the identifier of code blocks when we
find such duplication.

We determine the code changes occurring inside #ifdef blocks to compute the value of
the “code edit” attribute of SourceEdit entities. This is performed as a separate step, once
we found the changed code blocks. We extract from the commit the diff of the file in the
“unified diff” format, and identify which lines of code where modified. We compare this
information with the first and last lines of each modified code block to determine which
code block is affected by the code changes.

FEVER extracts and records changes to all conditionally compiled code blocks - whether
features play a role in their presence condition or not. Changes to code blocks that are not
tied to any feature will be captured as SourceEdit, but such entities will not be linked to
any TimeLine in the next step of our process.

By comparison with our previous work (Dintzner et al. 2016), we enhance the source
change extraction process by taking into account cases where code artefacts contain iden-
tical code blocks, containing identical code. Such situations caused errors during the EMF
comparison process and are dealt with as explained in this section.
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4.5 Change Consolidation and TimeLines

The final step consists in the creation of feature TimeLine entities and relate them to the
appropriate entities. We create such entities for every feature touched affected by any change
in any Edit entity. We apply the following strategy:

– if a feature is touched in the VM, mapping or source file, the corresponding Edit entity
is associated with a TimeLine with a “core update” relationship.

– if a feature A is added from another feature B’s attribute (as part of a constraint), then
the FeatureEdit entity representing this change is connected to the feature TimeLine
with an “influence update” relationship if feature A did not participate at all in the
definition of B before the change.

– if a feature A is removed from another feature B’s attribute (as part of a constraint), then
the FeatureEdit entity representing this change is connected to the feature TimeLine
with an “influence update” relationship if feature A no longer participate at all in the
definition of B after the change.

– if a feature is part of the condition in a SourceEdit entity, the SourceEdit is connected
to one TimeLine entity per feature present in the condition with an “influence update”
relationship;

– if an artefact is touched, it is linked to the TimeLine entity of the feature to which it is
mapped with a “core update” relationship. This is done for each feature mapped to the file.

In order to map file changes to features, we need to know the mapping between features
and files. Note that FEVER only focuses on mapping changes, leaving us with a gap with
respect to mappings that are not touched. As a result, many files, whose mapping has not
evolved would not be mapped - wrongly - to any features. To compensate for this, we create
a snapshot of the complete mapping based on the state of the artefacts on the first commit
of the commit set. To support systems which do not follow Linux naming convention (the
CONFIG prefix used in Makefile and the source code), we also extract the list of features
present at the beginning of the studied time-frame. For both the initial feature list and initial
mapping, we rely on the FEVER parser to obtain the information by invoking it for every
Kconfig file and Makefile present in the system.

We then run through all commits, starting from the leaves in a breadth-first manner,
creating or updating TimeLine as necessary, and updating the known mapping between
files and features as we encounters MappingEdits. Note that there may be more than one
initial commit in a set: we have to consider branches as well. In our experiment we usually
have one initial commit of the release itself, and the different branches that have not yet
been merged.6

Some files in the Linux kernel cannot be mapped directly to features. This concerns
mostly header files, contained in “include” folders. “Include” folders do not contain
Makefiles, which prevents direct mapping between features and such artefacts. Moreover,
such files are included in the compilation process on the basis that they are referenced
by implementation files (#include statement), which by definition bypasses any possible
feature-related condition. For those reasons, we do not attempt to map such files to features.
They are, however, highly conditional, and often contain many #ifdef statements, which we
track.

6The list of commit is obtained using the following Git log command, asking for all commit reachable from
the last considered commit and not accessible from the first commit of the release - i.e.: git log v3.7...v3.8.
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5 Evaluating FEVER with Linux

The FEVER change extraction process is based on heuristics and assumptions about the
structure of the artefacts. Those heuristics affect the model build phase and the compari-
son process - the mapping between EMF model changes and higher-level feature oriented
changes. It is then important to evaluate whether the data captured by FEVER reflects the
changes that are performed by developers in the source control system.

The objective is two-fold. First, we aim at evaluating how the changes to the heuristics
impacted the accuracy of the FEVER approach. Secondly, we aim at providing a complete
evaluation of the FEVER approach and its accuracy, including all new change attributes,
against a larger and more representative set of commits as before.

Throughout this section, we consider that a FEVER change description is “accurate”
if the changes performed by developers are captured correctly by FEVER as described
in the previous section. We evaluate the accuracy of the approach in terms of pre-
cision and recall with respect to changes performed by developers on the observed
artefacts.

With this work, we improved on the existing FEVER prototype (Dintzner et al. 2016) in
several ways. Section 3 described the FEVER approach with its improvements. From the
initial version of this work, we improved the following aspects of the approach:

– heuristics for code reference identification
– heuristics for code changes within modified code blocks
– heuristics for asset-feature mapping identification (compilation flag, default list, and

artefact extensions management)
– the build change model to support more types of artefacts (namely data artefacts)
– the build change extraction to include artefact changes when describing mapping

changes
– the timeline model to include “influence updates” on feature changes

With those changes, FEVER captures more information than before, and should be able
to capture previous information more accurately. This leads us to formulate the first research
question driving this evaluation:

RQ1: To what extent is the new version of FEVER more accurate in capturing
feature-related changes?

However, the enhancements of FEVER also include the addition of new information
regarding feature-related changes. The overall accuracy of the tool, should also be evaluated.
We propose to answer the following research question:

RQ2: To what extent does the improved FEVER data match changes performed by
developers?

To assess whether the FEVER data matches the content of commits, we perform here a
two-steps evaluation. First, we apply FEVER on the commits used in Dintzner et al. (2016)
and compare the results obtained during the first evaluation of FEVER and the improved
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algorithm. Then, we perform a second, entirely new evaluation on two different releases
using a different heuristic to select commits.

For both steps, the evaluation is performed manually and consists in comparing the
content of the FEVER database with changes performed by developers. We first present
how this comparison is performed. Then, we present the results of the replication of the
evaluation and finally present the results of the evaluation on the new set of commits.

5.1 Evaluation Method

The objective is to evaluate the accuracy of the heuristics and the model comparison process
used for artefact change extraction and the change consolidation process. To do so, we man-
ually compared the content of the FEVER dataset with the information that can be obtained
from Git, using the GitK user interface. GitK provides a view of the list of changed files,
the chunked of modified texts in each of them, with an adjustable number of lines of con-
text for each chunk. The number of line of context provided for each chunk is particularly
relevant for us since conditionally compiled code blocks can be large, and identifying in
which block a change occurred may require a very large context (up to the complete file).
The evaluation was performed by the main author of this paper.

For a set of commits, we checked that the different Edit entities and their attributes can
be explained by the changes observed in Git. Conversely, we ensured that feature-related
changes seen in Git have a FEVER representation.

To facilitate the evaluation, we first dump the FEVER representation of the selected
commits in a file, containing all captured information for those commits (all spaces, all
files, all edit entities and their relationships). We obtain this information simply by querying
the FEVER database. We then proceed with the comparison by types of artefacts - first by
checking if all files seen as touched in FEVER are indeed touched in the commit, and we
continue until all changes have been verified.

At variability model level, we checked whether the features captured by FEVER as
added, removed, or modified are indeed changed in a similar fashion in the Linux Kconfig
files. We pay special attention to specific cases such as features being moved inside files -
which may or may not result in actual changes to the feature, but surely are not addition nor
removal scenarios and must be recorded by FEVER as a modification of an existing feature.

Regarding mapping changes, we checked that the pairing of features and files is accurate
and that the type of targeted artefact is also correct. Special consideration was given to
the validation of the mapping between features and assets (artefacts or compilation flags).
During the validation, we assess both which features are being mapped and what they are
being mapped to. Although we should note that a transformation associating a single feature
to multiple different artefacts is recorded by FEVER as a three multiple associations, and
are taken as such during the evaluation.

The mapping between features and files may be the results of complex Makefile con-
structs and may be distributed over several files through inclusion mechanism. FEVER only
takes into account a number of such constructs as mentioned in Section 3, but not all possi-
ble ones. In cases where a mapping change can be observed in a Makefile, but FEVER does
not report any change, we checked in the Makefile hierarchy if a feature should have been
mapped to that change. If, during the manual inspection, we reached the root folder of the
Linux file hierarchy and we have not encountered any explicit declaration of a link between
the changed mapping and any feature, we considered that this change could not have been
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mapped by FEVER, and FEVER should not report any feature-related mapping change. For
instance, a developer modifies “./mm/Makefile” (memory management), and adds a com-
pilation unit to the “obj-y” variable. We see that the inclusion of the file “./mm/Makefile”
is not conditioned by any feature in the root “./Makefile” of the kernel source tree. Hence,
we consider that FEVER cannot map this mapping change to any feature, and should not
report it. During the evaluation, if an artefact is not assigned to a feature in FEVER and
we cannot manually find which feature it should be assigned to following the methodology
presented above, we consider that the FEVER output is correct. We emphasize that FEVER
will still report that the Makefile has been touched in the form of a ArtefactEdit, but no
MappingEdit entity should be present.

At the code level, we checked that the blocks seen as touched are indeed touched, and
we compared the condition of each block. Then, by inspecting the patch, we validated that
the code changes within the blocks were correct.

Regarding TimeLine entities, we did not check whether all relevant changes in all
commits were indeed gathered into TimeLine entities. We made the assumption that if
TimeLine entities were properly linked in the commits we checked, then the algorithm is
correct, and the check on the complete release is therefor unnecessary. We also kept track
of the commits for which all extracted information is accurate, giving us an overview of the
accuracy on a commit basis.

5.2 Replication

In our previous work (Dintzner et al. 2016), we evaluated our tool as follows. Using FEVER,
we extracted feature changes from release 3.12 and 3.13 of the Linux kernel, and randomly
extracted 150 commits from each release (out of 11,907 and 13,288 respectively). The
selection of commits in those two releases was performed as follows: we randomly selected
50 commits touching at least the variability model, 50 among the commits touching at least
the mapping, and 50 touching at least source files. Those three sets are non-overlapping. So
the creation of three different sets ensures that our random sample covers all three spaces.
During the evaluation, we ignored merge and release tag commits.

To evaluate our improved algorithm, we performed the same analysis over the same
set of commits using the enhanced FEVER prototype and compared the results obtained
with what was previously established. Table 7 presents a comparison between the previous
precision and recall obtained on change attributes as well as the precision and recall for the
new algorithm.

In addition to the information presented in the table, our evaluation showed that the
percentage of commits for which FEVER correctly extracted all change attributes increased
from 82.7% to 85.3%.

Let us first discuss the differences in terms of sample change between the two evalua-
tions. We note that between the two evaluations, few sample size are exactly the same. For
instance, the first evaluation recorded 208 added features, but the second one found a total
of 206. The evaluation process being inherently manual, it is reasonable to observe slight
differences (as in the variability model changes for instances). However, variation of sam-
ple size is more significant for the following attributes: feature-file mapping, block changes
added, added code, added references, and timelines. Regarding the feature-file mapping, the
new version of FEVER attempts to resolve the mapping of more files - rather than focusing
only on source code. Previously, FEVER did not do so for files located within an “include”
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Table 7 Comparison of accuracy of the initial FEVER heuristics (Dintzner et al. 2016) with its new version

Reference algorithm Current algorithm

(Dintzner et al. 2016)

Attribute Sample Precision
(%)

Recall
(%)

Sample Precision
(%)

Recall
(%)

VM operations

change: added 208 100 100 206 100 99

change: removed 73 100 100 74 100 100

change: modified 140 80 100 138 81.4 98.6

Mapping operations

target: folder 17 100 94 17 100 100

target: compilation unit 437 100 98 430 100 99.8

target: compilation flag 10 67 60 14 100 100

mapping change: added 278 99 97 271 98.9 98.9

mapping change: removed 84 100 95 133 100 100

mapping change: modified 98 100 98 68 98.6 100

target change: added 326 99 97 328 98.2 97.9

target change: removed 133 100 97 139 100 100

file-feature mapping 622 81 97 728 93.4 92.6

Source operations

block change: added 381 81 97 321 98.7 92.6

block change: removed 229 100 99 230 100 97.8

block change: modified 237 97 99 233 96.3 100

code change: added 365 99 97 307 99.0 98.4

code change: removed 195 99 99 190 96.4 98.4

code change: edited 237 96 99 236 95.9 100

code change: preserved 46 32 83 45 93.2 91.1

reference change: added 6 100 83 106 100 100

reference change: removed 7 88 100 5 83.0 100

TimeLine 743 93 98 11225 95.5 97.5

folder (at any level of its path). Changes to files in folder such as “arch/.../include” are now
mapped.

The variation in our sample of “block changes: added blocks” and “code change: added
code” are related. During the first evaluation, we found 381 added code blocks (block
changes: added blocks) with 365 occurrences of new code blocks containing only new code
(code change:added code), while during the second evaluation the number of added code
blocks dropped to 321, and the number of code blocks with added code dropped to 307. The
difference between the two values stems from changes obtained from a single commit. A
file with the extension “.S shipped” containing a large number (60+) of added interactions
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was included in the initial evaluation. We adjusted the algorithm to identify files, enforc-
ing strict file extension (.S), hence the file was ignored during the second evaluation. This
results in less added code blocks, and the less added code blocks containing only new code.
While this raises the question of which artefacts one should consider during the experiment,
it does not undermine the ability of FEVER to capture accurately code changes from within
a well defined set of artefacts.

The number of added references increased significantly between the two evaluations.
Once again, explanation for this difference is contained within a single commit7 where a
hundred features are added, and then referenced in the code. During the first evaluation,
those references where incorrectly identified as local macros by the tool and the reviewer,
and not noted as added references. During the second review, with the updated algorithm,
the references were correctly identified by FEVER as feature references. A deeper analysis
of the code and the related artefacts showed that those were indeed feature references and
should be recorded as such.

Finally, with the improved approach,TimeLines now may be created as the result of a
feature relationship change. Since this was not taken into account during the first evaluation,
the number of TimeLines obtained with the improved algorithm (11,225) is de facto larger
than during the first evaluation (743). The conditions under which we create TimeLines
are presented in Section 4.5. In that list, the points two and three, on feature relationship
changes were previously not recorded. However, the 743 TimeLines initially recorded are
a subset of the 11,225 TimeLines observed during the replication.

Despite those differences, the results in Table 7 indicate improvement of the accuracy of
most change attributes related to mapping and code changes. The most significant being the
detection of preserved code inside changed code blocks (from a precision of 32% to 93.2%)
and the detection of changes to compilation flags during mapping evolution (from a preci-
sion and recall of 67% and 60% to 100%). Code change capture was improved by avoiding
false positives when multiple code blocks were identical. The detection of compilation flag
changes was improved by capturing changes to compilation flags not mapped “directly” to a
feature, but indirectly (the flag is mapped to an internal variable and will be activated when
a guard feature is selected).

With this information we can answer our first research question, RQ1: To what extent is
the new version of FEVER better at capturing feature-related changes?

The overall accuracy of FEVER slightly improved (by 2.6%), while the ability to
capture certain change attributes increased significantly (by more than 30%).

The changes to the heuristics used by FEVER lead to an improvement over its
previous version.

While this increases our confidence in FEVER’s ability to capture changes, the improved
algorithm allowed us to capture change in artefacts and feature relationships that were
not taken into account before - hence, not covered in this comparison. Moreover, we used

7206f060c21
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for this comparison the same set of randomly selected commits as in our previous work
(Dintzner et al. 2016). However, the methodology used to build this set did not allow for
commits not affecting any feature to be included in the evaluation, which, in our opinion
created a bias in the initial evaluation. We continue the evaluation of FEVER by perform-
ing a complete evaluation, including new attributes on a more complete and different set of
randomly selected commits.

5.3 Evaluation on a new Set of Commits

The results of the previous sub-section highlight improvements on the ability of FEVER
to capture certain types of changes. However, we extended the change model to capture
additional change information, as presented in the beginning of this section.

To evaluate the improved FEVER algorithm, we extended the evaluation of the data
used in the replication presented above (300 commits) to cover the additional changes and
created a new dataset from two releases using a different random selection approach (510
additional commits). For the additional dataset, instead of three groups of commits affecting
different spaces, we randomly selected commits from five different groups: 51 commits not
affecting any artefact, 51 commits affecting arbitrary artefacts, 51 commits affecting at least
the variability model, 51 commits affecting at least the mapping, and finally 51 commits
affecting at least code blocks, for a total of 255 commits per release. With this approach,
we ensure that every commit within the FEVER database may be selected. Consequently,
the complete dataset used for this evaluation is comprised of 810 commits, from 4 different
releases (150 commits from release 3.12, 150 commits from release 3.13, 255 commits from
release 3.14, and finally 255 commits from release 4.2).

FEVER does not capture changes inside merges. The rationale behind this decision is to
avoid capturing changes multiple times: once when they are implemented by their original
authors, and possibly a second time if the merge operation results in a conflict (same file
modified twice). During our evaluation, we checked whether some information was missed
by skipping merge commits altogether. We used the following methodology: we inspected a
subset of the merge commits and checked that all changes that occurred can be found within
the parent commits - i.e. all modifications pre-existed, they are simply integrated together.
We identify “new content” in merge commits by using the following “git log” command to
visualize the changes:

git log <commit hash> -p –cc

The “-p” option displays the patch, and “-cc” displays the patch “diff” from all parents
simultaneously. Using this view of the patch, we searched for content added or removed
from all parents. Practically, this amounts of searching for lines in the “diff” where the
number of “+” or “-” symbols at the beginning of modified lines of text equals the number of
parents.8 Given that FEVER omits merge commits, any of such change is accounted for as
a false negative for the relevant change attribute during the evaluation. Table 8 summarizes
the results for the 4 datasets, comprised of a total of 810 commits.

The results show that, for a majority of attributes (26 out of 27), FEVER precision and
recall is at least of 88%. On the other hand, we note that detection of reference changes
can be problematic. During this evaluation, we found two cases where developers created

8https://git-scm.com/docs/git-log

https://git-scm.com/docs/git-log
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Table 8 FEVER change extraction accuracy evaluated on 810 commits

Attribute Population Precision (%) Recall (%)

VM operations

change: added 309 100 98.7

change: removed 88 100 98.9

change: modified 293 89.8 98.6

Mapping operations

target: folder 52 100 98.1

target: compilation unit 735 99.3 95.6

target: compilation flag 32 100 100

target: data 61 100 100

mapping change: added 506 98.4 95.1

mapping change: removed 201 100 90.0

mapping change: modified 180 97.7 92.8

target change: added 644 98.7 94.6

target change: removed 224 99,1 100

artefact change: added 366 98.2 91.5

artefact change: removed 113 99.0 89.4

artefact change: modified 31 100 80.6

artefact change: untouched 290 88.7 92.4

artefact change: NA 82 100 98.8

file-feature mapping 1650 95.1 93.5

Source operations

block change: added 656 99.4 93.5

block change: removed 355 100 97.2

block change: modified 529 95.6 99.6

code change: added 583 99.1 97.9

code change: removed 271 97.0 96.7

code change: edited 556 95.3 99.3

code change: preserved 124 95.7 88.7

reference change: added 117 99.2 100

reference change: removed 9 69.7 100

TimeLine 2367 97.1 97.5

Correct commits 810 87.2%

local variables (using the #define C directive) whose name matched feature naming conven-
tion (CONFIG prefix). This explains the lower precision, but FEVER still exhibit for this
change a high recall of a 100% when capturing removals of feature references.

If we compare the results obtained during the complete evaluation with the results
obtained during the replication of our first evaluation, we note that, for a number of change
attributes, the accuracy dropped by small yet noticeable amounts (for precision and recall
alike). This is due to the increase in our sample size and a more thorough sampling approach.
We considered for the complete evaluation a larger, more representative sets of commits in
the Linux kernel as explained in Section 5.3. As we observe more changes, we see more
commits containing changes deviating from what FEVER is able to parse. We can say
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that, given the increase in our sample and the a more balanced sampling techniques, this
evaluation is more precise than what we had provided in the past.

With this information we can now answer our second research question, RQ2: To what
extent does the new version FEVER data match changes performed by developers?

The results showed that the data collected by the new version of FEVER matches
the changes performed by developers in 87% or more of the commits. The newly
included change attributes (artefact changes, “data” artefact types) are captured with a
high accuracy (of at least 80%).

Those results give us confidence on the viability of the FEVER approach, and in the
quality of the extracted data. We proceed to explore usages of the dataset, before continuing
with an exploratory study of co-evolution of artefacts in the context of feature evolution in
Section 7.

6 FEVER usage Scenarios

In this section, we illustrate how using FEVER or the data collected using the approach can
be of use to developers, maintainers and researchers in the scenarios S1 to S4 mentioned in
the Section 1.

The FEVER data is stored in a Neo4j graph database.9 Every entity of the FEVER change
meta-model is a node of the graph, and the relationships are edges. Data types are repre-
sented using node labels, and attributes are stored as node properties. The queries presented
in this section are written in the Cypher query language.10 It is understood that, in a practi-
cal situation, an integration with development tools would be more suitable than relying on
direct Cypher queries.

6.1 FEVER for Software Development Activities

In scenario S1, we consider the work of a release manager building the release notes. He is
interested in highlighting important features, and matching those to the commits that partic-
ipated in their implementation. The release notes of Linux v3.13 11 mention the following
change “add[s] option to disable kernel compression” with a single commit. Looking at the
commit, we know that a new configuration option named “KERNEL UNCOMPRESSED”
is introduced. We can check this with FEVER by querying the commits associated with the
TimeLine of “KERNEL UNCOMPRESSED” as follows:
match

(t:TimeLine)-[]->()<-[]-(c:commit)

where t.name = "KERNEL_UNCOMPRESSED"

return distinct c;
This query returns two commits. The first commit (id:69f055) mentioned in the release
note is associated with a FeatureEdit entity denoting the addition of a feature. The second

9http://neo4j.com/
10http://neo4j.com/docs/stable/cypher-query-lang.html
11http://kernelnewbies.org/Linux 3.13

http://neo4j.com/
http://neo4j.com/docs/stable/cypher-query-lang.html
http://kernelnewbies.org/Linux_3.13
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commit (id:2d3c62), occurring a few days later, is also associated with a FeatureEdit entity,
but, surprisingly, removes the feature. A check in release v3.14 showed that the feature was
never re-introduced. This means that the release notes written by the 3.14 release managers
were, in fact, incorrect. We argue that a dataset such as FEVER would provide release
manager with more accurate information on changes that were performed by developers and
may have prevented this erroneous entry in the release notes.

In scenario S2, a developer is about to introduce a new driver for a touch-screen sup-
porting the power management “SLEEP” feature. The developer might want to know how
such support was implemented in other drivers and compare it with its own implemen-
tation. Using FEVER, he queries the database for commits where a new feature (f1) is
added (fe.change =“ADDED”), and interacts with a second feature (f2) whose name is
“PM SLEEP” as follows:
match (f1:TimeLine)-[:FEATURE_CORE_UPDATE]->

(fe:FeatureEdit)<-[]-(c:commit),

(c)-[]->()<-[:FEATURE_INFLUENCE_UPDATE]-(f2:TimeLine)

where f2.name = ‘‘PM_SLEEP’’ and fe.change = ‘‘ADDED’’

return f1,f2, distinct c;
When ran against database containing commits of release 3.14 of the Linux kernel, this
query returns ten results, giving the name of the newly introduced features, and the commits
in which those changes occurred. Among the results, the developer might notice that feature
“TOUCHSCREEN ZFORCE” and might consider using this as an example to drive his own
development.

In this scenario, FEVER is used as a “recommender” system to guide the implementa-
tion of a new component. Relying on previous activities to guide further development is a
common approach to ease software evolution. We can name Hipikat (Čubranić and Mur-
phy 2003), CodeBook (Begel et al. 2010) as tools aiming for such facilities. However, such
approaches do not take into account the deep structure of the implementation which FEVER
does by breaking artefact changes by feature. This degree of granularity is particularly inter-
esting for variant-rich system. For such scenarios, we believe that the information obtained
by FEVER would be a valuable addition to existing approaches such as CodeBook, rather
than a replacement.

FEVER can also be of use in our third scenario S3 in the context of bug triaging. Let
us consider the bug #928561 reporting issues with keyboards mentioning that “multimedia
and macro keys are not working”.12 The bug report author provide traces and logs pointing
to issues with the Linux Human Interface Devices (HID) subsystem. This issue was fixed
by and the patch was introduced in the kernel in release 3.12. In the FEVER database for
release 3.12, we run the following query to see who among the commit authors committed
the most changes affecting HID related features.

match (c:Commit)-->()<--(t:TimeLine)

where t.name= "(?ism).*HID.*"

return distinct (c.author), count(c)

order by count(c) desc;

The name of the developer who analyzed and fixed the issue comes first in the results,
with 22 commits affecting “*HID*” features - among which one corresponds to the patch
fixing the keyboard issue. In second place, we find an official maintainer for three of kernel

12https://bugzilla.redhat.com/show bug.cgi?id=928561

https://bugzilla.redhat.com/show_bug.cgi?id=928561
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subsystems with 17 commits, followed by another official maintainer for two HID related
subsystems and the name of a Linux branch manager with 16 commits each affecting such
features. It is interesting to note that the names of the developers who fixed the issue in
question are not present in the official maintainers list of the kernel for releases 3.11 nor
3.12. Through this scenario, we suggest that the FEVER database can be of use to identify
feature expertise, and possibly facilitate bug triaging (Matter et al. 2009). A maintainer in
charge of bug triage may use a simple query with information on potentially faulty features
to find which developers can provide insight on an issue or even fix it.

The number of bug reports, and the number of developers makes appropriate bug assign-
ment to developers difficult. To alievate some of those issues, several approaches have been
designed to facilitate the identification of experts capable of fixing a bug (Ahsan et al. 2009;
Matter et al. 2009). Most of those solutions rely on previous fixes to determine, based on
bug report content, who is the most likely to be able to provide an answer to a bug report.
What we propose is to take into account a feature-based expertise, and relate the bug report
content with specific features, in order to determine who is the best suited to fix bugs related
to that feature. This provides an additional type of information, based on fine-grained arte-
fact changes, which can be particularly useful for artefacts at the limit of a subsystem where
more than one team may be considered as potential fixers. We do not claim that FEVER
could replace existing approaches, but feature-related evolution information could be added
to increase the accuracy of existing techniques.

6.2 FEVER for Software Engineering Research

In scenario S4, a researcher in the domain of evolution of highly variable software systems
is interested in the typical structure of feature related changes. For instance, he would like to
observe the occurrences of the introduction of abstract features, in the sense of Thuem et al.
(2009): a feature only exists in the VM. Using FEVER, we can identify the introduction of
such features with this query:
match

(t:TimeLine)-[:FEATURE_CORE_UPDATE]->(f:FeatureEdit)

where

not (t)-[:FEATURE_CORE_UPDATE]->(:MappingEdit)

and not (t)-[:FEATURE_CORE_UPDATE]->(:ArtefactEdit)

and not (t)-[:FEATURE_INFLUENCE_UPDATE]->(:SourceEdit)

and f.change="Add"

return t

In release v3.13, this query returns 42 features. Because TimeLine entities are regrouping
changes across spaces and commits, we know that those 42 features are indeed abstract,
and this is not the result of a developer who first modified the variability model and in a
later commit adjusted the implementation. The addition of an abstract feature has not yet
been described as a co-evolution pattern, and further analysis is necessary to fully describe
such changes. Nonetheless, this illustrates how FEVER can be of use to discover patterns
or identify instances of known patterns. An earlier version of FEVER was used by Sampaio
et al. to facilitate the identification of instance of changes affecting certain spaces in the
context of their work on safe evolution templates (Sampaio et al. 2016).

In scenario S5, we consider the work of a researcher focusing on variability related bugs
(Abal et al. 2014) and bug prediction (Giger et al. 2011). The data captured by FEVER may
reveal information on features involved in bug-fixing commits. A basic approach would
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consist in using regular expression on commit messages to identify bug-fixing commits.
Using this, one can identify features involved in bug-fixing commits using the following
query:

match (c:commit)-->()<--(t:TimeLine)

where not c.message = "(?ism).*copyright notices.*"

and c.message = "(?ism).* bug.*"

or c.message = "(?ism).* error.*"

or c.message = "(?ism).* fix.*"

or c.message = "(?ism).* revert.*"

return t.name, count(distinct c);

We note that Tian et al. devised a methodology to identify bug-fixing commits in the Linux
kernel (Tian et al. 2012). Combining such an approach with FEVER should yield more
accurate results than the query presented here. However, with such a simple query, one can
identify which features are more error-prone than others. It would be interesting to see if
the number of features involved in a commit influences the bug-proneness of commits.

Finally, the data provided by German et al. (2015) can be used to track commits over
time and across repositories. Combining this information with the FEVER database would
allow us to track feature development across Git repositories, and observe how the Linux
community collaboratively handles the development of inter-related features.

The implementation of variant-rich system is known to be challenging. Features and their
relationships, if misunderstood, can lead to issues such as dead code, invalid products, or
compilation errors. To mitigate such problems, researchers have to identify the issues, find
a way to fix them, and apply them on a number of cases for validation. We argue here that
tools such as FEVER are a convenient way of identifying what changes occurred in com-
mits with respect to features. Once a researcher has found a scenario where the studied
error occurs, one can easily find other scenarios, with similar changes, and observe if the
error occurred there as well. FEVER by itself cannot mitigate such a problem, but consti-
tutes a way to facilitate research in such a domain: by easing the search for a problematic
situation, and providing a quantitative estimate of the occurrences of problematic evolution
scenarios.

Given the current accuracy of the FEVER prototype (85%), a manual review of the
changes is necessary to guarantee that the retrieved changes are all correct. However, it is
sufficient to reduce efficiently the number of commits that must be reviewed, and provide a
solid starting point for further manual analysis, as was done by Sampaio et al. (2016).

Conversely, should a developer run a query on FEVER and get no results, there is a small
chance that FEVER may have failed to extract such changes (false negative). In such a sit-
uation, the developer might have to rely on Git query instead, but FEVER already provides
some information: the type of change sought by the developer is not common, or the imple-
mentation used to support those specific features/constructs are not what is commonly used
in the Linux kernel.

7 Co-evolution in Linux

In this section we explore the data collected by FEVER over 15 releases of the Linux kernel.
Given the relatively high accuracy of the approach established in Section 5, we can rely on
FEVER data to explore co-evolution of artefacts in the context of feature evolution in the
Linux kernel.
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The state of the art on feature-oriented co-evolution of artefacts in highly configurable
software systems focused on specific changes (Passos et al. 2015; Neves et al. 2015; Neves
et al. 2011). Those studies were performed using manual analysis. While those provide
relevant and important knowledge on change scenarios, little information can be found on
their occurrence in large systems. In this section, we report on an exploratory study of the
feature-oriented co-evolution of artefacts in the Linux kernel.

We argue that quantitative information on the frequency of co-evolution over the evo-
lution of a complex system would allow tool developers and researchers to determine
how relevant the support of co-evolution for the evolution of such systems is. How often
is co-evolution occurring, and how many authors actually face co-evolution during their
development tasks? What percentage of the touched features actually evolve in multiple
variability spaces? And when they do, which spaces are more frequently involved? Should
a developer provide tool support for co-evolution, and what should be its main focus to help
in a majority of cases? This leads us to formulate the following two research questions:

– RQ3: To what extent do artefact in different variability spaces co-evolve during the
evolution of features?

– RQ4: To what extent are developers facing co-evolution over the course of a release?

With the first question, we can obtain an estimate of how likely co-evolution is from a
technical perspective. If a feature evolves during a release, how likely is it that this evolution
will imply the modification of multiple types of artefacts? With the second question, we aim
at estimating the potential audience for tools and techniques targeting co-evolution issues.
Provided a simple and efficient method can be devised to guarantee correct feature-oriented
co-evolution of artefacts, what percentage of the development team would actually benefit from it?

To put our results into perspective, we first provide our readers with general information
on the evolution of the Linux kernel as captured by FEVER over the studied period of time.
The dataset collected with FEVER covers 15 releases of the Linux kernel, starting at v3.9
(April 2013 - first extracted commit) until v4.4.(January 2016 - last extracted commit). A
release of the Linux kernel lasts for approximately six weeks.

7.1 Methodology

Before proceeding, we first provide general information on the studied releases. Table 9
presents the number of features at the beginning of each release, the number of authors,
the number of commits, and the number of TimeLine entities. The number of features
at the beginning of the release is obtained by using the initial feature list produced for
the extraction process. The number of TimeLine was obtained by querying the FEVER
databases, representing the number of features that evolved during that release. The number
of commits and authors were obtained by querying the FEVER database and cross-checked
using “Git”.

We then proceeded as follows. We built a number of queries to identify features, the
spaces in which they evolve and the involved authors. We ran the queries on each extracted
release of the Linux kernel and dumped the results in a series of .csv files. For each commit
we extracted the type of artefacts affected by the commits as well as the authors. To iden-
tify authors, we used the author name, as reported in the Git repository - this information is
stored as part of the commit entity in FEVER. We also consolidate the collected informa-
tion over time. This allows us to contrast the evolution of feature and variability authorship
in each release with the evolution of feature and variability space authorship over multiple



Empir Software Eng (2018) 23:905–952 937

Table 9 General information on the Linux kernel development: number of commits, authors, features, and
FEVER Timelines over the studied period of time

Release 3.10 3.11 3.12 3.13 3.14 3.15 3.16

Number of commits 14737 11851 11906 13288 13415 14871 13830

Number of authors 1433 1304 1362 1400 1481 1535 1513

Number of features 12511 12603 12780 13022 13134 13297 13453

Number of timelines 5208 4397 4424 4581 4503 4960 4099

Release 3.17 3.18 3.19 4.0 4.1 4.2 4.3 4.4

Number of commits 13331 12361 13652 11306 12965 14750 13282 14082

Number of authors 1461 1507 1495 1495 1576 1630 1607 1636

Number of features 13602 13631 13802 13932 14427 14217 14458 14607

Number of timelines 4322 3797 5131 3432 4082 4316 4159 3967

releases (15 in this case). To do so we aggregate the collected information by feature (iden-
tified by their name), and authors (identified by their name as well). By doing so, we avoid
biases caused by complex co-evolution over time. For instance, a feature is touched in the
code in six releases, but its mapping or variability model representation change in seventh.
Over time, this should be considered as a change to all spaces, where on a release level, we
would record a changes in the source code only, or V.M. and build only - which would be
correct but partial. We then imported this information into a spreadsheet editor to compile
the results.13

As noted in previous work on mining social information from software repositories
(Kouters et al. 2012; Bird et al. 2008), authors are likely to use aliases and submit com-
mits using different email addresses. In this work, we relied on the author’s name, as stored
in the Git repository and did not take aliases into account. We evaluated the possible bias
caused by aliases on our study by performing a manual analysis of author’s name in release
4.4. To identify aliases, we searched among the list of author names duplicated names and
first name. We then decided whether two names are likely to point to the same person using
the following strategy: for each name we took into account the following variations men-
tioned by Kouters et al. (2012): ordering, diacritics, nicknames, middle initials and middle
name, and finally irrelevant incorporation in the name, emails instead of name. This analy-
sis of author’s name in release 4.4 revealed that, out of the 1636 authors, 53 recorded author
names are aliases, accounting for 3.23% of author names.

7.2 Results: Feature Co-Evolution Over Time

The results of our quantitative analysis of co-evolution of features in the Linux kernel are
presented in Table 10. This table summarizes, for each release, the space(s) in which features
of the kernel evolve. In addition, we aggregated the results for feature evolving in a single
space, two spaces, and three variability spaces, with raw quantitative information and the
percentage of those features (in italic in the table). For instance, in release 3.10, FEVER
captured 5208 feature TimeLines. Among those, 654 evolved solely in the variability model

13The spreadsheets used during this experiment are available on our website: http://swerl.tudelft.nl/bin/view/
NicolasDintzner/WebHome

http://swerl.tudelft.nl/bin/view/NicolasDintzner/WebHome
http://swerl.tudelft.nl/bin/view/NicolasDintzner/WebHome
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(V.M.), and the total number of features that evolved through changes in a single space is
3407, or 78.19% of the evolving features in that release.

The table also presents the average and median number of features evolving in each
combination of spaces over the studied period of time. We can see in the penultimate column
of Table 10 that, on average over 15 releases, 4538 feature evolved and that, on average,
only 7.43% of them evolved in all three spaces.

Regarding the co-evolution of artefacts with respect to feature evolution, we can see that
most features evolve only through their implementation, after their initial introduction.

On average and over the studied period of time, 69.27% of evolving features only
changed in their implementation, either modification of the mapped artefact or modification
of code blocks - #ifdef block. We can order the combination of spaces in which features are
most likely to evolve as follows:

1. Source only (69.27%);
2. V.M. only (10.44%), and V.M. with Source (10.65%);
3. All three spaces (7.43%);
4. Any other combination of spaces occurs, on average over the studied period of time less

than 2% of the time.

Table 11 show the evolution of all changed features, by spaces, over the entire studied
period of time, i.e., 15 releases, approximately two years. The results show that, over the 15
releases, 4111 changed features among the 17448 features that were changed evolved in all
three spaces. We can see that half of features (49.94%) evolved in a single space during that time.

Given our results, we can answer our third research question, RQ3: To what extent do
artefacts in the different variability spaces co-evolve during the evolution of features?

In a given release, a majority of features (79.96%) evolve without any co-evolution
in the different variability spaces, their evolution occurs within a single space. The
percentage of feature evolution performed by modification of multiple spaces is low
(less than 25%) but remains relatively constant over the studied period of time.

Over a longer period of time, more features will evolve in multiple spaces (50%
after 15 releases).

Table 11 Co-evolution of edited features aggregated by feature, over the entire studied period of time

Spaces Count Ratio (%)

Number of timelines 17448 100.00

V.M. only 1856 10.64

Mapping only 23 0.13

Source only 6835 39.17

Single space 8714 49.94

V.M. & mapping 214 1.23

V.M & source 4185 23.99

source & mapping 224 1.28

Two spaces 4623 26.49

All spaces 4111 23.56

Values in italics are computed, while values in regular fonts are obtained using Neo4j queries
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7.3 Results: Co-evolution Authorship

Table 12 shows the spaces affected by authors commits in the Linux kernel. For each release,
it presents the number of authors and the number of authors whose commits affected the
different combinations of spaces. In release 3.18, among the 1507 authors, 12 committed
changes modifying only the mapping space. In that same release, the number of authors
whose changes modified only a single space is 1134, representing 78.9% of all authors.

The last two columns of the table show the average and median number of authors and
the spaces they affected, with the aggregated values per spaces, over the studied period of
time. We can see in the last column that the median number of authors in the studied releases
is 1495, and the median number of authors who modified all spaces is 161, representing
10.98% of the authors.

Regarding authorship of the different spaces, we can see that a majority of developers,
over the course of a release, modified only the implementation space. In this context, this
means that they touched the implementation of a feature (mapped artefact) or a code block
(#ifdef block). Our results show that on average, over the studied period of time, this is true
for 77.24% of authors. When authors touch multiple spaces, they are less likely to modify
only the variability model and the mapping (0.09% of authors on average) than other com-
binations of spaces. Finally, between 10.2% and 13.06% of authors perform modifications
spreading across all three spaces. We can see from Table 12 that this percentage varies very
little over the studied period of time.

Table 13 present the authorship of variability spaces aggregated over the 15 releases we
studied. The table shows that 17.47% of the 6645 authors we identified changed features
by editing all three variability spaces. Over the studied period of time, 72.47% of authors
touched only a space, and a majority (71.33%) of authors focused solely on the source code.

With those results, RQ4: To what extent are developers facing co-evolution over the
course of a release?

On a given release, only a minority (less than 25%) of developers will make changes
to multiple spaces. The percentage of commit authors dealing with co-evolution is thus
low, but stable over time. A majority of authors (approximately 75% in each release,
and approximately 71% over time) will focus only on source code.

7.4 On Co-evolution in Linux

In our experiments, we extracted feature-related changes from release v3.10 (June 2013)
until release v4.4.(January 2016). The development of the kernel started much earlier than
the first release studied in this work. Development practices in the Linux kernel are well doc-
umented and the development process can be considered as very mature. What we observe
are changes occurring in a stream-lined development process. This in itself might explain
the regularity in the data we gathered in terms of co-evolution and authors edits in vari-
ous spaces. This regularity suggests that occurrences of co-evolution in feature evolution,
or author experience of co-evolution will remain the same until the next upheaval of the
development process or of the system’s architecture.

With this in mind, we note that most developers did not perform changes in multiple
spaces. Over time, a majority (71.33%) of developers only modified the implementation
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Table 13 Authorship of variability spaces, aggregated by author over the entire studied period of time

Spaces Count Ratio (%)

Authors 6645 100.00

V.M. only 28 0.42

Mapping only 48 0.72

Source only 4740 71.33

Single space 4816 72.47

V.M. & mapping 4 0,06

V.M & source 316 4.76

source & mapping 318 4.79

Two spaces 638 9.60

All spaces 1191 17.92

Values in italics are computed, while values in regular fonts are obtained using Neo4j queries

space. This is visible in our results, both when describing author’s contributions to indi-
vidual releases, and their contribution over the studied period of time. However, this does
not mean that developers cannot introduce dead code blocks or false optional blocks in
the implementation. Valid changes to the implementation do require some knowledge on
feature support in all spaces. Developers still benefit from tools focusing on validation of
the consistency of features across spaces. Such tools, such as KbuildMiner (Nadi and Holt
2012), TypeChef (Kenner et al. 2010), or Undertaker (Tartler et al. 2009), usually require
the extraction of variability information from all variability spaces. Then they aggregate the
information validate their consistency. If, as shown by our results, in most cases the VM and
the mapping remain untouched, the information required from those artefacts to run consis-
tency checks can be cached. According to our results, on a given release, more than 75%
of authors could use this cached information - making cross-space variability checks more
efficient. This would reduce the cost of variability consistency checks across spaces. Yet,
for more complex change scenarios, a thorough and complete analysis is still required.

Hellebrand et al. noted that, in an industrial context, and for highly configurable sys-
tems, the evolution trends were leading towards less co-evolution of artefacts (source and
model artefacts in their case (Hellebrand et al. 2014)). Such an observation is consistent
with the idea that common evolution scenarios should not require many modifications in
many artefacts of different nature. In the Linux kernel, we have shown that co-evolution of
heterogeneous artefacts only occurred in 30% of commits, and only for 25% of the devel-
opers. Considering that those ratios are relatively stable overtime, we can assume that those
are the results of choices in the Linux architecture, development practices and the choice of
technology to support variability (Kconfig/Makefile/pre-processor annotation). The data we
gathered constitute a base line for further studies on co-evolution in Linux. Further changes
to the implementation techniques used to support variability implementation should not
increase artefact co-evolution beyond what we observed in our study.

Additional studies on feature-oriented co-evolution on variant-rich software systems,
beyond the Linux kernel, would allow us to see if other mature variant-rich systems evolve
with similar ratio of co-evolution. With more points for comparison, we will be in a better
position to assess whether this ratio of co-evolution is optimal or not.
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8 Threats to Validity

We present in this section the threats to validity of the two parts of our study: the change
extraction process from developers’ commits, and our exploratory study of co-evolution in
the Linux kernel.

8.1 Threats to Validity: Feature-oriented Change Extraction

Let us first discuss the limitations and threats to the validity of the FEVER change extraction
process.

Limitations FEVER may fail when changes to artefacts deviate from the “usual” develop-
ment practices (naming convention, feature-file mapping approach and so on). Such cases
occur when dealing with architecture specific features, where the link between features and
artefacts in Makefiles relies on variable values rather than straight forward foldering struc-
tures - as is the case for sub-architectures of the ARM main architecture. On some occasion,
the object file included in Makefile by default in the compilation process is not the the stan-
dard Linux “obj-y” list. In such cases, FEVER is not necessarily able to determine that those
artefacts are associated with the feature that condition the inclusion of the Makefile. Errors
in the code changes are mostly due to the problems when assigning code changes to block
changes - we can identify if a block has changed (added or removed),but finding how the
code inside the block was modified remains a challenge. This is particularly true when we
observe series nested #ifdef statements, each containing a single line of code. Finally, we
have some difficulties assessing whether a symbol in the code is a reference to a feature or
not, since number of C macros in the implementation may come as false positives. Despite
such shortcomings, occurring when developers do not, or are not able to, follow the usual
development guidelines, FEVER still produces correct results for 87.2% of the commits in
our sample of 810 commits.

While we attempt to be as exhaustive as possible, FEVER does not capture all feature
related information in all artefacts. Because FEVER operates on a file-basis, with a text-
based parser, certain constructs in the variability model or the mapping are not captured. The
limitations of FEVER for each space are mentioned in the relevant sub-sections of Section 3.

This limitation has practical implications on our work. For instance, knowing that we do
not consider cross artefact relationship (such as “source” statement in Kconfig files), what
we observe are changes done locally to features by developers - at a file level. As a result,
certain interpretation of the changes are not possible. For instance, based solely on FEVER
data, one cannot identify how the available configurations of the Linux kernel evolved. This
requires an understanding of how the entire set of Kconfig files and features has changed
- this amounts to semantic differencing. FEVER captures textual changes performed by
developers.

Internal validity To extract and analyze feature-related changes, FEVER uses model-
based differencing techniques. We first rebuild a model of each artefact, and then perform
a comparison. The construction of the model relies on heuristics, which themselves work
based on assumptions on the structure of the touched artefacts - whether they be code, mod-
els, or mappings. For this reason, information might be lost in the process. To guarantee that
the data extracted by FEVER do match what can be observed in commits, we performed a



944 Empir Software Eng (2018) 23:905–952

manual evaluation, covering change attributes our approach currently consider. The evalu-
ation showed that a large majority of the changes are captured accurately, with a precision
and recall of at least 80%. This gives us confidence in the reliability of the data.

Using manual analysis for validation purposes is inherently fault prone. The difference
in terms of content of the samples used for the replication of our initial study highlights
this. For instance, we had identified 208 added features during the initial study, but only 206
during the replication - over the same set of commits, and therefore the same set of changes.
While in some cases (e.g., for file-feature mapping), the differences can be explained by a
better ability to track some changes and therefore we simply have more information, in other
cases, this is due to human error when reviewing the content of commits. For the evaluations
performed in this work (both the replication and the new evaluation), the manual review of
commits was performed twice - for the entire dataset, leaving a small time gap (between
2 days and a week) between the two evaluation rounds. While the errors identified in the
initial evaluation lead to a significant update for some change attributes (namely “added
feature references” in the code), evaluation errors occurred in less than 5% of the commits.
Throughout this two step evaluation, we still observed more than 80% of the commits being
matched perfectly in the FEVER database. This increases our confidence in the overall
validity of our results.

The evaluation of the new FEVER heuristics, compared to its previous version, highlights
significant improvement of accuracy on specific change attributes. In particular the capture
of code block changes with preserved code block improved from a precision of 32% to 93.3%.
Moreover, the added change attributes (namely artefact changes, additional artefact type,
and TimeLine relationships to FeatureEdit) were captured with a good precision and recall
(at least 80%).

Because the FEVER approach is based on heuristics, it is neither sound nor complete.
But for more than 80% of the extracted commits, the data does reflect changes performed
by developers. While this may be a limitation when searching for very specific changes,
with specific change attributes, overall trends and statistics done over the course of a release
reflect developer’s activities on features in the Linux kernel with sufficient accuracy to draw
conclusions from it.

External validity Our work focuses on build-time variability, constructed around the
build system and an annotative approach to fine-grained variability implementation (#ifdef
statements). While we believe that the change model may be useful to describe runtime
variability, the extraction process is not suitable to extract feature mappings from the imple-
mentation itself at this time. We cannot extend this work to runtime variability analysis
without further study.

We devised our prototype to extract changes from a single large scale highly variable
system, namely the Linux kernel. In that sense, our study is tied to the technologies that are
used to implement this system: the Kconfig language, the Makefile system and the usage of
code macros to support fine-grained variability. The models used for comparison do contain
attributes that are very tightly related to the technology used in the Linux kernel. However,
there are several other systems using those very same technologies, such as aXTLs14 and
uClibc15, on which our prototype - and thus our approach - would be directly applicable.

14aXTLS: http://axtls.sourceforge.net/index.htm
15uClibc: https://uclibc.org/

http://axtls.sourceforge.net/index.htm
https://uclibc.org/
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As mentioned in earlier this section, the heuristics used to identify feature names and
usage in the different artefacts are based on development practices. For instance, in other
systems, it is unlikely to find that feature names are prefixed like as they are in the context of
the Linux kernel. Similarly, the association between features and file might not be achieved
using Makefile, and even in this case, they are other ways to do so without the usage of lists
as done in the kernel. The mechanisms used to implement variability in the system must
be known in order to be able to apply a FEVER-like approach to analyze feature evolution.
While they might differ wildy from system to system, we argue that such mechanisms exist
and should be documented. Therefore, it should be possible to adapt the FEVER approach
for any type of systems.

The amount of work required to do so will depend on what information is readily avail-
able (an explicit variability model for instance). If we consider another operating system
such as eCos16, one would need to rebuild the same change model from features described in
the CDL language17 instead of Kconfig. Concretely, this amounts to creating a CDL parser
capable to build the same EMF variability model representation used in this work to initiate
the comparison process. Attributes such as default value, select, or visibility would be rele-
vant, and the “select” attribute can simply be left empty. A similar effort would be necessary
to consider systems using the Gradle build system18, rather than the Make system. However,
the change model, based on an abstract representation of feature changes, should be suffi-
cient to describe the evolution of highly variable systems, regardless of the implementation
technology. Moreover, our work shows that model-based differencing is a suitable approach
to extract feature related changes from heterogeneous artefacts in large scale systems.

8.2 Threats to Validity: Co-evolution of Artefacts in the Linux Kernel

We now consider the threats to the validity of our study of co-evolution of artefacts in feature
evolution and authorship.

Internal validity As mentioned in the previous section, the author names used in this
experiment do contain aliases. A potential side effect is that more developers many in
practice perform changes to multiple spaces and this might not be reported in our results.
However, our manual analysis on a single release revealed that few names (less than 5%)
could be identified as aliases. A more in-depth study might identify more aliases, but the
manual analysis we did covered most name variations taken into account in studies focus-
ing on such problems (Kouters et al. 2012). The remaining variations were not considered
as they did not occur in our sample. Because the number of aliases we found was small, and
the percentage of developers not experiencing co-evolution is very high, we do not think
that the presence of aliases would lead to a very different conclusion.

As mentioned in the previous sections, the FEVER approach is not exact. As a result, we
can expect the actual co-evolution of artefacts and the ratio of developers dealing with co-
evolution challenges to be slightly different from what is reported in this paper. However,
our conclusions rely on significant trends observed over time (70% of features evolved only
through their implementation) and over a long period of time (15 releases). Therefor, we
argue that our conclusions hold despite the lack of exactness of the FEVER prototype.

16eCos: http://ecos.sourceware.org/
17CDL: http://ecos.sourceware.org/ecos/docs-3.0/cdl-guide/reference.html
18Gradle: https://gradle.org/

http://ecos.sourceware.org/
http://ecos.sourceware.org/ecos/docs-3.0/cdl-guide/reference.html
https://gradle.org/
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External validity The Linux kernel has been under development for more than two
decades. This system is mature and has a well defined development process. This is observ-
able in the regularity of our results over the studied time period. For less mature systems, one
could expect feature-oriented co-evolution of artefacts to be more prominent. This could be
confirmed by applying the FEVER approach to the first releases of the Linux development
or running a case-study on a newer system. Moreover, the ratio of co-evolution of artefacts
for evolving features or the ratio of developers dealing with co-evolution in other systems
may differ from what we observed in the Linux kernel. Nonetheless, we argue that our
results are representative of co-evolution for a long-lived highly variable system developed
by a large team (more than a thousand developers).

9 Related Work

Variability implementation in highly-configurable systems has been extensively studied in
the past (Thüm et al. 2014). Our approach relies on extraction and consolidation of variabil-
ity evolution across the different variability spaces. While many approaches can be found
to analyze features in each individual space, few focus on their detailed evolution or the
consolidation of such changes.

The evolution of variability models was studied in the past as a mean to obtain insights on
the evolution of the system as a whole (Lotufo et al. 2010), or manage the impact of changes
to the system’s capabilities (Heider et al. 2012; Dintzner et al. 2015b). In our previous
work (Dintzner et al. 2015a), we introduced FMDiff, an approach to extract feature model
changes, that inpsired us for the extraction of variability model changes.

To capture the evolution of features, we need to track the evolution of their mapping.
Studies focusing on co-evolution of artefacts (Passos et al. 2015; Neves et al. 2015) also
place the mapping as a central element in the description of feature evolution. As shown by
Adams et al. (2008) in the Linux kernel, the build system evolves: the size and complexity of
the build scripts increase over time, thus highlighting the relevance of build system evolution
in the overall evolution of such highly configurable system.

Several studies present methods to extract variability information from build systems
(Makefiles) (Dietrich et al. 2012a; Zhou et al. 2015; Nadi et al. 2014). Such approaches are
designed to study the current state of the system, and rely on a complete description of the
system. In this study, we took a different approach: FEVER focuses on changes performed
on individual changed files. We developed a custom Makefile parser allowing us to extract
information relying on modified artefacts only. Similarly to Nadi et al. (2014) and Dietrich
et al. (2012a) we rely on parsing rather than symbolic execution as was done by Zhou et al.
(2015).

Variability implementations using annotative methods in source files were also studied in
the past (Liebig et al. 2013), often for error detection (Kenner et al. 2010; Tartler et al. 2009;
Tartler et al. 2011). In this study, we used the approach presented in Liebig et al. (2010) to
identify code blocks and their conditions, and we then relied on this representation to build
a model of implementation assets.

The variability model of a system, the mapping between features and assets, and variabil-
ity support inside the implementation can all be supported by different technologies. In the
eCos environment,19 assets associated with features are directly included in the variability

19CDL Language: http://ecos.sourceware.org/docs-1.3.1/cdl/language.properties.html

http://ecos.sourceware.org/docs-1.3.1/cdl/language.properties.html
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modeling language (CDL) specification. The Puppet20 infrastructure offers a practical way
of decoupling configuration and implementation (Sharma et al. 2016). Variability support
at an implementation level can also be performed in a number of ways (Kästner and Apel
2008). The FEVER approach does not encompass of possible ways of supporting variabil-
ity in software system. However, this indicates that FEVER could be extended to be applied
to a wide range of systems.

Only few studies focused on the co-evolution of artefacts in all three variability spaces:
variability model (VM), mapping, and implementation. Neves et al. (2015) describe the core
elements involved in feature changes (VM, mapping, and assets). A collection of 23 co-
evolution patterns is presented by Passos et al. (2015). Each pattern describes a combination
of changes that occur in the three variability spaces. These papers aimed at identifying com-
mon change operations and relied on manual analysis of commits. The approach proposed
by Passos et al. relies on scripts to identify commits in which features in the Linux ker-
nel are added and removed, and retrieve related information such as information regarding
commits, name of the changed features, feature hierarchy, and the associated Linux release.
From this initial information, extensive manual work is necessary to analyze changes of each
type of artefacts, and their relationships. In comparison, the FEVER approach automatically
extracts feature-related information from Kconfig file changes but also performed feature-
related information extraction from other artefacts, such as Makefile and source files. While
such information was taken into account during the manual analysis performed in the context of
Passos et al. (2015), FEVER makes such information readily available. For instance, using
FEVER, one can know using the extracted if a feature-change in a Makefile is related to a
feature change in the Kconfig file.

Change consolidation across heterogeneous artefacts has been a long standing challenge.
For instance, Begel et al. proposed a large database aggregating code level information,
people, and work items (Begel et al. 2010). We take a different approach, and propose
to extract more detailed information focusing on implementation artefacts only. Recently,
Passos et al. created a database of feature addition and removal (Passos and Czarnecki 2014)
in the Linux kernel. We extend this work by extracting detailed changes on all commits and
provide such descriptions on all types of artefacts. The FEVER dataset is, to the best of
our knowledge, the first dataset providing a consolidated view of complex feature changes
across the variability, mapping, and implementation space.

10 Conclusion and Research Directions

In this paper, we presented FEVER, an approach to automatically extract and build a feature-
centered representation of changes in commits affecting the implementation of features in
highly variable software systems. FEVER retrieves commits from versioning systems and,
using model-based differencing, extracts detailed information on the changes, to finally
combine them into feature-oriented changes. We applied this approach to the Linux kernel
and used the constructed dataset to evaluate its accuracy in terms of complex change rep-
resentation. We showed that we were able to accurately extract and integrate changes from
various artefacts in 87.2% of the studied commits.

Our exploratory study of co-evolution in the Linux kernel showed that co-evolution of
artefacts during feature evolution does occur, but, over a single release, most features only

20Puppet : https://puppet.com/
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evolve through their implementation. A majority of developers focus only on the feature
implementation and, over the course of a release, only few modify variability spaces beyond
the implementation. We also found that, while co-evolution of artefacts occurs in every
release, they account for less than 22% of feature evolution scenarios, and only 11% of
authors will modify all variability spaces over the course of a release, but over time, 69,51%
of authors will only modify the implementation of features without affecting the variability
model or feature-asset mapping.

Through this work we make the following key contributions:

– a model-based approach to extract and consolidate feature changes across variability spaces
– an model of feature-oriented changes, focusing on the co-evolution of artefacts in

different variability spaces during feature evolution
– an evaluation of the FEVER prototype implementation, as well as a evaluation of the

improvement with respect to its previous installment
– a quantitative study describing the frequency of artefact co-evolution in the context of

feature changes from a feature perspective, and authorship perspective
– several examples demonstrating the potential usage and value of the data gathered by

such an approach for developers and researchers working on configurable software systems
– an implementation of FEVER as well as the full dataset, available for download21

There several ways in which the FEVER approach and its evaluation can be further
enhanced in the future. First, let us consider potential improvement regarding the approach
itself. At a variability model level, one could consider extracting semantic changes rather
than syntactic changes as suggested by the work of Rothberg et al. (2016). Efficient seman-
tic differencing on a variability model as large as the Linux kernel V.M. is a challenging task.
Moreover, given the potential size of a configuration of the Linux kernel, i.e., thousands of
features, one would have to consider how to present this information in a way that can be
useful to a human developer, making this an interesting research challenge. Regarding map-
ping changes, the current FEVER approach captures only change information contained
within changed Makefiles. A more precise approach would be to capture the exact presence
condition of assets, rather than the main features participating in that condition. Changes
in the presence conditions will require a computationally intensive process, and the output
might be difficult to interpret by a human. This is a direction we did not explore so far,
but would be valuable to obtain a more sound and complete view on co-evolution changes
in highly variable systems. On a source code level, FEVER does not consider file depen-
dencies. A change to an #include statement could be a sign of changes in the relationships
between features implemented within those files. Such changes are not necessarily repre-
sented in the mapping nor the variability model. A potential improvement of the FEVER
approach would consist in taking into account file dependencies, and identify the nature of
the symbols tying those files (functions, variable, type definitions, and so on).

To further evaluate the capabilities of the FEVER approach, we intend to apply FEVER
to other systems. Candidates for such work would be systems relying on different technolo-
gies for variability model description and feature-asset mappings. The improved FEVER
change meta-model and algorithm, as well as our observation on co-evolution open new
exciting research directions. The information captured by FEVER on changed features
could prove to be useful in the domain of test case selection for highly configurable sys-
tems. Combining the work of Vidacs et al. (2015) on test selection in highly configurable

21http://swerl.tudelft.nl/bin/view/NicolasDintzner/WebHome
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software based on configuration and code coverage, and the work on of Soetens et al. (2016)
on change-based test selection supported by FEVER data could lead to the discovery of
efficient new techniques to support testing in the context of highly variable software.
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Kenner A, Kästner C, Haase S, Leich T (2010) TypeChef: Toward type checking #ifdef variability in C.
In: Proceedings of the 2nd international workshop on feature-oriented software development, FOSD 10.
ACM, New York, pp 25–32

Kouters E, Vasilescu B, Serebrenik A, Brand MGJv (2012) Who’s who in Gnome: Using LSA to merge
software repository identities. In: 2012 28th IEEE international conference on software maintenance
(ICSM), pp 592–595
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Nadi S, Berger T, Kästner C, Czarnecki K (2014) Mining configuration constraints: static analyses and
empirical results. In: Proceedings of the 36th international conference on software engineering, ICSE’14.
ACM Press, New York, pp 140–151

Nadi S, Holt R (2012) Mining kbuild to detect variability anomalies in Linux. In: Proceedings of the 16th
European conference on software maintenance and reengineering, CSMR’12, pp 107–116

Neves L, Borba P, Alves V, Turnes L, Teixeira L, Sena D, Kulesza U (2015) Safe evolution templates for
software product lines. Journal of Systems and Software, Elsevier

Neves L, Teixeira L, Sena D, Alves V, Kulezsa U, Borba P (2011) Investigating the safe evolution of software
product lines. SIGPLAN Not 47(3):33–42

Passos L, Czarnecki K (2014) A dataset of feature additions and feature removals from the linux kernel. In:
Proceedings of the 11th working conference on mining software repositories, MSR 2014. ACM, New
York, pp 376–379

Passos L, Teixeira L, Dintzner N, Apel S, Wasowski A, Czarnecki K, Borba P, Guo J (2015) Coevolution
of variability models and related software artifacts. Empir Softw Eng 21:1–50. https://doi.org/10.1007/
s10664-015-9364-x

Rosenmüller M, Siegmund N, Schirmeier H, Sincero J, Apel S, Leich T, Spinczyk O, Saake G (2008) FAME-
DBMS: tailor-made data management solutions for embedded systems. In: Proceedings of the 2008
EDBT workshop on software engineering for tailor-made data management, SETMDM’08. ACM Press,
New York

https://doi.org/10.1007/s10664-015-9364-x
https://doi.org/10.1007/s10664-015-9364-x


Empir Software Eng (2018) 23:905–952 951

Rothberg V, Dintzner N, Ziegler A, Lohmann D (2016) Feature models in linux: from symbols to seman-
tics. In: Proceedings of the tenth international workshop on variability modelling of software-intensive
systems, VaMoS’16. ACM, New York, pp 65-72

Sampaio G, Borba P, Teixeira L (2016) Partially safe evolution of software product lines. In: Proceedings of
the 20th international systems and software product line conference (to appear). ACM, New York

Sharma T, Fragkoulis M, Spinellis D (2016) Does your configuration code smell? In: Proceedings of the 13th
international conference on mining software repositories, MSR’16. ACM, New York, pp 189–200
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