
Change Distilling: Tree Differencing for Fine-
Grained Source Code Change Extraction

Beat Fluri, Student Member, IEEE, Michael Würsch, Student Member, IEEE,

Martin Pinzger, Member, IEEE, and Harald C. Gall, Member, IEEE

Abstract—A key issue in software evolution analysis is the identification of particular changes that occur across several versions of a

program. We present change distilling, a tree differencing algorithm for fine-grained source code change extraction. For that, we have

improved the existing algorithm by Chawathe et al. for extracting changes in hierarchically structured data [8]. Our algorithm extracts

changes by finding both a match between the nodes of the compared two abstract syntax trees and a minimum edit script that can

transform one tree into the other given the computed matching. As a result, we can identify fine-grained change types between

program versions according to our taxonomy of source code changes. We evaluated our change distilling algorithm with a benchmark

that we developed, which consists of 1,064 manually classified changes in 219 revisions of eight methods from three different open

source projects. We achieved significant improvements in extracting types of source code changes: Our algorithm approximates the

minimum edit script 45 percent better than the original change extraction approach by Chawathe et al. We are able to find all occurring

changes and almost reach the minimum conforming edit script, that is, we reach a mean absolute percentage error of 34 percent,

compared to the 79 percent reached by the original algorithm. The paper describes both our change distilling algorithm and the results

of our evaluation.

Index Terms—Source code change extraction, tree-differencing algorithms, software repositories, software evolution analysis.

Ç

1 INTRODUCTION

SINCE Lehman’s Laws of Program Evolution from the
1980s [25], it has been well understood that software has

to be adapted to changing requirements and environments

or it becomes progressively less useful. Change is broadly
accepted as a crucial part of a software’s life cycle. As a

consequence, in recent years, several techniques and tools

have been developed to aid software engineers in main-

taining and evolving large complex software systems. For

instance, Ying et al. or Zimmermann et al. developed

approaches that guide programmers along related changes

by telling them “programmers who changed these functions

also changed. . . ” [45], [47]. The Hipikat tool of �Cubrani�c
et al. used project history information to provide recom-

mendations for a modification task [9]. Gall et al. detected

possible maintainability hot spots by analyzing cochange

relationships of modules [13].
We argue that such techniques and tools are valuable but

suffer from the low quality of information available for

changes. Typically, such information, in particular for source

code, is stored by versioning systems (for example, CVS or

Subversion). They keep track of changes by storing the text

lines added and/or deleted from a particular file. Structural

changes in the source code are not considered at all.

More sophisticated approaches are able to narrow down

changes to the method level, but fail in further qualifying

changes such as the addition of a method invocation in the

else branch of an if-statement. Furthermore, a classification

of changes according to their impact on other source code

entities is missing. In particular, the latter information is

important to improving the quality of software evolution

results and, as a consequence, to providing better support

for programmers and system analysts.

Since source code can be represented as abstract syntax

trees (ASTs), tree differencing can be used to extract

detailed change information. This approach is promising

because exact information on each entity and statement is

available in an AST. In our previous work [12], we built a

taxonomy of source code changes that defines source code

changes according to tree edit operations in the AST and

classifies each change type with a significance level. The level

expresses how strongly a change may impact other source

code entities and whether a change may be functionality

modifying or functionality preserving. In our taxonomy, we

focus on object-oriented programming languages (OOPLs)

and Java in particular. By adjusting the change type

extraction, the taxonomy can also be used for other OOPLs.

In total, our taxonomy defines 35 change types.

In this paper, we present change distilling, a tree-

differencing algorithm for fine-grained source code change

extraction. For that, we improved the existing algorithm for

extracting changes in hierarchically structured data by

Chawathe et al. [8]. This algorithm finds changes according

to basic tree edit operations such as insert, delete, move, or

update of tree nodes.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 11, NOVEMBER 2007 725

. The authors are with the Department of Informatics, University of Zurich,
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland.
E-mail: {fluri, wuersch, pinzger, gall}@ifi.uzh.ch.

Manuscript received 15 Jan. 2007; revised 13 July 2007; accepted 23 July
2007; published online 3 Aug. 2007.
Recommended for acceptance by H. Muller.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-0012-0107.
Digital Object Identifier no. 10.1109/TSE.2007.70731.

0098-5589/07/$25.00 � 2007 IEEE Published by the IEEE Computer Society

The contributions of this paper are twofold: 1) our

change distilling algorithm and 2) a benchmark to evaluate

source code change extraction algorithms.

Our change distilling algorithm uses the bigram string

similarity to match source code statements (such as method

invocations, condition statements, and so forth) and the

subtree similarity of Chawathe et al. to match source code

structures (such as if statements or loops). To further

improve the matching, we use a best match algorithm for all

leaf nodes and inner node similarity weighting. To over-

come mismatch propagation in small subtrees, we use

dynamic thresholds for subtree similarity.

The second contribution of this paper, the benchmark we

developed, consists of 1,064 manually classified changes in

219 revisions of eight methods from three different open

source projects to evaluate our change distilling algorithm.

Compared to the original change extraction algorithm by

Chawathe et al., we perform 45 percent better. We almost

reach the minimum conforming edit script, that is, we reach

a mean absolute percentage error of 34 percent. With this

knowledge about source code, changes in existing software

evolution analysis tools can be improved. For instance, the

Hatari tool rates the risk of changing a method according to

the frequency of method changes that caused a bug [33].

Detailed information about the changes is not taken into

account, for instance, whether a bug is caused by the

insertion of a method invocation statement or by the

insertion of a whole else-if-statement. With the information

obtained from CHANGEDISTILLER such a differentiation

would be possible: Hatari could inform software developers

which change types in which parts of the method body are

risky to apply.

The remainder of the paper is organized as follows: In

Section 2, we present the original algorithm by Chawathe

et al. and describe inadequacies concerning the extraction of

source code changes. Section 3 presents string and tree

similarity measures and our improved algorithm. We

discuss our implementation including the generation of

the tree representation in Section 4. In Section 5, the

benchmark and our results are described. Section 6 reviews

the related work. We conclude the paper in Section 7.

2 CHANGE EXTRACTION IN TREE-LIKE DATA

STRUCTURES

Since source code is represented in a tree-like data

structure, that is, in an AST, we can use tree differencing

algorithms to extract changes between two versions of a

Java class. We use basic tree edit operations to describe

changes applied to source code.

Our algorithm to extract changes is based on the work by

Chawathe et al. in [8]. We discuss the reasons why it is

adequate to build upon this algorithm in the related work

section (Section 6). In the following, we introduce the

terminology and outline their original algorithm, which

outputs an edit script of basic tree edit operations

transforming an original into a modified tree. Then, we

illustrate why the original algorithm is not adequate for

source code and discuss how we improved it to handle

source code changes.

2.1 Terminology

Speaking in terms of graph theory, a tree is a directed

acyclic graph consisting of nodes interconnected by edges

representing a parent-child relationship. According to the

notation used by Chawathe et al., a node n is the parent node

of a node m, n ¼ pðmÞ if m is a child of node n. Nodes along

the path to the top of the tree are called ancestors of m. In

return, m is called their descendant. The node in a tree that

has no parent is called the root node or root. Nodes that have

no children are called leaf nodes or leaves. Nodes in between

are inner nodes. Whenever the distinction between root, inner

node, and leaf does not add to our discussion, we will talk

about nodes in general. A node n has a label, lðnÞ, and a

value, vðnÞ. In our graphical tree representation, node labels

are put inside a node, for example, A, and node values left

or right beside the node, for example, “val.” Fig. 1 illustrates

this terminology with an example tree. Leaves in the tree

are noncompound statements, for example, method invoca-

tion or assignment. For all nodes, the label is the type of the

statement, for example, MI for a method invocation or IF for

an if-statement. The value of an inner node depends on its

label, for instance, the condition expression for if-state-

ments: “a < b.” For leaves, the value is the textual

representation of the statement, for example, the method

invocation statement “x.foo(arg);”.

Changes are detected between two trees T1 and T2. In

general, T1 denotes the original tree and T2 the modified tree.

2.2 Basic Algorithm

Our change detection relies on the algorithm presented in

[8]. Their algorithm detects changes in hierarchically

structured data represented in tree-like data structures. To

extract the changes, the algorithm splits the problem into

two tasks:

. Finding a “good” matching between the nodes of the

trees T1 and T2.
. Finding a minimum “conforming” edit script that

transforms T1 into T2, given the computed matching.

Finding a “good,” that is, correct and accurate, matching

between the nodes is crucial to the outcome of the edit script

task. The more nodes that can be matched, the better the

minimum conforming edit script.

726 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 11, NOVEMBER 2007

Fig. 1. A generic tree structure. The rightmost leaf shows how we

annotate labels and values of nodes.

We first outline the calculation of the edit script and then

describe the matching procedure in detail to highlight the

parts to be adapted for detecting changes in the source code.

2.2.1 Calculating an Edit Script

The matching set of node pairs is passed to the edit script

generation that runs through five phases. Each phase is

designed to detect one of the following basic tree edit

operations, also illustrated in Fig. 2:

. Insert. INSððl; vÞ; y; kÞ; insert a new leaf node with

label l and value v as the kth child of node y, for

example, in Fig. 2, H is inserted as a child of B0:

INSððH; 00 00Þ; B0; 2Þ.
. Delete. DELðxÞ; delete node x from its parent pðxÞ,

for example, in Fig. 2, G is deleted: DELðGÞ.
. Alignment. MOVðx; pðxÞ; kÞ; node x becomes the

kth child of pðxÞ, for example, in Fig. 2, F 0 becomes

the first child of its parent B0: MOVðD;B0; 3Þ.
. Move. MOVðx; y; kÞ; pðxÞ 6¼ y; node x becomes the

kth child of y and is deleted from pðxÞ, for example,

in Fig. 2, E is moved from B to C0: MOVðE;C0; 1Þ.
. Update. UPDðx; valÞ; update vðxÞ with val, that is,

val ¼ vnewðxÞ and voldðxÞ 6¼ vnewðxÞ, for example, in

Fig. 2, the value of B is updated: UPDðB; 00aV al00Þ.

2.2.2 Matching Procedure

The matching procedure finds an appropriate matching set

of pairs of nodes from T1 and T2. Chawathe et al. define two

fundamental matching criteria necessary for the algorithm

to produce a “good” matching set with which a minimum

conforming edit script is achieved.
Matching Criterion 1 (Leaves):

match1ðx; yÞ ¼
true if lðxÞ ¼ lðyÞ and

simðvðxÞ; vðyÞÞ � f
false otherwise:

8<
:

Leaves match if their labels are equal and their values (as

strings) are similar according to a given string similarity

measure, simðx; yÞ. The value f is the threshold for the

string similarity. Pretesting the labels for equality is

important to prevent the matching of different node types.

Matching Criterion 2 (Inner Nodes):

match2ðx; yÞ ¼
true if lðxÞ ¼ lðyÞ and

jcommonðx;yÞj
maxðjxj;jyjÞ � t

false otherwise;

8<
:

where jxj denotes the number of leaves contained by x.

The inner node matching does not use similarities for the

node values. Instead, it uses a measure of how many leaves

the subtrees have in common:

commonðx; yÞ ¼ fðw; zÞ 2Mjw is a leaf of x; and z is a leaf

of yg;where M is the set of matched node pairs:

The number of common leaves is put into proportion to the

maximum number of leaves in either subtrees. The value t

is the threshold for the inner node similarity. Matching

Criterion 2 puts a strong focus on the leaves and is therefore

good for LaTeX documents, where leaves (words or

sentences of natural language) cover most of the text

semantics.
Since the approach presented by Chawathe et al. is used

for detecting changes in hierarchically structured docu-

ments, they use an assumption to make a unique maximal

matching:

Assumption 1. For any leaf x 2 T1, there is at most one leaf

y 2 T2 such that simðvðxÞ; vðyÞÞ > 0.

The assumption that there is at most one leaf in the right

tree that can match a corresponding leaf in the left tree (and

vice versa) is a necessary precondition for the algorithm to

consequently produce an optimal matching and a minimal

conforming edit script. Even if the assumption fails,

Chawathe et al. apply a postprocessing step to improve

the solution. For source code comparisons, Assumption 1 is

one of the main reasons why the approach by Chawathe

et al. produces suboptimal results. In Section 2.3.3, we

discuss the assumption and the postprocessing step, as well

as the circumstances under which the postprocessing step is

insufficient for our concerns.

2.3 When Matching Fails

When applied to source code, the shortcomings of the basic

algorithm impact the matching set—in these cases, the

matching fails. However, failing does not mean that the

algorithm yields incorrect results, that is, leading to an edit

script that does not transform the original into the modified

tree correctly. The edit script is always correct, but, if the

matching is inadequate, the solution may not be minimal.
The quality of the sim-function and the associated

threshold f , introduced in the first matching criterion, are

crucial for an optimal matching on the leaf-level. When

Assumption 1 does not hold, a mismatch on the leaves can

be propagated to the inner nodes, leading to a mismatch on

higher levels. This can happen whenever a certain number

of children of an inner node violate Assumption 1; this is

particularly prominent for small subtrees. In the following,

we discuss issues concerning leaf-matching based on node

values and illustrate mismatch propagation.

FLURI ET AL.: CHANGE DISTILLING: TREE DIFFERENCING FOR FINE-GRAINED SOURCE CODE CHANGE EXTRACTION 727

Fig. 2. The five tree edit operations extracted by the edit script

generation algorithm by Chawathe et al. Nodes with the same letter are

intended to match (example: a matches A0). Node values have been

omitted unless they changed from T1 to T2.

2.3.1 Node Values

Matching leaves is based on two conditions: First, the leaves

have to be of the same kind, which we can verify by testing

their labels for equality. The second condition applies to the

values of the leaves and is evaluated using the function

introduced in Matching Criterion 1. In terms of the AST that

we use, values correspond to statements (or to the condition

in the case of an if-statement) that are strings. Consider the

two strings verticalDrawAction and drawVerticalAction,

which can be found, for example, in method invocation

statements. From a human’s point of view, we intuitively

see that they can be considered as an original and a

modified version of the same statement, especially when

they were found in the same context, that is, in subsequent

versions of the same method of a class.

Considering common string similarity measures, context

semantics are missing. As we observed in our case studies,

common renaming of identifiers during refactoring often

involves changing the word order. To allow these strings to

match, we have to lower the string similarity threshold, f ,

significantly, possibly resulting in false negatives in other

places.

2.3.2 Small Subtrees

A mismatch on a single leaf pair does not have a

noteworthy impact on the quality of the outcome of the

algorithm; we find additional insert and delete-operations

instead of update-operations in the edit script. However,

these mismatches can be propagated to higher levels of the

tree, leading to a complete mismatch of a whole subtree

and, therefore, to many unnecessary tree edit operations.
We discuss the propagation of mismatches using small

trees as an example: Between the code snippets in Figs. 3a

and 3b, a single statement was deleted and a new one was

inserted. The surrounding code did not change at all and

the threshold t of Matching Criterion 2 is set to 0.6.

Fig. 4 visualizes the same source code using an AST

representation. The node with label IF denotes an if-

statement. Its value corresponds to the if-condition. The

node with label THEN denotes the then-block. The node

with label MI denotes method invocation statements that

are listed as values.

For the matching, we traverse the trees bottom-up, that

is, in a depth-first manner from left to right. The leaves

representing the method invocation foo.getHuga(); in

T1 and T2 match according to Matching Criterion 1. They

are added to the matching set and marked as matched.

Although the labels of both right leaves are the same, the

values foo.doNothing(); and foo.bar(); cannot be

matched. We proceed to the next level in the tree and reach

the inner node representing the then-block in T1. Inner

nodes being matched in accordance with Matching Criter-

ion 2, we count the number of common leaf-descendants of

both nodes and divide them by the maximum number of

leaves in either trees, leading to the tree similarity of 0.5

and, therefore, to a mismatch of the two then-blocks:
jcommonðx;yÞj
maxðjxj;jyjÞ ¼ 1

2 ¼ 0:5.

We proceed to the root of the subtree, the if-statement,

which is not matched due to the inner node similarity of 0.5.

The final (mis)matchings are shown in Fig. 5.

Although the trees in Fig. 4 show a potential matching

set of three node pairs, the algorithm fails—only one node

can be matched using the matching criteria and a threshold

of 0.6.

2.3.3 When Assumption 1 Does Not Hold

Considering source code, similar statements can occur

frequently. For instance, statements that print out a

particular string on the console are commonly used for

debugging. In such cases, there is more than one matching

partner for a single node x 2 T1, leading to a violation of

Assumption 1.

Fig. 6 shows the consequences that a single statement

insert (Node 3) can have: There is more than one possible

counterpart in the right tree for Node 1, namely, Nodes 2

and 3. Since the tree is traversed in a bottom-up manner,

Nodes 1 and 3 are put into the matching set, whereas the

better match, that is, the pair of identical Nodes 1 and 2, is

not considered to match.

In T1, the root is the only node that remains. Due to the

simplicity of our example, we are able to catch mismatching

728 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 11, NOVEMBER 2007

Fig. 3. (a) The original if-statement; (b) The modified if-statement: The

method invocation foo.doNothing(); was replaced by foo.bar();.

Fig. 4. An example of two similar trees, T1 and T2, for which the

algorithm fails to calculate a minimal edit script.

Fig. 5. The whole subtree is considered as mismatched.

propagation on this third level: According to Matching

Criterion 2, the roots match because they have two common

leaves divided by a maximum of three leaves in T2, leading to

a similarity of 2
3 , which lies above threshold t ¼ 0:6. Even for

our trivial example, the algorithm found nine changes—eight

more than we expected. We expected the insert operation

INSððMI; 00printlnð00foobar00Þ; 00Þ; THEN; 2Þ, but the changes

found are as follows:

1. INSððIF; 00ða > bÞ00Þ;M BODY ; 1Þ,
2. INSððMI; 00printlnð00foo00Þ; 00Þ;M BODY ; 2Þ,
3. INSððTHEN; 00 00Þ; IF ; 1Þ,
4. INSððMI; 00foo:getHugaðÞ; 00Þ; THEN; 1Þ,
5. MOVððMI; 00printlnð00foo00Þ; 00Þ; THEN; 2Þ,
6. UPDððMI; 00printlnð00foo00Þ; 00Þ,

00printlnð00foobar00Þ; 00Þ.
7. DELððMI; 00foo:getHugaðÞ; 00ÞÞ,
8. DELððTHEN; 00 00ÞÞ, and
9. DELððIF; 00ða > bÞ00ÞÞ
In cases where Assumption 1 does not hold, a postproces-

sing step is applied. For each matching pair ðx; yÞ, where

x 2 T1 and y 2 T2, it is checked whether the matching partner

of a child node c of x is a child node of y. If not, it is checked

whether a child c0 of y can be found such that matchðc; c0Þ
holds. In this case, the old matching pair is replaced by ðc; c0Þ.
For further details, we refer to [8]. In the example above, the

postprocessing improves the matching set: For the matching

pair (Node A, Node B), we check whether the matching

partner of Node 1 is a child node of Node B. This is not the

case. Therefore, we search for an unmatched child c0 in

Node B so thatmatch1ðNode 1; c0Þ holds. Node 2 is such a c0 in

Node B. We replace the matching pair (Node 1, Node 3) with

(Node 1, Node 2). The expected node is matched, which

reduces the previous edit script by the changes 2, 5, and 6, but

adds INSððMI; 00printlnð00foobar00Þ; 00Þ; THEN; 2Þ.
There are a number of tree constellations in which the

postprocessing step does not improve the matching. In

Fig. 7, we show an example of such a constellation. Node 1

has been moved between T1 and T2 to a new position: It has

been moved two levels up and is represented by Node 2 in

T2. Postprocessing is not possible under these circum-

stances; the parent of Node 1 has no partner (correspond-

ing) node in T2.

During our research on source code taken from open

source projects such as ArgoUML,1 we encountered

mismatch propagations over two or three levels, for

example, in nested if-then-else and try-catch statements.

The levels of propagation seem to correlate with the nesting

depth of, for example, if-statements or loops and the

number of involved statements.

Despite their low frequency, these propagations can have

huge implications on the size of the edit script and the

classification of the occurred source code changes. In

Section 3, we present how we overcome these inadequacies

and customize the matching algorithm for detecting source

code changes.

In summary, the shortcomings of the original algorithm

for extracting source code changes are 1) inadequate

matching of node values, 2) using the first match instead

of finding the best match, and 3) the propagation of

mismatches in small subtrees. We have addressed these

shortcomings and, next, we present a solution to improve

the extraction of source code changes.

3 CHANGE DISTILLING ALGORITHM

We stated that the hierarchical change detection algorithm

by Chawathe et al. needs to be adapted to take source code

characteristics into account. In addition, we have discussed

the circumstances under which the assumptions made for

hierarchically structured text documents do not hold to

compute a minimal edit script transforming an original AST

into a modified AST (see Section 2.3). In this section, we

discuss which parts of Chawathe et al.’s matching algo-

rithm need to be customized for source code change

extraction. Based on the desired improvements, we describe

what measures and techniques overcome the inadequacy of

the matching criteria discussed in the previous section.

To meet the requirements of source code change

characteristics, we improve the original matching proce-

dure with the following steps:

1. Customize node value matching. Since leaf matching is

crucial to minimize the edit script, we aim at finding

an adequate string similarity measure to match

source code statements.

FLURI ET AL.: CHANGE DISTILLING: TREE DIFFERENCING FOR FINE-GRAINED SOURCE CODE CHANGE EXTRACTION 729

Fig. 7. A trivial example of two trees where the postprocessing step will

not be able to improve matching.

Fig. 6. Suboptimal results are very likely to occur whenever Assumption 1

does not hold.

1. http://argouml.tigris.org.

2. Customize inner node matching. We aim at finding a

tree similarity measure that flexibly matches the

inner nodes even if some unintended mismatches
occur on the leaf level.

3. Introduce best match. Chawathe et al.’s Assumption 1

does not apply to source code because, often,

multiple matching candidates for an original node

are found. To address multiple matches, we select

the leaf pair with the highest similarity.
4. Use dynamic thresholds for inner node matching.

Propagation of mismatches leads to an enormous

amount of unintended deletions and insertions. This

is especially prominent for small subtrees—inde-

pendent of the accuracy of the selected string
similarity measure. Thus, we aim at finding a

solution for matching small trees more adequately.

We proceed by developing similarity measures to reach the

desired improvements. In the following, we discuss existing

string and tree similarity measures that are adequate for

source code and introduce our change distilling algorithm.

3.1 Matching of Leaves

Mismatches at the leaf level have tremendous impact on the

size of the edit script. They can lead to mismatch

propagation to higher levels in the tree and, consequently,

to unnecessary node insert, delete, and move operations.

String similarity measures that are robust to detecting

common source code changes, as well as techniques to

reduce the amount of false first matches, are crucial to

overcome mismatch propagation.

We have evaluated string similarity measures provided

by SIMPACK, a generic Java library for similarities and

ontologies [5]. In this evaluation, two measures were shown

to be suitable for source code change extraction.

3.1.1 The Levenshtein String Similarity Measure

The Levenshtein Distance [26] denotes the minimum number

of operations needed to transform one string into the other.

These operations are 1) insert a character, 2) delete a character,

or 3) substitute a character. The algorithm is based on the

problem of the longest common subsequence. A larger distance

means that the strings are less similar, that is, that more

operations are necessary to transform one string into another,

whereas a distance of 0 operations denotes that the strings are

equal. The runtime-complexity is Oðn �mÞ, where n is the

number of characters in sa and m in sb.

For our concerns, distances are less useful than simila-

rities since we cannot state that a distance of 3 is generally

better than a distance of 4. It depends on the lengths of the

compared strings. To overcome this situation, we normalize

and convert the distance using a distance-to-similarity

conversion:

simLevðsa; sbÞ ¼ 1:0� Dðsa; sbÞ
Dworstcaseðsa; sbÞ

:

The denominator Dworstcase is equal to the maximum costs

experienced under the assumption that the longest common

subsequence of sa and sb has a length of 0, that is, that they

have no characters in common: Dworstcase ¼ maxðm;nÞ.
The Levenshtein Distance is susceptible to changes in

word or character order. Consider the strings s1 ¼
verticalDrawAction and s2 ¼ drawV erticalAction. If they

are found at the same position in two versions of a

source code entity, then it is very likely that someone has

performed a refactoring, for example, by unifying

identifier nomenclature. The Levenshtein Distance does

not recognize this similarity, as our example illustrates:

The longest common subsequence is “verticalAction.” The

remaining characters cause four insertions and four

deletions, that is, a total of eight change operations and

a distance of 8, respectively, leading to a string similarity

of simLevðs1; s2Þ ¼ 1� 8
18 � 0:56.

The Levenshtein Distance is inadequate in this case.

Since we noticed during prototyping that a lot of uninten-

tional mismatches on the leaf level were actually based on

the deficiencies of the string similarity measure, we were

eager to find an algorithm showing more robustness.

3.1.2 String Similarity Measures Using n-Grams

A family of string similarity measures is based on the Dice

Coefficient [11]—a modification of the Jaccard Coefficient [19].

Adamson and Boreham used the Dice Coefficient to rate the

similarity of strings by setting their n-grams into relation [1].

n-grams are bags and constructed by putting a sliding

window of length n over a string and extracting at each

position the n underlying characters. For instance, the

trigrams of the string “vertical” are

3-gramsðverticalÞ ¼ f00ver00; 00ert00; 00rti00; 00tic00; 00ica00; 00cal00g:

The n-gram similarity measure defined by Adamson and

Boreham is the ratio of twice the number of shared n-grams

and the total numbers of n-grams in two strings:

simngðsa; sbÞ ¼
2� jn-gramsðsaÞ \ n-gramsðsbÞj
jn-gramsðsaÞ [n-gramsðsbÞj

:

The Dice Coefficient with bi and trigrams is a popular

word similarity measure. In combination with source code,

bigrams have been used by Xing and Stroulia for their

UMLDiff approach [42] and trigrams by Weidl and Gall for

their CORET approach [38].

To illustrate the applicability of the n-gram similarity

measure for source code change detection, we calculate

the similarities for strings on which the Levensthein

measure fails. As before, the strings to use are s1 ¼
verticalDrawAction and s2 ¼ drawV erticalAction. The si-

milarities for bi, tri, and four-grams are

sim2gðs1; s2Þ ¼
2� 14

34
� 0:82;

sim3gðs1; s2Þ ¼
2� 12

32
� 0:75;

and sim4gðs1; s2Þ ¼ 2�10
30 � 0:67. Using a hash-table to store

the n-grams of both strings, the runtime complexity of the

730 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 11, NOVEMBER 2007

n-gram similarity measure is in OðnþmÞ—one order of

magnitude faster than Levenshtein.

The n-gram similarity measure is more robust to changes

to the word order since it does not rely on the longest

common subsequence. It primarily focuses on common

characters and secondarily on word order. Regarding

source code in general and source code identifiers in

particular, the measure allows a more intuitive similarity

scoring. During our experiments, the measure performed

worse than Levenshtein only under rare circumstances (rare

in conjunction with source code): It seems to be more

susceptible to substitutions, including misspellings due to

phonetic reasons that are common in natural language but

not so in source code. The strings Levenshtein and

Levnshtain, for example, score with a similarity � 0:72 when

Levenshtein is used, but with only 0.5 when bigrams are

used. Furthermore, the measure is limited to strings of a

certain maximum length since the given number of

different characters is finite. As a string gets longer, it will

become more likely that most permutations between

characters are covered. The number of character pairs in

the intersection will therefore increase, leading to an

imprecise similarity. However, we were not yet able to

prove this expectation experimentally, but, instead, we

were able to confirm the effectiveness of the n-gram

similarity measure to the source code on the statement-

level in our evaluation (see Section 5).

3.2 Similarity Rating for Best Match

As we have discussed in Section 2.3.3, Assumption 1 does

not hold for source code represented in an AST. The

postprocessing step proposed by Chawathe et al. does not

succeed either. Consequently, a first match cannot become a

best match using Assumption 1 and the postprocessing step.

In general, a first match that is not the best match is

formalized as follows:

Let x be a leaf in T1 and y be its matching partner in T2.

Furthermore, let z be another leaf in T2 and f be the

threshold, so that

simðvðxÞ; vðyÞÞ � f and simðvðxÞ; vðzÞÞ � f but

simðvðxÞ; vðyÞÞ > simðvðxÞ; vðzÞÞ:

Whenever z will be visited before y during postorder

traversal, a suboptimal matching will be calculated.

Accordingly, we can derive a solution for that: Let x be a

leaf in T1. Furthermore, let mpi be its ith possible matching

partner in T2, such that i 2 N and

simðvðxÞ; vðmpiÞÞ � f:

We mark ðx;mpiÞ as best match until we find another

possible partner mpiþ� such that � 2 N and

simðvðxÞ; vðmpiþ�ÞÞ > simðvðxÞ; vðmpiÞÞ:

In this case, we mark ðx; piþ�Þ as a best match. We repeat until

we have tried to match all possible partners in T2 to x.

The solution involves finding the matching partner y 2 T2

that matches x 2 T1 best. There are combinations of state-

ments so that x in T1 has more than one possible partner, for

example, when one and the same statement can be found over

and over again in a block of code (for example, print outs for

debugging). In this case, we apply the heuristics that

unchanged statements stay in situ between subsequent

versions of a source code entity: The first “best” match, that

is, the matching pair with the highest similarity score that has

been visited during postorder traversal first, will make it into

the final matching set.

So far, we have developed an approach for finding the

best partner y 2 T2 for leaf x 2 T1. However, this relation-

ship is not always a two-way optimum, that is, x is not

always the best partner for y. We can overcome this by

calculating the similarity of each leaf pair ðxi; yjÞ 2 T1 � T2

and add those pairs to the final matching set that show

highest similarity.

3.3 Matching of Inner Nodes

Leaf matching propagates to inner nodes as similarity on

inner nodes is calculated by the number of matching leaves.

A measure for inner nodes that takes leaf matching into

account and is robust to potential mismatches or small

subtrees is important for a maximal matching set. Chawathe

et al. presented a simple but adequate tree similarity

measure for inner nodes (Matching Criterion 2). In this

section, we discuss the suitability of this measure and other

measures in terms of source code characteristics and small

subtrees.

3.3.1 Tree Similarity Used by Chawathe et al.

The tree similarity measure used by Chawathe et al.

(Matching Criterion 2) takes only descending leaves into

account when deciding whether two nodes should match.

Inner node descendants are ignored completely. This is an

adequate approach for similarity analysis of structured text

documents such as those that are written in LaTeX, where

the inner nodes are used for structuring means and do not

hold any semantics. For source code, inner nodes are more

important since some of them cover fundamental con-

structs, such as iterations and alternatives or exception

handling.

Since, for instance, an else-block may contain an if-

statement, matching between descendants can occur. Dur-

ing our studies, it happened that an else-block matched

with a descendant else-block. This matching resulted in a

nonapplicable move operation since a parent node cannot

become a child node of one of its descendants. To overcome

such situations, we added the check that the string

similarity of the value of inner nodes must also satisfy the

threshold t. Whenever a node does not have its own value,

it inherits that of its parent to emphasize their affiliation.

3.3.2 Dice Coefficient for Inner Nodes

By using the Dice Coefficient, we get a measure taking inner

nodes into account. In conjunction with code clone

detection, Baxter et al. used the Dice Coefficient to calculate

FLURI ET AL.: CHANGE DISTILLING: TREE DIFFERENCING FOR FINE-GRAINED SOURCE CODE CHANGE EXTRACTION 731

the similarity of two ASTs [4]. For our purpose, we apply

the same measure to inner nodes:

simDiceðTa; TbÞ ¼
2� jnodesðTaÞ \ nodesðTbÞj
jnodesðTaÞ [nodesðTbÞj

;

where nodesðTxÞ denotes all nodes of Tx, including the root.

Taking inner nodes of the subtrees into account does not

impact the value of the similarity measure because the

matching of leaves propagates to inner nodes. A more

important aspect of the Dice Coefficient is that common

nodes of Ta and Tb are weighted more than mismatches.

When two trees share most of their nodes, but Tb differs in

structure from Ta by a few changes, the Dice Coefficient is

more robust than the measure used by Chawathe et al.

Overall, our evaluation showed that the algorithm by

Chawathe et al. including inner node similarity weighting

and dynamic threshold (see the next sections) performs

better than the Dice Coefficient.

3.3.3 Inner Node Similarity Weighting

According to our adapted Matching Criterion 2, the

similarity of inner node values and the similarity of their

subtrees influence the similarity for inner nodes likewise.

Therefore, two inner nodes do not match either because

their node values mismatch or they have too few leaves in

common. Regarding if-statements or loops, a value, that is,

condition expression, mismatch may cause a tremendous

amount of unnecessary changes. We overcome this situa-

tion by weighting the common leaves function more than

the similarity of values between inner nodes.

3.3.4 Inhibiting Propagation of Mismatches in Small

Subtrees

The similarity measures for strings and for trees introduced

in the previous sections reduce mismatching of single nodes

but do not reduce them for small subtrees. Consider the

code snippets in Fig. 8. According to Matching Criterion 2,

the similarity between the two then-blocks of the if-

statements is 0.5 (one shared node, two leaves), causing a

mismatch of the then-blocks and the if-statements.
To weaken the high impact that small changes can have on

small subtrees, we dynamically lower thresholds for small

subtrees; dynamically, meaning in regard to the size of the

subtrees under investigation. We experienced adequate

matching results for t ¼ 0:6 if n > 4 and t ¼ 0:4 if n � 4,

where n is the number of leaf descendants of the inner node.

Lowering thresholds for all inner nodes, no matter how

many leaf descendants they count, injects undesired behavior

into the algorithm: The amount of similar inner nodes

increases by lowering the threshold leading to false matches.

3.4 Our Matching Algorithm Used for Change
Distilling

In this section, we present our improved tree-differencing

algorithm suitable to extract changes in source code. To

recall, our improvements are

1. using bigrams as a robust string similarity measure

that is able to cover common changes of source code

identifiers,
2. adding a similarity check of node values to

Chawathe et al.’s tree similarity measure to solve

the problem of descendant subtree matching,
3. using inner node similarity weighting to reduce

inadequate mismatches of condition expressions,
4. introducing the best match algorithm to reduce the

impact of Chawathe et al.’s Assumption 1, and
5. using dynamic thresholds to reduce the propagation

of mismatches in small subtrees.

We evaluated combinations of the discussed string and

tree similarity measures as well as best match, dynamic

threshold, and inner node similarity weighting with our

benchmark (see Section 5 for a detailed discussion). The

following combination of measures and techniques per-

formed best for extracting source code changes:

. For Matching Criterion 1 (Leaves), we use the

bigram string similarity measure:

match1ðx; yÞ ¼
true if lðxÞ ¼ lðyÞ^

sim2gðvðxÞ; vðyÞÞ � f
false otherwise;

8<
:

where f ¼ 0:6.
. In addition to Matching Criterion 1, we take the best

match for a leaf x instead of the first match.
. Matching Criterion 2 (Inner nodes) is extended by

the check as to whether the values of the inner nodes

are similar:

match2ðx; yÞ ¼

true if lðxÞ ¼ lðyÞ ^
jcommonðx;yÞj
maxðjxj;jyjÞ � t ^
sim2gðvðxÞ; vðyÞÞ � f

false otherwise;

8>><
>>:

where f ¼ 0:6 and t ¼ 0:6.
. We add the inner node similarity weighting: If the

string similarity of inner node values, for example,

the condition of an if-statement, is less than the

threshold f , but jcommonðx;yÞjmaxðjxj;jyjÞ � 0:8 holds, match2ðx; yÞ
is true.

. The threshold for the inner node similarity measure

is adjusted dynamically for small subtrees:

n � 4! t ¼ 0:4.

732 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 11, NOVEMBER 2007

Fig. 8. (a) A small if-statement. (b) A logging statement has been added.

The final algorithm is presented in Fig. 9. The inputs to
the algorithm are two labeled and valued trees, T1 and T2.
The algorithm first calculates a complete matching of all
leaves (Lines 5-9). The leaf pairs are sorted (Line 10)
according to their similarity and the best matches are added
to the final matching set (Lines 11-15). At the end, the inner
nodes are matched using dynamic thresholds (Lines 17-22).
The output of the algorithm is a set of matching node pairs
that is used by the edit script algorithm to compute the tree
edit operations.

The runtime analysis of the matching algorithm by

Chawathe et al. has to be extended by the additional

computation steps. Assume n ¼ maxðjT1j; jT2jÞ, where jT j is

the number of leaves. The cost to compare two leaves is

denoted by c. The matching of all leaves is in Oðn2cÞ, that is,

Oðn2Þ, since we have to compare each possible leaf pair.

Sorting the generated Oðn2Þ matching pairs is in

Oðn2 logn2Þ. For each pair that is added to Mfinal, the whole

Mtmp has to be traversed at most once to remove all

corresponding leaf pairs. Thus, building Mfinal for the leaves

is proportional to n2ð1þ cþ logn2Þ. The runtime complex-

ity of inner node matching can be derived from the original

work by Chawathe et al.: The number of inner nodes in T1

and T2 is denoted by m. Matching Criterion 2 can be

computed for all inner nodes in OðmnÞ (we refer to [8] for

more details). In addition, the value comparison of the inner

nodes is in OðmcÞ. The overall runtime of inner node

matching is Oðmðcþ nÞÞ. In summary, the total time of the

matching algorithm is proportional to

n2ðcþ 1þ logn2Þ þmðcþ nÞ:

Compared to the original algorithm by Chawathe et al., our

runtime is Oðlogn2Þ slower. We describe in Section 4 how

we mitigate the impact of this additional factor to optimize

the runtime performance of our change distilling algorithm.

4 IMPLEMENTATION

We built the Eclipse plugin CHANGEDISTILLER that

implements our change distilling algorithm. Our current

implementation relies on the CVS capabilities, Java Devel-

opment Tools (JDT),2 and compare functionality of Eclipse.

The extracted source code changes are stored in a

Hibernate3 mapped database.

We have automated the process of change distilling

within Eclipse. Starting with an Eclipse project, CHANGE

DISTILLER is able to extract changes from the version chain

of a single class, packages, or a whole project.

4.1 Fine-Grained Change Extraction Process

Fig. 10 depicts the change extraction process of CHANGE

DISTILLER. From a project under CVS control, revisions of

Java classes are checked out using the CVS capabilities of

Eclipse. For two subsequent revisions of a Java class, we use

the compare plug-in to extract the methods and attributes that

have changed. This prefiltering step leads to smaller trees for

comparison. Assume a class has about 1,000 lines of code, but

only a single method with 20 lines of code has changed. Using

the compare plug-in4 reduces the input to our change

distilling algorithm significantly. Recalling the runtime

complexity of the matching algorithm, this is a considerable

performance gain as the input trees are kept small.

For both versions of a changed method or attribute,

intermediate ASTs are created using the AST visitor from

JDT. Creating intermediate trees is necessary since the

matching algorithm expects labeled and valued nodes as

well as a uniquely defined parent-child relationship

between hierarchically situated nodes. This expectation is

not covered by ASTs created by JDT. For instance, an if-

statement may have two children—a then and an else-block.

Depending on the AST implementation, the access from the

if-statement (parent) to the two blocks (children) is not

available through “getChildren” but through “getThen

Block” and “getElseBlock.” Leaves in the intermediate

AST are normal statements with the statement kind as

label and the statement itself as value. For instance, the leaf

of statement foo.bar(); has the label MI and the value

“foo.bar();”.

The intermediate ASTs T1 and T2 are then fed into our

change distilling algorithm. The algorithm can be config-

ured with different string and tree similarity algorithms and

thresholds, as described in Section 3. The output is a set of

basic tree edit operations that are classified to change types

and stored into the Hibernate mapped database.

FLURI ET AL.: CHANGE DISTILLING: TREE DIFFERENCING FOR FINE-GRAINED SOURCE CODE CHANGE EXTRACTION 733

Fig. 9. Our matching algorithm used for change distilling.

2. http://www.eclipse.org/jdt.
3. http://www.hibernate.org.
4. The complexity of the compare plug-in is in Oðn2Þ, where n is the

number of members of a Java class.

4.2 Classifying Tree Edit Operations

In [12], we have assigned basic tree edit operations to

change types. For instance, the tree edit operation for

Statement Ordering Change is MOVðs; pðsÞ; kÞ, meaning that

the statement s is moved to position k in the children of its

parent pðsÞ.
Sometimes, we can infer that an update took place even

if the similarity between the two strings under comparison

is too low. Consider the methods foo(Object myParam)

in revision n� 1 and foo(Figure myParam) in revision n.

A parameter type change from “Object” to “Figure”

happened, but the similarity of the two strings “Object”

and “Figure” is below the threshold f ¼ 0:6 and, hence, is

not matched. Therefore, by classifying the tree edit

operation without further check, a new parameter would

be inserted and an old one would be deleted. Since the

parameter name did not change, the classifier is able to

classify the two operations as a Parameter Type Change by

checking whether the parents of “Object” and “Figure” are

equal.

5 EVALUATION

In Section 3.4, we have described our change distilling

algorithm. To investigate the quality of our improvements,

we developed an extensive benchmark. The benchmark

consists of a set of special test cases and of a large data set of

manually classified changes. The data set is taken from

three different open source case studies: ArgoUML,5

Azureus,6 and JDT.7 With the benchmark, we show that

our improvements approximate the minimum conforming

edit script more closely than Chawathe et al.’s change

detection algorithm. Although the CHANGEDISTILLER is

able to detect changes on the class level as well, our

benchmark focuses on changes on the method level. Since

our major interest lies in the tree-differencing part of our

algorithm, changes on the method level are sufficient—they

cover all tree structures that may occur in an AST.

5.1 Preliminaries

The final step of CHANGEDISTILLER is to analyze, consoli-

date, and classify the tree edit operations into change types

[12]. Change types are the most suitable data set for

benchmarking our change distilling algorithm because they

are an adequate measure for the quality of our algorithm and

straightforward to implement and validate manually.

Change types represent the kind of changes that a human

will intuitively find when she compares two subsequent

versions of a Java method. For example, she will recognize

that a method invocation has been inserted into a method rather

than thinking of the corresponding tree edit operation.

Taking two versions ðn� 1; nÞ of a Java method, we

count the occurrences of each particular change type

manually. We, then, run the CHANGEDISTILLER on the

same pair of versions. For each version pair ðn� 1; nÞ and

each change type t, we calculate the mean absolute error �t
and the mean absolute percentage error �t:

�t ¼
1

k

Xk
i¼1

jxiðtÞ � ~xiðtÞj; �t ¼
1

k

Xk
i¼1

xiðtÞ � ~xiðtÞ
xiðtÞ

����
����;

where xiðtÞ is the expected number of occurrences of

change type t, ~xiðtÞ is the found number of occurrences of

change type t, and k is the number of version pairs in which

t was expected or found. The smaller the difference between

the number of change types classified manually and found

by CHANGEDISTILLER, the smaller the error and the better

we consider the performance of our algorithm.
For each version pair ðn� 1; nÞ, we calculate the mean

absolute error � and the mean absolute percentage error �

for the edit script:

� ¼ 1

m

Xm
i¼1

jxi � ~xij; � ¼ 1

m

Xm
i¼1

xi � ~xi
xi

����
����;

where xi is the expected length of the edit script, ~xi is the

found length of the edit script, and m is the number of

version pairs.

Before applying these measures to our change distilling

algorithm, we have to discuss one shortcoming in terms of

counting change types for the benchmark: We cannot

734 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 11, NOVEMBER 2007

Fig. 10. Fine-grained change extraction process.

5. http://www.argouml.org.
6. http://azureus.sourceforge.net.
7. http://www.eclipse.org/jdt.

evaluate exactly where the change occurred since we do not

store its exact location in the benchmark, but rather in

which version and method it was found. This means that

we can tell that, for example, two statement inserts were

found in the method foo() between Versions 1.11 and 1.12,

but not whether the statements were, for example, inserted

into a particular then-block or somewhere else. Performing

a manual qualitative analysis on the whole data set instead

of restricting ourselves to a quantitative evaluation is barely

feasible; we would have to determine the exact location in

the AST for each change by hand to compare it to the output

of our algorithm. For a sufficiently large set of changes, this

is too time consuming and error prone.

To show that counting the occurrence of change types is

sufficient nonetheless, we performed a qualitative evalua-

tion on a randomly selected sample of the data in our

benchmark. For this, we have calculated precision and

recall as follows:

Precision ¼ # relevant changes found

changes found
;

Recall ¼ # relevant changes found

changes expected
:

The selected sample contains 13 pairs of Java method

versions comprised of 120 expected changes. We compared

each of the 151 changes found by CHANGEDISTILLER with

the expected changes manually and obtained a precision of
118
151 ¼ 0:78 and a recall of 118

120 ¼ 0:98. Furthermore, we

observed that the found edit scripts always transform the

old into the new version of the Java methods correctly.

Consequently, a recall < 1:0 denotes that our algorithm

found changes that replace the ones that we expected. For

instance, the method invocation mParameter.set

Kind(MParameterDirectionKind.IN)
8 was updated

with ModelFacade.setKindToIn(mParameter), but

CHANGEDISTILLER found a corresponding statement delete

and statement insert instead. A precision < 1:0 denotes that

our algorithm found a nonminimal conforming edit script

with virtual changes, that is, pairs of changes in the same

edit script, of which the second reverts the first one and vice

versa. Consider the example of source code in Fig. 11, taken

from our benchmark. For this, we manually classified four

statement inserts (one if-statement insert and three method

invocations). For this particular case, our change distilling

algorithm extracts five statement inserts, one statement

delete, and two statement parent changes, leading to an

absolute error � of 4 and a percentage error � of 50 percent of

the length of the edit script. Since the topmost if-statements

(Line 1) share only two out of five leaves (Lines 2 and 3 in

(a) with Lines 2 and 8 in (b)), Matching Criterion 2 is not

satisfied, that is, they do not match. Therefore, the edit

script contains the insert and delete operations of the

topmost if-statement and move operations of the first and

the last statement from the deleted to the reinserted if-

statement. Applying these four changes does not transform

the source code, but leads to a nonminimal conforming edit

script.
Regarding the high recall, we claim that our algorithm at

least finds the changes we expect. However, in certain

cases, it finds a conforming edit script that is not minimal. If

it finds fewer than expected changes, such as statement

updates, a set of corresponding changes is found instead

(for example, in case of statement update: statement insert

and delete).

With our benchmark, we show that the output of our

change distilling algorithm approximates the minimum

conforming edit script more closely than Chawathe et al.’s

algorithm. Therefore, we only benchmark with the error

measures.

5.2 Our Benchmark for Change Distilling

For the benchmark, we use a combination of dedicated test

cases and data from three different case studies. We discuss

how we have chosen the data and what preparation steps

they have undergone.

5.2.1 Test Cases

The test cases serve as a validation for our improvements.

We focused on testing string similarity measures, matching

of small subtrees, and special issues on ordering changes.

Test cases that failed with the original algorithm had to pass

with the customized algorithm. For that, we have hard

coded exact tree edit operations and their classification

between two source code version of one class. For an in-

depth discussion of these test cases, we refer to [40].

FLURI ET AL.: CHANGE DISTILLING: TREE DIFFERENCING FOR FINE-GRAINED SOURCE CODE CHANGE EXTRACTION 735

Fig. 11. (a) The original if-statement. (b) The modified if-statement of

method acceptSourceMethod(..) of class jdt.internal.core.
SelectionRequestor.

8. This is in method addOperationð. . .Þ in the class org.argouml.uml.
reveng.java.Modeller between Revision 1.45 and 1.46.

5.2.2 Collecting Changes from Existing Software

Special test cases are well suited to investigating specific or

theoretical issues. They are insufficient for claiming

whether an approach applies to real-world problems or

not. Therefore, we decided to integrate data from the open

source projects ArgoUML (� 1; 500 classes, � 272 kLOC),

Azureus (� 2; 300 classes, � 432 kLOC), and JDT of Eclipse

(� 1; 100 classes, � 388 kLOC). Choosing representative test

data among the approximately 4,900 classes was a

challenge. We fed the projects into CHANGEDISTILLER

with the original change extraction configuration and

applied the following criteria to find appropriate Java

classes:

. A lot of changes over time, few changes between

revisions. We preferred classes that have 100 to

200 revisions and contain methods that show 10 to

20 changes per revision.
. Method size. We have chosen methods with 50 to

500 lines of code.
. Nesting. Methods that have nested if and loop-

statements are most interesting in terms of the small-
subtree-problem.

. Diversity of changes. We preferred classes with
different change types since we want to benchmark

our algorithm in a broad variety of source code

structures.

According to the above criteria, we located eight

candidate methods in total—each one in a different

class—that we integrated into our benchmark. We per-

formed a checkout of every revision in which the selected

methods experienced changes. Preparation of the classes

was done by deleting all fields and methods except the

chosen ones. During manual inspection, we finally classi-

fied 1,064 changes in a total of 219 revisions. To reduce

evaluator bias, two of the authors of this paper classified the

changes independently and consolidated their findings.

5.3 Results and Discussion

In Section 3, we claimed that our algorithm is better suited

to source code changes than the original algorithm by

Chawathe et al. In this section, we present and discuss

selected comparisons between different configurations of

our change distilling algorithm, that is, we show how the

different configurations perform against each other. We

benchmark different combinations of the following:

. The original first match algorithm for leaves or our

best match algorithm.
. Either the tree similarity measure suggested by

Chawathe et al. or the Dice Coefficient is used for

inner node comparisons.
. We dynamically lower the threshold t for inner

nodes to 0.4 whenever the left and the right tree

roots have four or fewer descendants.
. We either turn on or off inner node similarity

weighting.

. We use either the Levenshtein or the n-grams

similarity measures to match node values.

For the string similarity measures, we use f as the

threshold variable and t as the inner node similarity

threshold.

5.3.1 Benchmarking

We have conducted four runs with different configurations:

(a) Chawathe et al.’s original algorithm, Levenshtein as

string similarity measure, f ¼ 0:7 and t ¼ 0:6,
dynamic thresholds as well as inner node similarity

weighting disabled.
(b) Chawathe et al.’s original algorithm, bigrams as

string similarity measure, f ¼ 0:6 and t ¼ 0:6,

dynamic thresholds as well as node similarity

weighting disabled.
(c) Our best match, bigrams as string similarity mea-

sure, f ¼ 0:6 and t ¼ 0:6, dynamic thresholds as well

as inner node similarity weighting disabled.
(d) Our best match, bigrams as string similarity mea-

sure, f ¼ 0:6 and t ¼ 0:6, dynamic thresholds as well

as inner node similarity weighting enabled.

The minimum conforming edit script is comprised of

1,064 changes and the smaller the mean absolute error � and

the mean absolute percentage error � are, the better the

performance of the algorithm. Table 1 depicts the results

from Runs (a), (b), (c), and (d) in the respective columns.

Additionally, we provide more detailed tables for each run,

including root mean squared absolute error and root mean

squared percentage error in the Appendix.

Run (a). In the first run, we found fewer statement updates

and condition expression changes than expected with a mean

absolute error � of 0.96 and 1.02 between each pair of

versions. In other words, the algorithm has missed, on

average, approximately one statement update and condi-

tion expression change per pair of versions. As indicated by

the � values of statement inserts and deletes, the missed

statement update and condition expression change are

replaced by a pair of statement inserts and deletes. The

accuracy of finding statement updates depends on the

accuracy of the string similarity measure. The fewer

statement updates, the more statement inserts and deletes are

found. Besides the string similarity measure, the accuracy of

finding condition expression changes relies on the matching of

inner nodes. Two if-statements match if their conditions

(that is, values) match and if the inner node similarity

satisfies the threshold t. Thus, matching small trees has an

impact on condition expression changes. A mismatch leads

to deletes of if-statements and alternative parts with

additional insert and ordering/parent changes. On the

other hand, when their conditions do not match but their

subtrees do, a mismatch occurs as well. The original

algorithm is not able to match nodes accurately, leading

to a mean absolute percentage error � of 0.79 with

additional 3.27 changes per version pair, as depicted in

Column (a).

736 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 11, NOVEMBER 2007

Run (b). While evaluating the results of the initial run, we

found that the outcome mainly relies on the string similarity

measure and on the chosen threshold. We therefore lowered

the threshold to f ¼ 0:6 and used bigrams as the string

similarity measure instead of Levenshtein. Column (b) in

Table 1 illustrates that the number of statement updates

increased tremendously compared to the number of

condition expression changes—it even exceeded the ex-

pected number of statement updates. The reason for this

increase is the flexibility of the bigram similarity measure,

leading to statement updates instead of inserts and deletes.

Configuration (b) reduced the overall � from 3.27 to 2.91.

This decreased the � by 7 percent down to 72 percent.

Run (c). To further improve the result, in particular to

reduce the number of statement updates, we used our best

match algorithm with bigrams. Column (c) in Table 1 shows

the corresponding results. Using the best match algorithm

reduces the number of statement updates and increases the

condition expression changes. The advantage of the best

match is that it is less likely that correct statement inserts/

deletes are replaced by updates because better matches are

taken for the matching set. Using the best match improved

the output of the algorithm significantly. We achieved a � of

52 percent; thus, we further reduced the � by 0.71 to 2.2.

Run (d). The results of the last and most influencing

improvement, that is, our matching algorithm, are shown in

Column (d) in Table 1. In particular, the inner node similarity

weighting and dynamic threshold increased the number of

condition expression changes. The number of statement

inserts, deletes, and ordering changes as well as the

alternative part inserts and deletes were reduced. The

reason for the decrease in those changes was that more

if-statements matched and, therefore, fewer statements

were moved to a new if-statement.

Using the dynamic thresholds, we are able to get rid of

the mismatch propagation in small subtrees. This led to an

improvement in the overall � by 8 percent. Enabling the

weighting of the inner node similarity derived a further

decrease of the � by 10 percent.

Concerning the runtime, we observed a decrease

between Runs (a) and (b) as well as an increase between

(b) and (c) or (d). The Levenshtein similarity measure used

in Run (a) is an order of magnitude slower than the bigram

similarity measure used in Run (b). The best match

algorithm used in Runs (c) and (d) is slower than the first

match used in Run (a).

Our change distilling, in particular the configuration we

used in Run (d), reduced the mean absolute percentage

error � by 45 percent from 79 percent to 34 percent

compared to the original algorithm. The number of

additional changes found was reduced by 2.08 from 3.27

to 1.64 per pair of versions.

5.3.2 Further Benchmark Runs

We performed further benchmarking using the Dice

Coefficient and other n-grams. We do not discuss these

results in detail as they were not as promising as our

configuration used in Run (d), but summarize them briefly:

Using tri or four-grams instead of bigrams resulted in a � of

38 percent and 40 percent. Since tri and four-grams are less

flexible than bigrams, fewer statement updates occurred.

The Dice Coefficient for inner node matching combined

with the various configurations resulted in a minimum � of

FLURI ET AL.: CHANGE DISTILLING: TREE DIFFERENCING FOR FINE-GRAINED SOURCE CODE CHANGE EXTRACTION 737

TABLE 1
Benchmark Results of the Four Runs (a)-(d) Including the Runtime Performance in Seconds, � and �

per Change Type and Edit Script for Each Configuration

43 percent, which is lower than the one that was achieved

with the inner node similarity of Chawathe et al.

5.4 Limitations

Coming back to the results in Table 1, our algorithm is still

limited in finding the appropriate number of move

operations. In particular, the performances of parameter

ordering changes and statement ordering changes are modest.

After an in-depth inspection of the benchmark results, we

found that the method acceptSourceMethodð. . .Þ9 was

responsible for these outliers. Removing this method from

the benchmark yielded a � of 30 percent; this is a further

improvement of 4 percent. The number of parameter

changes was decreased to one and all declaration changes

were extracted correctly.

Concerning body changes, the main reason for the few

additional errors was also due to this method because it

mainly consists of small nested if and loop-statements.

Although we used our dynamic threshold approach, these

small blocks were not matched because 1) the node

similarities of those blocks fall below 0.4 and 2) the depths

of their subtrees are mostly bigger than 4.

Furthermore, the best match approach may match

reoccurring statements that are not at the same position in

the method body. For instance, consider that the first

statement of a method changed, but the same statement

reoccurs at the end of the method and stays unchanged. The

best match approach will match the first with the last

statement, leading to a mismatch for the first statement.

Such a mismatch can have, as in this particular case,

tremendous impact on the extraction of other changes. We

noticed that such mismatches led to replacements of nested

if and loop-statements. Currently, we are investigating

postprocessing steps that take the position of statements

into account to remove inappropriate matches.

The declaration changes, in particular the parameter

ordering changes, are also an implication of the small tree

problem. The parameter changes in Fig. 12 happened from

Revision 1.35 to 1.39 of the acceptSourceMethodð. . .Þ
described above; three new parameters were inserted. The

similarity between the parameter-list nodes is 0.57 ð47Þ; thus,

the nodes do not match. This mismatch yields the changes:

1. deletion of the old parameter list,
2. insertion of a new parameter list,
3. insertion of the three new parameters, and
4. moving of the existing parameters to the new list.

Besides the three parameter insertions, four additional

parameter-ordering changes are classified—the parameter

list insert and delete are omitted.

As we have selected the methods for the benchmark

randomly and the � of our algorithm is for all methods

about 30 percent, except for the method described above,

we claim that the unsolvable small tree problems occur

relatively seldom. However, further investigations of this

issue are needed and are the subject of future work.

5.5 Summary

To validate our improvements, we established an extensive

benchmark comprised of 1,064 manually classified changes.

Compared to the original algorithm of Chawathe et al., we

approximate the minimum conforming edit script with a

mean absolute error of 1.64 and a mean absolute percentage

error of 34 percent per version pair, that is, an improvement

of 45 percent. This means that, on the average, we find less

than two additional change types, whereas the original

algorithm finds more than three additional change types

between two versions. The results showed that the

combination of our best match algorithm with bigrams,

Chawathe et al.’s node similarity measure, dynamic thresh-

olds, and the inner node similarity weighting achieved the

best benchmark results.
Although our dynamic thresholds noticeably inhibit

mismatch propagation in small subtrees, we consider the

problem as not fully solved yet as the changes in method

acceptSourceMethodð. . .Þ showed.

6 RELATED WORK

Source code differencing has proven itself to be a long-

term research topic fundamental to multiversion program

analyses, as pointed out by Kim and Notkin [22]. Existing

approaches rely on either lexical, syntactical, or semantical

differencing techniques. A further classification can be done

with respect to the granularity of the algorithms, that is,

whether they perform coarse-grained or fine-grained

change extraction and analyses. Our algorithm identifies

fine-grained syntactical changes. In [15], Hassan and Holt

propose evolutionary code extractors in general. They

discuss the need for such tools and the level of source code

extraction granularity.

The algorithm presented by Chawathe et al. and our

change distilling algorithm are closely related to tree

differencing in general and to the tree edit distance problem

in particular. The tree edit distance problem is to compute

the edit distance based on a corresponding edit script

738 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 11, NOVEMBER 2007

Fig. 12. Parameter changes from Revision 1.35 to 1.39 from

acceptSourceMethodð. . .Þ.

9. In org.eclipse.jdt.internal.core.SelectionRequestor.

between two labeled ordered or unordered trees [6]. The

edit operations used are 1) change the label of a node

(relabel), 2) delete a nonroot node, and 3) insert a node. One

of the first nonnaive algorithms for the tree edit distance

problem was introduced by Tai [35]. The quadratic upper

bound of this general approach has been improved by

Shasha and Zhang [32], [46]. These algorithms are inap-

propriate for our concerns because

1. they do not act on labeled, ordered, and valued trees,
2. the operation relabel cannot be used for source code,

as, for instance, a method invocation must not
become an assignment,

3. they do not support move operations,
4. they do not support updates of values.

The algorithm by Chawathe et al. addresses these issues

and, additionally, is faster than these general tree edit

distance algorithms.

Existing differencing tools such as the well-known GNU

diff [18] deal with flat, rather than with hierarchical,

information. They are usually based on the longest common

subsequence algorithm and calculate textual changes, that

is, a list of lines that were changed, inserted, or deleted.

GNU diff cannot, for example, distinguish between changes

applied to license information or documentation and

changes applied to a method body. In contrast to diff, our

algorithm can detect changes more precisely and is able to

assign a particular change to a concrete source code entity

(such as the declaration or body part of a method), rather

than just to a line number.

In [27], Maletic and Collard present a language inde-

pendent approach for detecting syntactic differences be-

tween source files using an intermediate representation of

the source code in XML. The output provided by GNU diff is

mapped to an XML representation to locate changed

entities. Our approach does not rely on textual differences

and is able to detect changes due to move operations.

Recently, Canfora et al. reconstructed changes from differ-

encing results provided by CVS or Subversion diff to track

the evolution of source code lines [7]. For that, they used

Vector Space Models and the Levenshtein string similarity

measure.

Yang describes an algorithm based on a branch-and-

bound implementation of the largest common subtree

problem [43]. The output of the algorithm is sets of matching

and modified AST nodes, but it is not reported what

operations transform the original into the modified tree.

Horwitz’s approach computes semantic and textual

differences between two programs [16]. The approach

partitions a program according to its behavior extracted

from the program representation graph. Similarly to our

approach, Horwitz builds a matching set between such

partitions to extract the differences. The approach is limited

to programs written in a language that supports a subset of

traditional programming languages. Furthermore, our

approach provides a more complete set of tree edit

operations and additionally classifies changes into change

types. The algorithm presented by Jackson and Ladd

reports semantic changes in procedural programs [20].

They analyze the input-output behavior of two procedures

to detect changed behavior.

Apiwattanapong et al. [2] use enhanced control flow-

graphs to model semantic behavior of methods of object-

oriented programs. Identifying modified and unmodified

methods is based on graph isomorphism. Their discussion

of the impact of path changes caused by exception handling

can be used to extend our work. Furthermore, we claim that

both approaches, the one presented in [2] and our work, are

complementary and that semantic differencing can be used

to extend and refine our work.

Raghavan et al. implemented Dex [30], a tool for

extracting changes between C source files. They use change

information provided by patch files to locate the changed

parts in source files. These parts are fed into their tree-

differencing algorithm that outputs the edit operations. Dex

can be used with our taxonomy to classify source code

changes in C programs.

Tu and Godfrey used their BEAGLE tool to detect

structural evolution of software systems [36]. With origin

analysis, BEAGLE detects old functions as the “origin” of

new ones based on software metrics and code clone

detection. Origin analysis was also used to detect merging

and splitting [14] and method renaming [24].

Recently, Xing and Stoulia presented their UMLDiff tool

in [42]. UMLDiff tracks changes on the interface (logical

design) of classes. In contrast to our work, they are able to

track when entities are moved among different classes.

However, UMLDiff focuses on recovering higher level design

knowledge evolution, that is, changes on the interface level,

whereas our work additionally allows fine-grained differ-

encing on the implementation level, that is, changes on

single statements inside of method bodies. Similarly to

UMLDiff, SiDiff by Kelter et al. extracts differences between

UML models [21]. The models are stored in XMI files. They

use a combined top-down and bottom-up approach for

matching model parts. The matching is then used to classify

differences of UML models.

Kim et al. presented an approach to automatically infer

likely changes at or above the method level [23]. They use a

simple matching algorithm with the Levenshtein string

similarity measure. Compared to UMLDiff or SiDiff, the

Kim et al. inference approach represents the changes

concisely as first-order relational logic rules. Each of them

combines a set of similar low-level transformations and

describes exceptions that capture anomalies to a general

change pattern.

Approaches discussed next are in the field of change

analysis and classification. They are related to our taxon-

omy of source code changes.
Xing and Stoulia [41] use their UMLDiff to classify

interface changes. For each class version, they assign a

volatility level, for example, “intense evolution” or “rapidly

developing,” according to the number of changes that

occurred. In contrast, Kelter et al. focus on special

differences of UML models (for example, attribute or

reference differences) instead of general insert, delete,

FLURI ET AL.: CHANGE DISTILLING: TREE DIFFERENCING FOR FINE-GRAINED SOURCE CODE CHANGE EXTRACTION 739

move, and update of UML diagram parts [21]. Compared to

their work, we classify individual changes.
�Sliwerski et al. classify changes according to whether

they induced a fix [34], that is, changes that lead to

problems. Their Eclipse plugin Hatari [33] extracts and

visualizes such changes. With our classification, we can

detect frequent fix-inducing change types.

Small changes are also investigated by Purushothaman

and Perry in [29]. In a large case study, they found that

there is less than a 4 percent probability that a one-line

change will introduce a fault. This result implies that the

significance level of a one-line change is low.

The area of code clone detection and software merging,

although not directly related to our work, relies on source

code differencing.

Sager et al. [31] used several tree matching algorithms for

detecting similar Java classes. First, they converted the AST

as generated by Eclipse into the language independent

metamodel FAMIX [10]. In a second step, they transformed

the model into a generic tree format. The generic tree

representations of all classes of a software system were then

matched against each other to find similar classes. Sager

et al. evaluated three different tree similarity algorithms for

this purpose, derived from a bottom-up maximum common

subtree isomorphism, a top-down maximum common subtree

isomorphism, and an edit distance of two given trees, all three

originally presented in [37]. These algorithms can be used to

replace the tree similarity measure calculated in our

approach.

Baxter et al. describe CloneDr, a tool for code clone

detection [4] that relies on AST but categorizes subtrees by

hashing. This significantly reduces the number of compar-

isons needed since only subtrees with the same hash values

have to be compared. Classification using hash values

works well for exact duplicates, but fails for locating near-

miss clones, that is, code duplicates that are very similar.

They are able to overcome this shortcoming by choosing an

artificial bad hash function, that is, a function that ignores

identifier names. For determining the similarity of two

ASTs, Baxter et al. have used the Dice Coefficient [11].

Mens has conducted a survey on existing software

merging techniques in [28]. For example, the approaches

presented in [3], [17], [39], [44] rely on tree-based differen-

cing in order to perform merging. All of them have some

limitations with regard to our concerns; as far as we know,

neither of them detects moves or outputs an edit script.

7 CONCLUSIONS

A key issue in software evolution analysis is the identifica-

tion of particular changes that occur across several versions

of a program. Current approaches that investigate source

code changes rely on information provided by versioning

systems such as CVS. They track changes of source code

files on a text basis without storing detailed information. In

particular, the granularity, the type, and the significance

level of changes between two versions of a source code

entity are not tracked at all. To improve change analysis

results, it is necessary to differentiate change types. Only in

this way can we provide better support for programmers,

designers, and project managers to develop and maintain

software systems and control their evolution.

To overcome the imprecise results of textual differencing,

we presented change distilling, an approach for fine-grained

source code change extraction. We enhanced the existing tree

differencing algorithm by Chawathe et al. to classify source

740 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 11, NOVEMBER 2007

TABLE 2
Benchmark Results of Runs (a) and (b)

code changes according to our taxonomy of source code changes

with the following substantial improvements:

. Using bigrams as a robust string similarity measure
that is able to cover common changes on source code

identifiers.
. Adding a similarity check of node values to

Chawathe et al.’s tree similarity measure to solve

the problem of descendant subtree matching.
. Using inner node similarity weighting to reduce

inadequate mismatches of condition expressions.
. Introducing the best match algorithm to reduce the

impact of Chawathe et al.’s Assumption 1.
. Using dynamic thresholds to reduce the propagation

of mismatches in small subtrees.

Furthermore, we introduced an extensive benchmark to

evaluate source code change extraction algorithms. The

benchmark consists of 1,064 manually classified changes in

219 revisions of eight methods from three different open

source projects. By applying the benchmark to the CHANGE

DISTILLER, the implementation of our change distilling

algorithm, we achieved significant improvements in

extracting change types: Our algorithm approximates the

minimum edit script 45 percent better than the original

change extraction approach by Chawathe et al. We were

able to find all occurring changes and almost reach the

minimum conforming edit script, that is, we reach a mean

absolute percentage error of 34 percent, compared to the

79 percent reached by the original algorithm.

Although our dynamic thresholds significantly inhibit

mismatch propagation in small subtrees, we consider the

problem not fully solved yet. In our benchmark, we

experienced inadequacies with one particular method that

is deeply nested and has major declaration changes. Since

further improvements of string similarity measures are

limited, we will investigate postprocessing steps to filter

further inadequate matches.

APPENDIX

For each of the four Runs (a)-(d) described in Section 5.3, the

detailed results are listed in Tables 2 and 3. The tables

contain the expected number of occurrences of each change

type x, the found number of occurrences of each change

type ~x, the mean absolute error �, the root-mean-squared

absolute error �2, the mean absolute percentage error �, and

the root-mean-squared absolute percentage error �2.

ACKNOWLEDGMENTS

This work was supported by the Swiss National Science

Foundation as part of the Controlling Software Evolution

project (COSE) and the Hasler Foundation as part of the

ProMedServices—Proactive Software Service Improvement

and EvoSpaces—Multidimensional Navigation Spaces for

Software Evolution projects. The authors would like to

thank Abraham Bernstein, Michele Lanza, Peter Vorburger,

and the reviewers for their insightful suggestions that

greatly helped to improve the paper.

REFERENCES

[1] G.W. Adamson and J. Boreham, “The Use of an Association
Measure Based on Character Structure to Identify Semantically
Related Pairs of Words and Document Titles,” Information Storage
and Retrieval, vol. 10, nos. 7-8, pp. 253-260, July-Aug. 1974.

[2] T. Apiwattanapong, A. Orso, and M.J. Harrold, “JDiff: A
Differencing Technique and Tool for Object-Oriented Programs,”
Automated Software Eng., vol. 14, no. 1, pp. 3-36, Mar. 2007.

FLURI ET AL.: CHANGE DISTILLING: TREE DIFFERENCING FOR FINE-GRAINED SOURCE CODE CHANGE EXTRACTION 741

TABLE 3
Benchmark Results of Runs (c) and (d)

[3] U. Asklund, “Identifying Conflicts during Structural Merge,” Proc.
Nordic Workshop Programming Environment Research, pp. 231-242,
June 1994.

[4] I.D. Baxter, A. Yahin, L.M. de Moura, M. Sant’Anna, and L. Bier,
“Clone Detection Using Abstract Syntax Trees,” Proc. Int’l Conf.
Software Maintenance, pp. 368-377, Nov. 1998.

[5] A. Bernstein, C. Kiefer, and E. Kaufmann, “SimPack: A Generic
Java Library for Similarity Measures in Ontologies,” technical
report, Dept. of Informatics, Univ. of Zürich, Switzerland, 2005.

[6] P. Bille, “A Survey on Tree Edit Distance and Related Problems,”
Theoretical Computer Science, vol. 337, nos. 1-3, pp. 217-239, June
2005.

[7] G. Canfora, L. Cerulo, and M.D. Penta, “Identifying Changed
Source Code Lines from Version Repositories,” Proc. Int’l Work-
shop Mining Software Repositories, p. 14, May 2007.

[8] S.S. Chawathe, A. Rajaraman, H. Garcia-Molina, and J. Widom,
“Change Detection in Hierarchically Structured Information,”
Proc. ACM Sigmod Int’l Conf. Management of Data, pp. 493-504, June
1996.

[9] D. �Cubrani�c, G.C. Murphy, J. Singer, and K.S. Booth, “Hipikat: A
Project Memory for Software Development,” IEEE Trans. Software
Eng., vol. 31, no. 6, pp. 446-465, June 2005.

[10] S. Demeyer, S. Tichelaar, and P. Steyaert, Famix—The Famoos
Information Exchange Model, 1999.

[11] L.R. Dice, “Measures of the Amount of Ecologic Association
between Species,” ESA Ecology, no. 26, pp. 297-302, July 1945.

[12] B. Fluri and H.C. Gall, “Classifying Change Types for Qualifying
Change Couplings,” Proc. Int’l Conf. Program Comprehension,
pp. 35-45, June 2006.

[13] H. Gall, K. Hayek, and M. Jazayeri, “Detection of Logical
Coupling Based on Product Release History,” Proc. Int’l Conf.
Software Maintenance, pp. 190-198, Nov. 1998.

[14] M.W. Godfrey and L. Zou, “Using Origin Analysis to Detect
Merging and Splitting of Source Code Entities,” IEEE Trans.
Software Eng., vol. 31, no. 2, pp. 166-181, Feb. 2005.

[15] A.E. Hassan and R.C. Holt, “Studying the Evolution of Software
Systems Using Evolutionary Code Extractors,” Proc. Int’l Workshop
Principles of Software Evolution, pp. 76-81, Sept. 2004.

[16] S. Horwitz, “Identifying the Semantic and Textual Differences
between Two Versions of a Program,” Proc. ACM SIGPLAN Conf.
Programming Language Design and Implementation, pp. 234-245, June
1990.

[17] J.J. Hunt, “Extensible, Language-Aware Differencing and Mer-
ging,” PhD dissertation, Univ. of Karlsruhe, Germany, 2001.

[18] J.W. Hunt and T.G. Szymanski, “A Fast Algorithm for Computing
Longest Common Subsequences,” Comm. ACM, vol. 20, no. 5,
pp. 350-353, May 1977.

[19] P. Jaccard, “The Distribution of the Flora in the Alpine Zone,” New
Phytologist, vol. 11, no. 2, pp. 37-50, Feb. 1912.

[20] D. Jackson and D.A. Ladd, “Semantic Diff: A Tool for Summariz-
ing the Effects of Modifications,” Proc. Int’l Conf. Software
Maintenance, pp. 243-252, Sept. 1994.

[21] U. Kelter, J. Wehren, and J. Niere, “A Generic Difference
Algorithm for UML Models,” Software Eng., pp. 105-116, Mar.
2005.

[22] M. Kim and D. Notkin, “Program Element Matching for Multi-
Version Program Analyses,” Proc. Int’l Workshop Mining Software
Repositories, pp. 58-64, May 2006.

[23] M. Kim, D. Notkin, and D. Grossman, “Automatic Inference of
Structural Changes for Matching Across Program Versions,” Proc.
Int’l Conf. Software Eng., pp. 333-343, May 2007.

[24] S. Kim, K. Pan, and J.E. Whitehead, “When Functions Change
Their Names: Automatic Detection of Origin Relationships,” Proc.
Working Conf. Reverse Eng., pp. 143-152, Nov. 2005.

[25] M.M. Lehman, “Programs, Life Cycles and Laws of Software
Evolution,” Proc. IEEE, pp. 1060-1076, Sept. 1980.

[26] V.I. Levenshtein, “Binary Codes Capable of Correcting Deletions,
Insertions and Reversals,” Soviet Physics Doklady, vol. 10, pp. 707-
710, Feb. 1966.

[27] J.I. Maletic and M.L. Collard, “Supporting Source Code Difference
Analysis,” Proc. Int’l Conf. Software Maintenance, pp. 210-219, Sept.
2004.

[28] T. Mens, “A State-of-the-Art Survey on Software Merging,” IEEE
Trans. Software Eng., vol. 28, no. 5, pp. 449-462, May 2002.

[29] R. Purushothaman and D.E. Perry, “Toward Understanding the
Rhetoric of Small Source Code Changes,” IEEE Trans. Software
Eng., vol. 31, no. 6, pp. 511-526, June 2005.

[30] S. Raghavan, R. Rohana, D. Leon, A. Podgurski, and V. Augustine,
“Dex: A Semantic-Graph Differencing Tool for Studying Changes
in Large Code Base,” Proc. Int’l Conf. Software Maintenance,
pp. 188-197, Sept. 2004.

[31] T. Sager, A. Bernstein, M. Pinzger, and C. Kiefer, “Detecting
Similar Java Classes Using Tree Algorithms,” Proc. Int’l Workshop
Mining Software Repositories, pp. 65-71, May 2006.

[32] D. Shasha and K. Zhang, “Fast Algorithms for the Unit Cost
Editing Distance between Trees,” J. Algorithms, vol. 11, no. 4,
pp. 581-621, Dec. 1990.

[33] J. �Sliwerski, T. Zimmermann, and A. Zeller, “Hatari: Raising Risk
Awareness,” Proc. European Software Eng. Conf. and ACM SIGSOFT
Symp. Foundations of Software Eng., pp. 107-110, Sept. 2005.

[34] J. �Sliwerski, T. Zimmermann, and A. Zeller, “When Do Changes
Induce Fixes?” Proc. Int’l Workshop Mining Software Repositories,
pp. 24-28, May 2005.

[35] K.-C. Tai, “The Tree-to-Tree Correction Problem,” J. ACM, vol. 26,
no. 3, pp. 422-433, July 1979.

[36] Q. Tu and M.W. Godfrey, “An Integrated Approach for Studying
Architectural Evolution,” Proc. Int’l Workshop Program Comprehen-
sion, pp. 127-136, June 2002.

[37] G. Valiente, Algorithms on Trees and Graphs. Springer, 2002.
[38] J. Weidl and H.C. Gall, “Binding Object Models to Source Code:

An Approach to Object-Oriented Re-Architecting,” Proc. Computer
Software and Applications Conf., pp. 26-31, Aug. 1998.

[39] B. Westfechtel, “Structure-Oriented Merging of Revisions of
Software Documents,” Proc. Int’l Workshop Software Configuration
Management, pp. 68-79, June 1991.

[40] M. Würsch, “Improving ChangeDistiller—Improving Abstract
Syntax Tree Based Source Code Change Detection,” master’s
thesis, Univ. of Zürich, 2006.

[41] Z. Xing and E. Stoulia, “Analyzing the Evolutionary History of the
Logical Design of Object-Oriented Software,” IEEE Trans. Software
Eng., vol. 31, no. 10, pp. 850-868, Oct. 2005.

[42] Z. Xing and E. Stoulia, “UMLDiff: An Algorithm for Object-
Oriented Design Differencing,” Proc. Int’l Conf. Automated Software
Eng., pp. 54-65, Nov. 2005.

[43] W. Yang, “Identifying Syntactic Differences between Two Pro-
grams,” J. Software—Practice and Experience, vol. 21, no. 7, pp. 739-
755, July 1991.

[44] W. Yang, “How to Merge Program Texts,” J. Systems and Software,
vol. 27, no. 2, pp. 129-135, Nov. 1994.

[45] A.T. Ying, G.C. Murphy, R. Ng, and M.C. Chu-Carroll, “Predict-
ing Source Code Changes by Mining Change History,” IEEE
Trans. Software Eng., vol. 30, no. 9, pp. 574-586, Sept. 2004.

[46] K. Zhang, “Algorithms for the Constrained Editing Distance
between Ordered Labeled Trees and Related Problems,” Pattern
Recognition, vol. 28, no. 3, pp. 463-474, June 1995.

[47] T. Zimmermann, P. Weissgerber, S. Diehl, and A. Zeller, “Mining
Version Histories to Guide Software Changes,” IEEE Trans.
Software Eng., vol. 31, no. 6, pp. 429-445, June 2005.

Beat Fluri received the MSc degree in computer
science from the Federal Institute of Technology
(ETH), Switzerland, in 2004. He is currently
working toward the doctorate degree and works
as a research assistant in Professor Harald C.
Gall’s Research Group at the University of
Zurich, Switzerland. His main research interest
is software evolution, focusing on source code
change analysis and changeability assessment.
He is a student member of the IEEE, the IEEE

Computer Society, and the ACM. More information is available at
seal.ifi.uzh.ch/fluri.

742 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 11, NOVEMBER 2007

Michael Würsch received the MSc degree in
computer science from the University of Zurich
in 2007. He is currently working toward the
doctorate degree and is a research assistant in
the Software Engineering Group in the Depart-
ment of Informatics at the University of Zurich.
His current research interests include software
design, software evolution analysis, and service-
centric software engineering. He is a student
member of the IEEE and the IEEE Computer

Society. More information is available at seal.ifi.uzh.ch/wuersch.

Martin Pinzger received the doctorate degree
(Dr. techn.) in computer science from the Vienna
University of Technology, Austria, in June 2005.
He is a senior research associate in the Soft-
ware Engineering Group in the Department of
Informatics at the University of Zurich, Switzer-
land. His research interests are in software
engineering, focusing on software evolution
analysis and software design and quality analy-
sis. He is a member of the IEEE, the IEEE

Computer Society, and the ACM. More information is available at
seal.ifi.uzh.ch/pinzger.

Harald C. Gall received the MSc and PhD (Dr.
techn.) degrees in informatics from the Techni-
cal University of Vienna, Austria. He is a
professor of software engineering in the Depart-
ment of Informatics at the University of Zurich,
Switzerland. Prior to that, he was an associate
professor in the Distributed Systems Group at
the Technical University of Vienna. His research
interests include software engineering, focusing
on software evolution, software quality analysis,

software architecture, reengineering, collaborative software engineer-
ing, and service-centric software systems. Recently, he was the
program chair of the European Software Engineering Conference and
the ACM SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC-FSE) 2005 and the International Workshop on
Mining Software Repositories (MSR), colocated with the International
Conference on Software Engineering (ICSE) in 2006 and 2007. He is a
member of the IEEE, the IEEE Computer Society, and the ACM. More
information is available at seal.ifi.uzh.ch/gall.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

FLURI ET AL.: CHANGE DISTILLING: TREE DIFFERENCING FOR FINE-GRAINED SOURCE CODE CHANGE EXTRACTION 743

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

