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Abstract—In the early development of source code change
analysis, methodologies primarily relied on simple textual differ-
encing, which treated code as mere text and identified changes
through lines that were added, modified, or deleted. This ap-
proach overlooked the rich semantic information embedded
within the code, highlighting significant limitations in textual
analysis and differencing that required a more precise and
language-aware foundation. Our research on ChangeDistiller
pioneered the use of abstract syntax trees and associated tree
edits for change analysis. We were among the first to introduce
a tree-differencing algorithm for source code, enabling a fine-
grained examination of modifications. ChangeDistiller has since
been widely adopted by researchers in the field of mining
software repositories. This paper reflects on the evolution of our
technique, its influence on subsequent research, and its role in
the advancement of change analysis methodologies. In addition,
we explore how contemporary techniques and tools can draw on
our foundational work to enhance their effectiveness.

Index Terms—source code change analysis, change types, tree
edits, mining software repositories

I. THE ROAD TO CHANGEDISTILLER

HANGE is the principle at the core of nature. Evo-

lution research seeks to understand the processes and
mechanisms that drive change in biological, cultural, and
technological systems over time. The insights gained from
this research elucidate the diversity and complexity of these
systems, facilitate better ecosystem management and sustain-
able development, and empower us to create predictive models
that guide interventions. This understanding is relevant in both
biological and software systems.

With the emergence of open-source software repositories
around the turn of the millennium, including SourceForge and
GitHub, researchers gained unprecedented access to extensive
source code and its change history. This advancement con-
tributed to a new research area within software maintenance
and evolution: Mining Software Repositories (MSR). We were
among the first to investigate large software repositories by
means of data mining and machine learning. We learned about
various relations between code elements, software developers
and teams, defect dependencies, or bug fixing effects. With our
techniques, we leveraged repository data to identify founda-
tional principles of software evolution: which code elements
change how, when, or by whom, with the ultimate goal to
better support developers in the creation and maintenance of
large-scale complex software systems.

A key challenge for MSR researchers was the identification
and classification of changes between successive versions of

a program. We found that research was often hindered by
the low quality of available information, as changes were
typically tracked at a textual level—simply identifying lines
added or deleted. This approach lacked the resolution, syntax,
and semantics necessary for drawing meaningful conclusions.
More advanced methods attempted to identify method-level
changes through syntactical analysis but they still struggled
to accurately classify those changes—such as the addition
of method invocations in the else branch of an if-statement.
ChangeDistiller [I] addressed this gap by employing ab-
stract syntax trees (ASTs) to represent two versions of a
program, along with a tree-differencing algorithm to identify
the changes between them. The algorithm generated an edit
script comprised of basic tree edit operations, which, when
applied, transformed the original tree into the modified one.
These operations were then categorized and included in our
comprehensive taxonomy of source code changes, allowing us
to analyze the syntactic nature of code changes for the first
time ever.

II. CHANGEDISTILLER

At the core of ChangeDistiller lays the change distilling al-
gorithm. It defines, classifies, and analyzes fine-grained source
code changes. Change distilling provides a taxonomy of source
code changes that precisely defines change types according
to tree edit operations in the abstract syntax tree (AST). We
use the basic tree edit operations insert, delete, move, and
update applicable to AST nodes. In addition, the taxonomy
classifies each change type according to a change significance
level scheme. This level expresses the possible impact a change
type may have on other source code entities and whether it
may be functionality-preserving or functionality-modifying.

As aresult, the taxonomy defines 40 change types for source
code entity types that are defined in a programming language
and representable in an AST. The change types are divided
into body and declaration part categories of attributes, classes,
and methods. Each change type obtains a change significance
level of none, low, medium, high, or crucial. For certain
change types the change significance level is adapted to the
accessibility modifier of a source code entity. For instance, a
return type change of a public method has a higher change
significance level than of a private method.

We use the taxonomy to extract fine-grained source code
changes. Our change distilling algorithm uses tree-differencing
on subsequent AST versions of an object-oriented class. The
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algorithm calculates an edit script that contains basic tree
edit operations and transforms the older into the newer AST.
That means, the edit script contains exactly those source
code changes that were applied to the class between the
two versions. The change distilling algorithm is based on the
generic tree-differencing algorithm presented by Chawathe et
al. [2] that we customize to be applicable on pairs of ASTs.
ChangeDistiller is the implementation of the change distilling
algorithm for the Java programming language.

Leveraging the information provided by ASTs permits us
to get precise information about a source code change. In
addition to the information that a particular source code entity
has changed, tree edit operations also provide information
about the location of the change. For instance, we can tell
that the method invocation statement foo.bar () was moved
from the then-part to the else-part of the if-statement that has
the condition foo null.

We evaluated ChangeDistiller in three studies:

1) Qualifying change coupling: In a first study, we applied
our change taxonomy and found that in many cases a large
number of added and/or deleted lines did not show significant
changes, but small textual adaptations (such as indentation,
etc.). [3]. Our approach allowed us to relate all change
couplings to the significance of the identified change types.
As a result, change couplings between code entities can be
qualified and less relevant couplings can be filtered out.

2) Benchmark for change extraction: In the original paper
we used a benchmark comprising 1,064 manually classified
changes across 219 revisions of eight methods from three
open-source projects [1]]. The evaluation relied on metrics such
as mean absolute error and mean absolute percentage error to
measure the algorithm’s accuracy in identifying changes. The
improved algorithm outperformed the baseline by significantly
reducing the percentage error from 79% to 34%, demonstrating
its capability to approximate the minimum conforming edit
script more closely. This success was attributed to enhance-
ments like the use of bigram similarity for matching, a best
match algorithm for nodes, and dynamic thresholds for subtree
matching. Overall, the evaluation confirmed that the new
approach offers a substantial improvement in detecting and
classifying source code changes compared to existing methods.

3) Co-evolution of code and comments: The research on
ChangeDistiller has served as a cornerstone for numerous em-
pirical studies, including an analysis by Fluri et al. on the co-
evolution of source code and comments [4]], [S]]. Source code
comments play a crucial role in preserving design decisions
and conveying the intent of the code to developers and main-
tainers. However, a common belief suggests that developers
frequently neglect documenting their code and fail to keep
comments up-to-date. Our study aimed to address this issue
by investigating: To what extent do developers keep code and
comments in sync? We utilized ChangeDistiller in combination
with heuristics based on proximity and textual similarity to
map comments to specific code entities. An analysis of eight
open- and closed-source systems revealed that nearly half of
the code changes were not accompanied by corresponding
updates to comments. However, when comments were present,
they typically evolved in parallel with the associated code,

albeit often with a delay of one or more revisions, particularly
during phases of consolidation.

ITI. THE IMPACT OF CHANGEDISTILLER

The availability of ChangeDistiller and its detailed insights
into source code changes have paved the way for extensive re-
search opportunities. We reflect on the impact on our work and
explore how others have utilized and extended ChangeDistiller
in various directions.

A. Impact on our own research

Next, we highlight several exemplary cases of our research
involving ChangeDistiller and its impact:

1) Ontologies in software engineering: Through SEON [6],
an open-source ontology of key concepts in software engineer-
ing, ChangeDistiller found wider applications in other research
projects. SEON formally describes the ChangeDistiller change
types using the Web Ontology Language OWL and enables
reasoning about changes and the integration of these concepts
into research tools in a unified way.

2) Search-driven software engineering: One notable appli-
cation was our query framework for software evolution data,
introduced by Wiirsch et al. in [[7]. The approach envisioned
developer-centric tooling—similar to GitHub Copilot nowa-
days but with a stronger focus on answering questions about
code base evolution to improve code comprehension rather
than generating code. A subsequent user study demonstrated
that participants could answer common developer questions
with greater accuracy in less time using this framework [8].

3) Software analysis as a Service: Building on that, Ghezzi
et al. introduced SOFAS (Sofware Analysis as a Service), a
RESTful architecture providing a simple yet effective way
to offer software analyses as a service [9]. SOFAS allowed
researchers and practitioners to incorporate the ChangeDis-
tiller algorithm into more complex analysis workflows. The
data consumed and produced by the individual services were
defined and represented using the SEON ontology, ensuring
consistency and interoperability across analysis steps.

4) Bug prediction: Giger et al. used fine-grained code
change information to predict bugs [10] and their fix times
[11]. They compared different prediction models—with and
without fine-grained code changes—and the results showed
that fine-grained code change information can significantly
improve the performance of the models.

5) Beyond source code changes: Pinzger et al. extended
ChangeDistiller to extract detailed information on changes
from other information sources, such as web service interfaces
[12]], feature models [13]] and build files [14]]. This allowed
them to study the evolution of the Linux kernel features [|13|]
and the nature of build changes in open-source projects [15].
They also investigated ways to improve AST differencing and
presented IJM [16]. The results of an empirical study showed
that IJM provides significantly better accuracy for move and
update actions. IJM was integrated into DiffViz [|17]], a tool to
facilitate the navigation of code changes.
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6) Semantics of source code changes: While ChangeDis-
tiller highlights syntactic differences between two versions of a
program, it is not capable of explaining changes in semantics.
Glock et al. developed PASDA [18]] that uses differential
symbolic execution to prove non-/equivalence of program pairs
based on path level. These proofs benefit use cases such as test
case prioritization, fault localization, and debugging.

B. Impact on other research

Several other researchers built on ChangeDistiller to study
the evolution of software systems, to better support developers,
and to develop more accurate change extraction approaches.

1) Empirical studies: Soetens et al. [19] explored the trade-
off between test set reduction and the fault detection ability
of two test selection heuristics based on fine-grained code
changes extracted with ChangeDistiller. Raemaekers et al.
[20] used ChangeDistiller to measure the size of the changed
functionality between major, minor, and patch releases to
reason about breaking changes in the Maven repository. Zhong
and Meng [21]] computed delta graphs for related changes with
the help of ChangeDistiller. These graphs were then used to
analyze the information overlap between past and new bug
fixes, showing that up to 41.3% of the new bug fixes can
be derived from previous fixes. Their work highlights the
potential of fine-grained code changes for the automation of
software engineering tasks such as automatic program repair
(APR), which has been a hot research topic in the last decade.

2) Developer support: ChangeDistiller also made an impact
on research in the active fields of program comprehension
and developer recommendation systems. Kawrykow and Ro-
billard [22]] enhanced the output generated by ChangeDistiller
with Partial Program Analysis (PPA) to further distinguish
important changes from non-essential modifications, such as
local variable refactorings, or textual differences induced as
part of a rename refactoring. Rubin and Chechik [23] focus
on feature location for families of related software products
realized via code cloning. The authors found ChangeDistiller
useful to automate identification of regions of code that likely
implement a feature of interest by comparing the analyzed
program variant to an earlier release which does not con-
tain the feature. Holmes and Walker used ChangeDistiller
to develop YooHoo [24], an approach to proactively notify
developers about changes in libraries they depend on. Catolino
et al. enhanced change prediction models using developer-
related factors and made use of ChangeDistiller to evaluate
the performance of their models [25]. Kreuzer et al. [26] used
a modified version of ChangeDistiller and syntactical simi-
larity metrics in combination with two self-tuning clustering
algorithms to detect groups of similar code changes. Tsantalis
et al. [27] presented RefactoringMiner, an approach to detect
refactorings in the commit history of software projects. Janke
and Mider presented an approach that uses frequent subgraph
mining to identify change patterns from AST edits [28]. Their
method relied on GumTree, which is based on ChangeDistiller
and will be covered in the next section. An evaluation of six
selected patterns with 31 participants showed that the patterns
are relevant for programming activities, and IDEs should offer
automated support to perform such changes.

3) Improving change detection accuracy: Several re-
searchers succeeded in improving the change detection accu-
racy of ChangeDistiller. Dotzler et al. presented MTDiff [29],
an approach that provides several optimizations, in particular
to the mapping phase, to better map moved nodes. They also
implemented optimizations for ChangeDistiller and showed
that they can produce shorter edit scripts for most of the
analyzed files than existing approaches. The most recent
advancements in tree-differencing were presented by Falleri
et al. [30], [31] and Alikhanifard et al. [32]: In contrast
to ChangeDistiller, GumTree considers the full AST of a
source file and also computes the differences between single
statements. Furthermore, it improves the mapping of tree nodes
by combining a greedy top-down algorithm to find isomorphic
subtrees with a bottom-up algorithm to map parents and their
descendant nodes. This results in better and more concise
edit scripts. Falleri et al. later introduced an algorithm to
improve the final mapping phase of GumTree, which results
in shorter edit scripts and shorter matching time [31]. Because
of its advanced node mapping approach, GumTree became the
most widely used approach for extracting fine-grained code
changes. Alikhanifard et al. discuss five limitations of existing
AST differencing tools and present RefactoringMiner 3.0 to
resolve them [32f]. A comparison with five state-of-the-art tools
shows that RefactoringMiner 3.0 outperforms them in terms
of precision and recall significantly down to statement level. It
also generates a perfect diff for 87.9% of the commits, which is
more than 20% higher than the ratio of existing approaches.
This makes RefactoringMiner 3.0 the best tree-differencing
approach that is currently available.

IV. THE ROAD AHEAD

In this section, we envision future research directions in-
spired by the capabilities of ChangeDistiller and the advance-
ments made through its use and refinement.

A. AST differencing

Several approaches have been proposed to enhance
ChangeDistiller, particularly in matching tree nodes. The
authors of GumTree suggested that further improvements
could be made by incorporating hyperparameter tuning, as
demonstrated by Martinez et al. [33]]. Alikhanifard et al. ac-
knowledged limitations in their approach, such as inaccuracies
in mapping test code. However, with an overall precision
and recall exceeding 99% and a perfect diff rate of 88.5%,
achieving significant improvements is challenging. Instead,
we propose extending RefactoringMiner to support additional
programming languages beyond Java and Python, unlocking a
broader range of data to derive valuable insights.

B. Higher-level code changes

Besides having accurate information about code changes,
developers need assistance in understanding them. Tree-edit
operations represent code changes accurately but they are diffi-
cult for developers to interpret. The ChangeDistiller taxonomy
of code changes groups tree-edit operations into meaningful
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changes, however, it does not consider code changes that
span multiple source files or refactorings. CIDiff [34]] groups
tree-edit operations and links them according to five prede-
fined links that can be interpreted as five different change
types. RefactoringMiner [32] extends existing approaches by
grouping tree-edit operations to 102 refactorings. Future work
should focus on studying their usefulness in understanding
code changes and on adding missing change types.

C. Visualization of code changes

Another potential for improvement lies in the representation
of code changes. Current diff-tools either show a unified line-
based diff or a side-by-side comparison of two versions of
a source file. They do not provide any explanation of the
code changes and the intent behind them. As suggested by
Alikhanifard et al. future diff visualization could provide
a summary or explanation generated from various sources,
for example, code changes, commit messages, linked issues,
or discussions from the corresponding pull request to shine
light on the intention behind it [32]]. Summarization could
be accomplished using large language models (LLMs). Addi-
tionally, future approaches could integrate the information on
semantic differences similar to PASDA [18] to help developers
understand the changes in the semantics of programs.

D. Change impact analysis

A key question in understanding code changes concerns
their impact on other code entities and modules, for instance,
to detect undesirable side effects/faults introduced by a change.
Most existing approaches use program dependency graphs,
code similarity, or past change couplings for assessing the
impact of code changes. However, they have shown to generate
large impact sets with low precision. Athena, a recent approach
by Yan et al. [|35] combines dependency graphs with a deep
code representation to output methods that are most likely
impacted by a code change. While Athena outperforms state-
of-the-art impact analysis approaches, it still suffers from
several shortcomings. First, the approach is based on method-
level and does not show the impact of code changes on the
statement level, which is, in our opinion, still too coarse-
grained. Second, while it uses the term “semantics” it mainly
means textual similarity—it does not detect or explain any
changes in behavior of statements and methods. In this direc-
tion, Gyori et al. [36] and Hanam et al. and [37] presented
two approaches to compute the semantic impact of a code
change by using symbolic execution or abstract interpretation.
These approaches will benefit from more accurate code diffs
and future work should focus on investigating this potential.

E. Commit message generation

Commit messages describe code changes in natural lan-
guage. Several approaches train models that generate a cor-
responding commit message from a set of code changes. Buse
et al. [38] used predefined rules, while more recent research
investigated models trained with deep learning to generate
commit messages [39], [40]. For instance, Tao et al. [40]

introduced KADEL, an approach that fine-tunes the CodeT5
model [41]] with pairs of code changes and commit messages
from the MCMD dataset [42] considering five programming
languages. The results show that KADEL outperforms state-
of-the-art approaches. Furthermore, a comparison of KADEL
with the much larger ChatGPT (3.5-turbo) shows that both
models perform equally well. The comparison with more
recent LLLMs, such as ChatGPT 4o, Claude 3.5, Code Llama,
or Gemini, is suggested for future work. Furthermore, all these
approaches might benefit from model fine-tuning based on
detailed information about code changes extracted with tree-
differencing.

F. Automated program repair

Typical APR approaches use machine or deep learning to
train or fine-tune a model from pairs of buggy code and
the corresponding fixed code. For instance, Jiang et al. [43]]
evaluated ten code language models (CLMs), such as CodeT5
and inCoder [44], on four Java benchmarks and showed that
their fine-tuned models fix significantly more bugs than other
approaches. Xia and Zhang [45] proposed ChatRepair, the
first fully automated conversation-driven APR approach that
uses ChatGPT 3.5-turbo. The results show that ChatRepair
could correctly fix 162 out of 337 bugs for $0.42 each which
is even more than the fine-tuned CLMs could fix. Recently,
Hidvégi et al. [46] proposed a similar approach called CigaR
with the goal of repairing more bugs while minimizing to-
ken costs. CigaR also uses ChatGPT 3.5-turbo but improves
the prompting strategies through iterative prompting, search
rebooting and patch multiplication. The evaluation shows that
CigaR managed to reduce the token cost by 73% while fixing
more bugs than ChatRepair. The prompts used by existing
approaches typically contain an example of a bug and some
bug details (e.g., the results from a failed test). For future
work and similar to the commit message generation, it would
be interesting to investigate whether the detailed information
about bug fixes extracted with tree-differencing could help
improve existing APR approaches.

G. Automated refactoring

Modernizing large code bases remains a common chal-
lenge in the software industry. Tasks such as framework
migrations can require a prohibitive amount of manual ef-
fort, as one of the authors experienced firsthand during a
recent migration from Java EE to Jakarta EE. Auto-refactoring
engines such as OpenRewriteP_-] significantly reduce the time
and effort required for such tasks, transforming what could
take hours into mere minutes. OpenRewrite, to the best of
our knowledge, is not directly related to or influenced by
ChangeDistiller. However, it uses a specialized form of ASTs
called lossless semantic trees (LSTs) to represent source code.
OpenRewrite utilizes recipes—collections of predefined search
and refactoring operations—that operate on LSTs to perform
automated code transformations. In this sense, OpenRewrite
recipes bear some similarity to ChangeDistiller’s edit scripts,

Uhttps://docs.openrewrite.org, visited January 10, 2025
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which describe changes between versions of a codebase.
Currently, OpenRewrite recipes must be explicitly authored
by a developer. Combining a change detection algorithm
akin to ChangeDistiller with an auto-refactoring engine like
OpenRewrite presents an intriguing possibility: mining large-
scale source code repositories for common refactorings and au-
tomatically generating recipes to apply these transformations
across other code bases. Alternatively, these recipes might
also be learned by LLMs fine-tuned with examples from past
migrations.

V. CONCLUSIONS

Analyzing software evolution requires the identification of
specific code changes that occur between program versions.
With ChangeDistiller, we introduced the first technique that
goes beyond textual diffs of programs and can compute a
fine-grained code change history through AST differentiation.
Our approach and tool have been widely used in studies
of open-source software development, from advancements in
code analysis to change patterns identification, visualizations,
empirical studies, and specialized tools. ChangeDistiller and
our closely related works have accumulated more than 2,500
citations and cover a period from 2007 to the present day. To-
day, machine learning techniques and in particular LLMs offer
new insights into the development of source code. However,
a nuanced understanding of change types and classifications
provided by tree-differencing approaches, such as ChangeDis-
tiller, remains essential for programmatic comprehension of
code changes.
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