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A B S T R A C T
Log files provide valuable information for detecting and diagnosing problems in enterprise software
applications and data centers. Several log analytics tools and platforms were developed to help filter
and extract information from logs, typically using regular expressions (REGEXES). Recent commercial
log analytics platforms provide domain-specific languages specifically designed for log parsing, such
as Grok or the Dynatrace Pattern Language (DPL). However, users who want to migrate to these
platforms must manually convert their REGEXES into the new pattern language, which is costly and
error-prone.

In this work, we present REPTILE, which combines a rule-based approach for converting REGEXES
into DPL patterns with a best-effort approach for cases where a full conversion is impossible.
Furthermore, it integrates GPT-4 to optimize the obtained DPL patterns. The evaluation with 946
REGEXES collected from a large company shows that REPTILE safely converted 73.7% of them. The
evaluation of REPTILE’s pattern optimization with 23 real-world REGEXES showed an F1-score and
MCC above 0.91. These results are promising and have ample practical implications for companies
that migrate to a modern log analytics platform, such as Dynatrace.

1. Introduction
Enterprise software applications and data centers be-

come increasingly complex, which in turn increases the
effort of operating them [1]. Often, seamless execution or
agreed performance of software systems must be guaran-
teed [2]. In large organizations, dedicated teams are assigned
to monitor software execution and identify system events at
runtime. Log files are seen as a primary source for problem
diagnosis [3]. They provide valuable runtime information
of applications, which can be used for maintenance, trou-
bleshooting, anomaly and problem detection, failure pre-
diction, root cause analysis, performance diagnosis, and
security threat detection [1, 2, 4, 5].

To avoid downtimes and meet service-level agreements
(SLAs) of business applications and data centers, it is im-
portant to analyze log files quickly and accurately [2, 4].
However, with the increasing size and number of software
systems in an organization, the volume and variety of logs
grow [1, 2]. This makes manual inspection of log files
practically infeasible [6–8]. Therefore, commercial log an-
alytics tools and platforms, such as Splunk1, ElasticSearch2,
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Datadog3, and Dynatrace4, emerged to help filter and extract
information from logs [1].

As no standardized format and official logging guide-
lines exist [1, 3], log messages are mostly unstructured and
vary widely in content and format. To extract information
from such heterogeneous logs, most log analytics platforms
require human involvement to define log formats using cus-
tomized patterns [4]. Regular expressions (REGEXES) are
commonly used for this task [1, 2, 9]. However, creat-
ing correct REGEXES can be challenging, time-consuming,
and error-prone, and requires specialized skills and experi-
ence [2, 10–21]. Additionally, the REGEX syntax is often
difficult to comprehend [14, 18, 20, 22], making pattern
maintenance cumbersome and error-prone [1, 2].

To address these drawbacks, some providers utilize
domain-specific languages (DSL) specifically designed for
log parsing. For example, ElasticSearch [23] and Data-
dog [24] use Grok, which builds on top of REGEXES,
while Dynatrace uses the proprietary Dynatrace Pattern
Language (DPL) [25, 26]. These languages are generally
more user-friendly than REGEXES and require less technical
background from the user. For example, they provide pre-
defined matchers for commonly occurring log data, such as
timestamps and IP addresses, which enhances efficiency of
pattern creation and reduces the risk of human error.

Figure 1 demonstrates these advantages by comparing
a sample log pattern in REGEX, Grok, and DPL syntax
respectively. Line 2 shows the REGEX that extracts the IP
address, matches any text followed by at least one space,
and finally extracts the response code from a log entry. Lines
5 and 8 show its Grok and DPL counterparts, respectively,

3https://www.datadoghq.com/
4https://www.dynatrace.com/

Fragner et al.: Template by Elsevier Page 1 of 18

https://mitschi.github.io/
https://www.bernharddieber.com/
https://pinzger.github.io/
https://www.splunk.com/
https://www.elastic.co/elasticsearch
https://www.datadoghq.com/
https://www.dynatrace.com/
https://arxiv.org/abs/2506.19539v1


Converting RegExes into Dynatrace Pattern Language

Figure 1: RegEx example and corresponding Grok and DPL
pattern examples.

1 // RegEx

2 (?<addr>\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}).*\s+(?<rc>\d{3})

3
4 // Grok counterpart

5
6 // DPL counterpart

7 IPv4:addr LD SPACE+ INT:rc

which are easier to read than the REGEX as they are shorter
and contain fewer special characters. The DPL additionally
separates its individual matchers by spaces. However, the use
of different pattern languages creates problems when users
want to migrate from one log analytics provider to another.
The manually created patterns must then be manually trans-
lated into the target language which is costly and error-prone.

In this work, we present REPTILE5, an approach that
converts REGEXES into DPL patterns. We choose REGEXES
as the source language, as it is widely used by different log
analytics and monitoring solutions as mentioned above and
DPL as the target language, because this work was done in
collaboration with Dynatrace which is a leading company
in providing software observability solutions [27]. REPTILE
facilitates automatic generation of DPL patterns purely from
REGEXES whenever possible. It also provides best-effort
conversions and only involves the user in cases for which
automatic translation is not possible. As a first step towards
REPTILE, we investigate the usage of REGEXES in practice to
understand how practitioners use them. The corresponding
research question is:
RQ1 Which REGEX features are frequently used in

practice?

We studied a real-world dataset from a large organiza-
tion from the retail industry and extracted 946 different
REGEXES. For each REGEX, we tallied the used REGEX
features. We found that Named capturing group, Greedy
quantifier, and Literal character were the top-3 most used
features (↪ Section 3.2). These findings laid the foundation
for developing REPTILE that we evaluated in our second
research question:
RQ2 How effective is REPTILE in converting REGEXES

into DPL patterns?

The evaluation shows that our approach increases the
percentage of safely convertible REGEXES from initially
less than 2% to more than 73% (↪ Section 5.1) in a real-
world dataset. Moreover, 897,000 generated test cases show
that our approach retains the original REGEX semantics.
These results show that our approach supports users in safely
converting the majority of REGEXES into DPL. Next, we
investigate the usage of GPT-4 to further optimize the DPL

5Regular Expression Pattern Translation Into Language Equivalents

patterns by introducing high-level matchers. This leads to
our third research question:
RQ3 What is the prediction accuracy of REPTILE’s pat-

tern optimization?

The results with GPT-4 and 23 real-world REGEXES
show high prediction performance achieving an average
F1-score and MCC above 0.91 across five high-level DPL
matchers (↪ Section 5.2). This means that the majority of
high-level matchers proposed by GPT-4 are correct.

In summary, our work makes the following contribu-
tions:

• A study of most frequently used REGEX features for
log parsing in practice, analyzing more than 900 real-
world REGEXES (↪ Section 3.2).

• Novel strategies to identify non-backtracking REG
EXES, enabling conversion of greedy and lazy quan-
tifiers, which are the most frequently used features
unsupported in DPL (↪ Section 4.1).

• A two-phase approach for automatic conversion of
REGEXES into DPL, comprising of a rule-based con-
version (↪ Section 4.1) and an optimization with
GPT-4 (↪ Section 4.3).

Our results have ample practical implications for com-
panies that migrate or migrated to a modern log analytics
platform, such as Dynatrace. They can use REPTILE to
automatically and safely convert the majority (in our case
73%) of their REGEXES for log parsing to DPL patterns.
Furthermore, they can use REPTILE to optimize the con-
verted DPL patterns making them easier to understand and
maintain with high precision and recall.

The remainder of the paper is organized as follows. First,
Section 2 defines terms and concepts. Next, we study the
most frequently used REGEX features in Section 3. Sec-
tion 4 presents the converter prototype REPTILE. Section 5
assesses the proportion of safely convertible REGEXES and
their correctness and evaluates the accuracy of high-level
matcher prediction. Section 7 situates the paper with respect
to related work. Section 8 discusses the main results, current
limitations, and potential threats to the validity. Finally,
Section 8 concludes the paper and envisions future work.

2. Background
This section outlines the key features of REGEXES

(↪ Section 2.1) and DPL (↪ Section 2.2). We only present
the most relevant features for this study. For more detailed
explanations, we refer the reader to standard works on
REGEXES [14, 28] and the public DPL documentation [25].
2.1. Regular Expressions (REGEXES)

This section is based on the work of Friedl [14] and
provides details of the most relevant REGEX features. Note
that in this work, the term REGEXES does not strictly re-
fer to the theoretical concept of regular expressions (first

Fragner et al.: Template by Elsevier Page 2 of 18
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Table 1
Overview of greedy quantifiers available in RegExes

Quantifier Equivalent Match

? {0,1} zero times or once
* {0,} zero, one, or multiple times
+ {1,} once or multiple times
{x} {x,x} exactly x times
{x,y} - min. x, max. y times
{x,} - min. x times

introduced by Kleene [29] in 1956) as a way to express a
regular language [30, 31]. Instead, it refers to the practical
implementation of regular expressions that are commonly
used in programming languages, standard libraries, and text-
processing applications [17, 19, 20]. These practical imple-
mentations often support non-regular features that extend
the capabilities of regular languages, such as backreferences
and lookarounds [18, 32]. Our investigation is limited to
the widespread PCRE (Perl-compatible regular expressions)
flavor [14, 33]. A comprehensive comparison and implemen-
tation of different flavors is beyond the scope of this work.
2.1.1. Backtracking Quantifiers

Quantifiers are a central feature of REGEXES. They
indicate that their preceding matcher can match optionally,
or more than only once. See Table 1 for an overview of
available quantifiers. Of all quantifiers, the most frequently
used are the greedy ones, which match as much of the input
as possible. An example of this is shown in Figure 2, where
the match result may seem counterintuitive. The first line
with gray background contains the REGEX. Below that is
the input string to which the REGEX is applied, which we
refer to as the target string. The match result is indicated by
dashes below the target string. The set of all strings accepted
by a given REGEX is referred to as its defined language.
We continue to use these typographical and terminological
conventions hereinafter.

Referring to the example in Figure 2, instead of matching
the first "room" (as one might expect), the actual match is
much longer. This is due to the use of the greedy quanti-
fier (+). First, the opening quotation mark (") is matched
followed by any character (.) at least once (+). As the plus
quantifier is greedy, it matches up to the end of the string.
After that, the closing quotation mark in the REGEX must be
matched. As a consequence, the REGEX engine backtracks
to a previous state where the last quotation mark in the target
string was not matched yet. This process is referred to as
releasing characters. In the example, the characters already
matched are released again one after the other (i.e., first ’!’,
then ’s’, ’e’, ’l’, etc.) until a quotation mark is found and an
overall match is reported.

As demonstrated in the example above, greedy quanti-
fiers may release characters that were already matched if
necessary for an overall match to succeed. However, char-
acters that are essential to the quantifier are never released.
For example, the plus quantifier (+) in Figure 2 would release

Figure 2: RegEx example: greedy quantifier

".+"

My "room", my rules. Your "room", your rules!

-----------------------------

Figure 3: RegEx example: lazy quantifier

".+?"

My "room", my rules. Your "room", your rules!

------

all matched characters again if necessary, except the leftmost
’r’, because the plus quantifier requires at least one match.

All quantifiers presented in Table 1 can be turned into
lazy ones by appending a question mark. Their lazy equiv-
alents are therefore ??, *?, +?, and {x,y}? and they behave
in the opposite way to greedy quantifiers, always matching
as little as possible. In other words, they only match what is
necessary and then hand over control to the next matcher.
Only if the next matcher fails, the lazy matcher attempts
another match.

Referring to the example in Figure 3, after the first
quotation mark (") matches, the lazy dot-matcher matches
one character (’r’) and then immediately hands over the
control to the second ’"’-matcher. As the ’"’ and the next
character in the target string ’o’ do not match, the control
is handed back to the dot-matcher, which matches the ’o’.
This procedure repeats until the second quotation mark in the
target string is reached and an overall match can be reported.
2.1.2. Non-Backtracking Quantifiers

Similar to the previous section, the greedy quantifiers
presented in Table 1 can be turned into possessive ones by
appending a plus symbol (+). The possessive equivalents are
?+, *+, ++, and {x,y}+. In contrast to matchers with greedy
and lazy quantifiers, matchers with possessive quantifiers
never backtrack (i.e., never release characters once matched).
Figure 4 shows an example where the match result is the
same as if a standard greedy quantifier was used. However,
for target strings where there is no match (for example, if the
target string does not contain a colon), the REGEX engine
does not need to backtrack and release already matched
characters. That is, a match failure can be reported earlier.
This can save memory and increase runtime performance,
especially when such a REGEX is applied to many non-
matching target strings. This optimization can be applied
because, in this example, a colon (:) will never appear among
the already matched characters due to the [a-z] character
class, making backtracking obsolete.

Despite the potential benefits, it is recommended to use
possessive quantifiers with caution [14]. For example, in
Figure 5, the use of a possessive quantifier leads to a match
failure. A greedy quantifier would match all three digits ’345’
one after the other and then release the ’5’ again so that the
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Figure 4: RegEx example: possessive quantifier

^[a-z]++:

rules: 1) ... 2) ...

------

Figure 5: RegEx example: possessive quantifier pitfall

\d*+[0-9]

room number 345

(no match)

character class [0-9] can match. However, with a possessive
quantifier, this last step does not happen leading to an overall
match failure.
2.2. Dynatrace Pattern Language

This section provides details on the most relevant DPL
features. It is based on the public DPL documentation [25]
and discussions with the original DPL authors. Note that
DPL patterns are by default applied exactly once to the
target string, i.e., the DPL engine stops execution once it
found a match for a given pattern. In addition, matches are
only attempted from the beginning of the target string. In
other words, every DPL pattern is preceded by an implicit
"beginning of line" matcher.
2.2.1. Pattern Syntax

To match literal text in a target string, the required char-
acters must be enclosed in double or single quotes within the
DPL pattern. If metacharacters (such as *, [, and ?) are to be
matched literally, they do not need to be escaped separately,
except for the double and single quote and the backslash
itself, which must be marked with a preceding backslash (\",
\', and \\). Note that literal matchers consisting of multiple
letters are considered a single matcher in the DPL. For
example, while abc represents three consecutive individual
matchers in a REGEX, "abc" is treated as a single matcher in
the DPL.

The DPL provides so-called export names, to assign
names to parts of the pattern. They are the counterpart to the
named capturing groups in REGEXES. To export a matcher,
a colon (:) is appended, followed by the actual export name.
It must start with a letter followed by alphanumeric charac-
ters (letters, digits, and underscore). If a period (.) appears
in the name, the entire export name must be enclosed in
quotation marks. Export names can be applied to entire
groups, or even individual matchers, and therefore do not
necessarily require parentheses. Table 2 shows examples of
the most common REGEX features and their equivalents in
DPL syntax.
2.2.2. Quantifier Semantics

All the quantifiers listed in Table 1 are also supported by
the DPL. Only the question mark (?) has slightly different

semantics. It makes the entire matcher with its default quan-
tifier optional, instead of forcing the matcher to match zero
times, or exactly once. For example, DIGIT? makes the DIGIT

matcher with its default quantifier {1,4096} optional, effec-
tively translating to DIGIT{0,4096} (equivalent to \d{0,4096}

in REGEXES). To exactly match zero or one digit (like
\d?), the correct DPL pattern is DIGIT{0,1}. Similarly, to
exactly match one digit (like \d in REGEXES), the correct
DPL pattern is DIGIT{1}. In addition, the DPL supports the
range quantifier {,x}, which is syntactic sugar for {0,x}, i.e.,
matching minimum 0 and maximum x times.

The most critical difference to REGEXES, however,
is that despite having the same syntax as greedy quanti-
fiers (↪ Section 2.1.1), their behavior is not greedy, but
possessive (↪ Section 2.1.2). The only exception to this is
when the quantifiers are applied to the LD or DATA matchers,
which always exhibit lazy-like behavior. That is, they match
any character up until their succeeding matcher, but (unlike a
lazy quantifier in REGEXES), they never expand their initial
match.

To emphasize this, the DPL engine never backtracks
to a previous state, except when evaluating alternatives.
Discussions with the original DPL authors revealed that this
limitation exists for performance reasons, as backtracking
can be an expensive operation. In particular, for certain
REGEXES, so-called catastrophic backtracking can occur,
where the runtime complexity becomes super-linear, also
known as runaway regular expressions [14, 18, 19, 34, 35].
2.2.3. High-Level Matchers

Additionally, the DPL provides a broad range of built-
in matchers [36] for frequently occurring information in
logs that do not have a direct equivalent in REGEXES. We
categorize them into two distinct groups: (i) matchers with a
generic scope, e.g., INT, LONG, DOUBLE, and (ii) matchers with
a specific scope, e.g., IPADDR, CREDITCARD, TIMESTAMP.

Utilizing these matchers offers a number of advantages.
Firstly, they improve the pattern by providing a layer of
abstraction, rendering it more readable and maintainable.
This not only increases efficiency when writing patterns,
but also reduces the risk of errors by eliminating the need
to manually create potentially complex patterns. Secondly,
they match specific values (e.g., only matching valid credit
card numbers), resulting in a more accurate pattern. Thirdly,
a data type is associated with the matchers. For example,
if a match of type INT is exported, the exported value can
be processed as an integer (e.g., to easily check whether
an HTTP response code is in the range of 200 to 300). In
contrast, REGEXES export all matches as strings.

3. Preliminary Study
In this section, we investigate which REGEX features

are frequently used in practice, thereby establishing the
foundation for our approach. Section 3.1 presents the real-
world dataset with 946 individual REGEXES for log parsing.
The features used in these patterns are then counted and
summarized in Section 3.2.
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Figure 6: RegEx length distribution in the real-world dataset
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3.1. Real-World Dataset
To identify which REGEX features are frequently used in

practice (RQ1), we study a real-world dataset. The dataset
was provided by Dynatrace and consists of 5 CSV files
with a total size of 3.2 MB. It originates from a large
organization in the retail industry which has migrated from
Splunk to Dynatrace.6 The files contain various Search
Processing Language (SPL) queries7, including REGEXES
to parse query results.

For every query, we searched for the rex command [38]
and extracted the contained REGEX. Because the REGEXES
were embedded in both SPL query and CSV format, the
REGEXES contained corresponding escapings, which were
removed. We obtained 2,701 REGEXES from the original
files. After eliminating duplicates, 946 distinct REGEXES
finally remained. The REGEXES range from 11 to 1,428 char-
acters in length, with an average length of 56.5 characters.
Figure 6 shows the length distribution across all REGEXES.
Note that the x-axis has a logarithmic scale.

For every REGEX in the dataset, we counted the fea-
tures listed in Table 2. To this end, a program written in
TypeScript (TS) was implemented using the regexpp parser
library [39] to analyze the REGEX. First, match mode mod-
ifiers were removed so that the REGEX can be parsed by the
regexpp library. Further, the following optimizations were
applied:

• Simplify character classes that contain a single ele-
ment. Replace [x] by x if x is a single literal matcher
or class shorthand.

• Simplify negated character classes that contain a sin-
gle class shorthand. Replace [^\d] by \D and vice-
versa ([^\D] by \d) for all three kinds of class short-
hands (\d, \w, and \s).

Next, each REGEX was parsed, and the resulting abstract
syntax tree (AST) was then traversed recursively. For every
intermediate or leaf node, the respective REGEX feature was

6Please note, for reasons of confidentiality, neither the original dataset
nor the extracted REGEXES can be made publicly available. The examples
presented in this work were selected to not contain sensitive information to
ensure data privacy compliance.

7Search Processing Language (SPL) queries are used to search, filter,
and manipulate data within the Splunk platform [37].

counted. For alternatives, we counted the number of pipe
characters (e.g., (a|b) counts as 1, (a|bc|d) counts as 2 and
so forth).
3.2. Results

After analyzing all REGEXES, the total feature count was
obtained by summing up the counts within each REGEX. Ta-
ble 2 presents the feature counts over all REGEXES. Column
Total # shows the total number of occurrences per feature
in the entire dataset, while Affected # counts the number
of REGEXES where the respective feature occurs at least
once. The table is sorted by the last column Affected %,
which shows the percentage of affected REGEXES, calcu-
lated by dividing the number of affected REGEXES by the
total number of REGEXES (946 entries). For every feature,
a REGEX example is given along with its corresponding
DPL counterpart. The ten most common REGEX features
are separated from the remaining ones by a horizontal line.
REGEX features that do not appear in Table 2 (such as match
boundaries, backreferences, and comments) did not appear
in the entire dataset. One exception are mode modifiers
which had to be excluded as mentioned above.

The prevalence of named capturing groups can be ex-
plained by their use in SPL for data extraction [9]. The three
REGEX features marked as ✗ in Table 2, namely greedy
quantifier, lazy quantifier, and quantified named capturing
group, hinder a direct automatic translation. They are not
supported by DPL. Due to the low number of occurrences,
we ignore quantified named capturing groups. For the other
two, we observed that at least one of these quantifiers occurs
in 930 REGEXES. Three more REGEX features marked as ❖,
namely character class, negated character class, and non-
word boundary, are not directly supported by DPL, but can
be emulated.8

Answer to RQ1

The top-10 REGEX features include named cap-
turing groups, greedy quantifiers, (escaped) literals,
(negated) character classes, non-negated class short-
hands, and the dot-matcher.
The results from this study mean that only about 1.7%

of all REGEXES from the original dataset can be converted
directly into DPL patterns. The following section presents
our REPTILE approach that aims to increase this proportion.

4. REPTILE Approach
This section presents our REGEX converter approach

REPTILE (Regular Expression Pattern Translation Into Lang-
uage Equivalents). Figure 7 shows an overview of REPTILE.

8Character classes are compatible to DPL, with the exception of class
shorthands within character classes. For example, the REGEX [\d\w] can
be converted to [0-9a-zA-Z_] or (DIGIT{1}|WORD{1}) in DPL. Non-word
boundaries (\B) can be emulated with lookarounds, which are supported
in DPL.
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Table 2
Frequency of RegEx features (derived from Friedl [14]) in the real-world dataset; RegEx features unsupported in DPL are
marked (✗); RegEx features where conversion is possible with workarounds are marked (❖); remaining RegEx features can be
directly converted to DPL.

Feature Name RegEx DPL Total # Affected # Affected %

Named capturing group (?<name>abc) "abc":name 1517 945 99.9%
Greedy quantifier (✗) a* ✗ 2640 893 94.4%
Literal character abc "abc" 15983 891 94.2%
Digit matcher \d DIGIT{1} 825 384 40.6%
Character representation \n LF 1142 370 39.1%
Dot-matcher . LD 673 328 34.7%
Character class (❖) [abc] [abc] 402 233 24.6%
Space matcher \s SPACE{1} 627 185 19.6%
Word matcher \w WORD{1} 503 155 16.4%
Negated character class (❖) [^abc] [^abc] 282 143 15.1%

Lazy quantifier (✗) a*? ✗ 177 63 6.7%
Capturing group (ab)c ("ab")"c" 108 53 5.6%
Line start ^ BOS 45 45 4.8%
Alternative a|bc ("a"|"bc") 85 41 4.3%
Quantified group (\s\w)* ARRAY{SPACE{1} WORD{1}}* 72 40 4.2%
Non-space matcher \S NSPACE{1} 63 33 3.5%
Non-capturing group (?:abc) ("abc") 44 30 3.2%
Non-word matcher \W [^a-zA-Z0-9] 13 10 1.1%
Line end $ EOS 8 8 0.8%
Optional group (abc)? ("abc")? 42 7 0.7%
Non-digit matcher \D [^0-9] 9 6 0.6%
Positive lookahead (?=abc) >>"abc" 3 3 0.3%
Quantified named capturing group (✗) (?<name>abc)* ✗ 4 2 0.2%
Non-word boundary (❖) \B ❖ 1 1 0.1%

In the first phase, the user submits a REGEX through
the Frontend (4), which is then forwarded to the Converter
component (1), where the basic rule-based conversion from
REGEX to DPL happens. Next, the converted DPL pattern is
checked for correctness using the Validation (2) component.
The converted pattern is presented in the Frontend (4). At
this point, the user can already decide to accept the DPL
pattern as final result.

In an optional second phase, optimization of the DPL
pattern can be initiated. In this case, the basic DPL pattern
is forwarded to the Optimizer (3) component, which detects
potential high-level DPL matchers. In the Frontend (4), the
user must then manually decide for each matcher whether the
suggestion should be applied. Optionally, the optimized pat-
tern can be validated again. The following sections provide
detailed information on each individual component.
4.1. Rule-Based Conversion (Step 1)

The Converter component utilizes the regexpp parser
library [39] to parse the input REGEX (similar as in Sec-
tion 3). The resulting AST is then traversed depth-first. Every
conversion step handling one AST node type incrementally
extends the DPL pattern result. For most REGEX features, a
one-to-one mapping to DPL can be implemented, as shown
in Table 2. However, greedy and lazy quantifiers require
special consideration. To effectively convert greedy and lazy
quantifiers from a REGEX to possessive quantifiers in DPL,

Figure 7: Overview of the Reptile approach

User

1 2

4

3

it is necessary to identify situations where no backtracking
is required. In the following, we present these situations and
our conversion strategies.
4.1.1. Greedy Quantifiers

We identify three cases where greedy quantifiers do not
require backtracking and therefore can be converted to DPL.
Fixed Greedy Quantifier (FGQ). The first case of quan-
tifiers without backtracking are quantifiers with fixed repe-
tition, such as {x,x} or {x} in short. As mentioned in Sec-
tion 2.1.1, greedy quantifiers may only release non-essential
characters. For example, in the case of the quantifier {2,4},
only the first two matched characters are essential, and the
following two may be released again if needed. Similarly,
for the plus quantifier (+), the first matched character is
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Figure 8: Safe greedy quantifier: last matcher in a RegEx

method=[A-Z]*

method=POST, endpoint=https://...

-----------

Figure 9: Safe greedy quantifier: followed by non-intersecting
literal matcher

\d{1,3}x

789

(no match)

Figure 10: Unsafe greedy quantifier: followed by intersecting
character class

\w+[a-z]

Hello-Muehlviertel!

-----

Figure 11: Unsafe greedy quantifier: followed by optional
matcher and character class

\w+\s?[a-z]

Hello-Muehlviertel!

-----

essential, all following ones may be released again. In the
quantifier with fixed repetition {x} however, all x characters
are essential, and therefore, there is no backtracking, i.e., no
characters are released.
Last Greedy Quantifier (LGQ). The second case, where
no backtracking can happen, is when the greedily quantified
matcher appears last in the REGEX (or last in any top-level
alternative). For example, in Figure 8, once the ’method=’
part matched, the following [A-Z]* part greedily matches
uppercase letters until either (i) the end of the target string is
reached, or (ii) a character is reached which does not match
the expression, i.e., is not an uppercase letter. This example
shows the latter case. However, in either case, the [A-Z]*

never has to release any already matched characters again
because no matcher comes afterwards that requires one of
the matched characters.
Non-Intersecting Greedy Quantifier (NGQ). The third
case where a matcher with a greedy quantifier can be safely
converted is if its succeeding matcher matches different char-
acters. That is, the languages defined by a matcher and its
successor do not intersect. In set mathematics, detecting this
condition is called the intersection (non-)emptiness problem.

In the implementation of REPTILE, we follow an existing
approach [40] and use the greenery library [41] to check
whether two matchers intersect. First, consider the simplest
case: a quantified matcher succeeded by a literal matcher as
shown in Figure 9. Here, the x attempts to match, after the
greedy d\{1,3} reaches the end of the target string. As the
x requires exactly one match, the digit matcher releases the
last matched character 9. The x attempts to match the 9 and
fails, resulting in an overall failure. It is important to realize
that this backtracking step is always unnecessary, no matter
to which target string the example REGEX is applied to. The
reason is that the two languages defined by \d{1,3} and x do
not intersect. While \d{1,3} matches any numbers between 0

and 999 (including numbers with leading zeros, such as 001),
the literal matcher x solely matches the lowercase character
x. Hence, no matter which digit is released by the digit
matcher, it can never be consumed by the literal matcher x.
In other words, the result does not change, when the greedy
quantifier is replaced by a possessive one, making it safe to
convert to DPL. This insight is summarized in the following
observation:
Observation. Given a REGEX 𝑃 , let 𝑃 = 𝑢𝑣, where 𝑢
and 𝑣 are subpatterns of 𝑃 . Let 𝑢 be greedily quantified,
and 𝑣 be non-optional. Let 𝐿(𝑢) and 𝐿(𝑣) be the languages
defined by 𝑢 and 𝑣, respectively. If 𝐿(𝑢) ∩ 𝐿(𝑣) = ∅, then
the quantifier of 𝑢 can be replaced by a possessive quantifier
without affecting 𝐿(𝑃 ).

Figure 10 shows an example where conversion is unsafe.
After the \w+ has matched Hello, it passes the control to
the final [a-z]. As this last matcher requires exactly one
character, it forces the initial \w+ to release one character,
finally matching the o. In summary, as the greedy \w+ and
the succeeding matcher [a-z] intersect, backtracking may be
necessary. Hence, the REGEX cannot be safely converted to
DPL.

The following special cases apply. In case the successor
is a group, the first element must be chosen from the group
and checked for intersection. If the group contains alter-
natives, intersection must be checked for the first element
of every alternative. In other words, the first element of
every alternative must not intersect with the current matcher.
Note that successor and first element refer to the next non-
optional matcher after the current matcher. The reason is that
optional matchers never cause the predecessor matcher to
release characters that have already been matched, as they do
not require any characters themselves. Consider the example
in Figure 11. Although \w+ and \s? do not intersect, the
result does not differ from the unsafe example in Figure 10.
Because \s? is optional, and the target string does not con-
tain a whitespace character, this matcher is skipped. The
last matcher in turn initiates backtracking, thus forcing the
initial \w+ to release one character. In summary, because the
greedy \w+ and the next non-optional matcher [a-z] intersect,
backtracking may be necessary and the REGEX cannot be
safely converted to DPL.
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Figure 12: Safe lazy quantifier: followed by non-intersecting
literal matcher

\d+?x$

78xx

Figure 13: Unsafe lazy quantifier: followed by intersecting
character class

\w+?[a-z]

Hello-Lavanttal!

--

Figure 14: Safe lazy quantifier: dot-matcher followed by exactly
one matcher

.+?!

Hello! Zillertal!

------

4.1.2. Lazy Quantifiers
Most strategies for converging greedy quantifiers pre-

sented in the previous section also apply to lazy quantifiers.
Fixed Lazy Quantifier (FLQ). As explained in Sec-
tion 2.1.1, lazy quantifiers expand their match if necessary
for an overall match to succeed. However, if a quantifier
has fixed repetition ({x,x} or {x}) the quantifier can never
expand its match beyond the initial match of length x. Hence,
a matcher with such a quantifier can be safely converted to
its possessive DPL counterpart.
Non-Intersecting Lazy Quantifier (NLQ). Next, a matcher
with a lazy quantifier can be safely converted if it does not
intersect with its next non-optional succeeding matcher as
shown in Figure 12. Here, \d+? first matches the minimum
number of required characters, namely the character 7.
Control is passed on to the x matcher, which cannot match
the next character in the target string (8), forcing \d+? to
expand its match by consuming 8. Then, x consumes the first
x in the target string. After that, the end-of-line matcher ($)
fails, forcing the x to release the character again. Now, \d+?
is asked to expand its initial match, which fails, resulting
in an overall fail. It is important to realize that the lazy
quantifier always expands its match until the succeeding x

can match the first time, but never beyond, no matter to
which target string the example REGEX is applied to. The
reason is that the two languages defined by \d+? and x do not
intersect. Hence, if the literal matcher releases its matched
character, it can never be consumed by the digit matcher.
In other words, the result does not change, when the lazy

quantifier is replaced by a possessive one, making it safe
to convert to DPL. In conclusion, the observation from the
previous section is not limited to greedy quantifiers, but also
applicable to lazy quantifiers.

However, when the matchers intersect, the conversion
cannot be safely performed, as shown in Figure 13. After
\w+? consumes the first character H, [a-z] consumes the
second one, resulting in an overall match. The possessive
DPL counterpart would consume all characters of Hello until
there is no character for the [a-z] left to match, resulting in
an overall fail.
Last Lazy Quantifier (LLQ). If a lazy quantifier appears
before an end-of-line matcher ($), it always matches until
the end of the target string. Therefore, this conversion is
safe as well. However, if the matcher appears at the very
end of the pattern, different rules apply. Because no matcher
comes afterwards, the last matcher never has to expand
beyond its initial match. In other words, it always matches
the minimum required number of characters if possible. That
is, lazy quantifiers {x,y}? at the end of a pattern must be
converted to {x}. Consequently, +? translates to {1}, and
*? translates to {0}. The latter case implies that the entire
matcher never consumes any characters, so it can be omitted.
Last Successor Lazy Quantifier (SLQ). Lastly, one spe-
cial case applies to the dot-matcher in combination with a
lazy quantifier, such as .+? and .*?. If such a matcher is
followed by exactly one matcher, i.e., its successor is the
last matcher in the pattern, it can be safely converted to the
lazy-like counterpart LD. As shown in Figure 14, the REGEX
behaves the same way as its DPL equivalent LD+ "!" would.
Note that any additional matcher may break this behavior.
For example, adding a EOL (respective $) matcher at the
end, would require the LD to expand its match, which is not
supported, resulting in an overall fail. Note that multiple
literal matchers are considered one single matcher in the
DPL, as mentioned in Section 2.2.1. Hence, this strategy is
also applicable to patterns where a dot-matcher is followed
by multiple literal matchers, such as .+?abc, which translates
to LD+ "abc".
4.2. Pattern Validation (Step 2)

The original REGEX and the generated DPL pattern
are considered semantically equivalent only if their defined
languages are equivalent. That is, the DPL pattern must
accept all strings that are accepted by the REGEX and reject
all strings that are rejected by the REGEX. However, when
dealing with REGEXES, it is often impossible to enumerate
all strings of the defined language, if it is infinite (e.g.,
when unbound quantifiers such as * or + occur). One way
to test the equivalence of two regular expressions is to
compare their minimal deterministic finite automata (DFA)
representations [42]. However, this cannot be used in our
approach, because no algorithm exists that converts DPL to
DFA.

To overcome this, we adopt the approach proposed
in [43], randomly generating a fixed number of strings based

Fragner et al.: Template by Elsevier Page 8 of 18



Converting RegExes into Dynatrace Pattern Language

on the original REGEX. These generated strings then serve
as positive test cases for the DPL pattern. Negative test cases
can be obtained by generating matching strings based on the
REGEX’s complement. Those negative tests pass if they are
not matched by the converted DPL pattern. Although such
test cases cannot formally proof semantic equivalence, they
provide strong empirical evidence (similar to unit tests). In
the remainder of the paper, we name a pattern translation
from REGEX to DPL that passed these criteria as a "safe"
translation.

All test cases are finally matched against the converted
DPL pattern. A positive test case is considered to be passed,
only if both (i) it matches the string entirely (ii) it extracts
the same field values as the original REGEX.
4.3. Pattern Optimization (Step 3)

After a REGEX was converted to DPL and validated,
optimization of the DPL pattern can be initiated. That is,
potential high-level DPL matchers (↪ Section 2.2.3) are
detected.
4.3.1. Optimization Objective

One potential solution to detect DPL’s high-level match-
ers is to map each of them to a corresponding REGEX and
search for this sub-pattern in the original REGEX. However,
it is unlikely that an exact match can be found.

Figure 15 presents two illustrative REGEX examples.
Both examples extract an IP port, which can be matched by
INT in DPL. Line 2 illustrates a variant that precisely matches
one to five digits, which is less than what would be matched
by the INT matcher. Line 5 depicts a variant that matches an
arbitrary number of digits, which is more than what would
be matched by the INT matcher. Nevertheless, it is desired to
use the INT matcher in both cases for the reasons mentioned
in Section 2.2.

Figure 15: RegEx matching an IP port

1 // matching less than INT

2 port\s(?<ip_port>\d{1,5})

3

4 // matching more than INT

5 port\s(?<ip_port>\d*)

Purely algorithmic detection based on the defined lan-
guage of the high-level matcher therefore does not seem fea-
sible. Instead, other factors shall be included in the detection:

• The name of a named capturing group. For example,
an export name src_addr may indicate that the group
extracts an IP address. Note that these names are
user-defined and may appear in languages other than
English.

• The context of the REGEX. For example, if a REGEX
contains the literal matcher HTTP/1\.1, an export name
reponse_code can most likely be interpreted as an
HTTP response code.

We hypothesize that a machine learning (ML) based
approach could yield useful results to effectively identify
the context of a pattern and the dependencies between the
matchers to suggest potential high-level DPL matchers. For
each prediction, the user must manually review the sug-
gestions and confirm their suitability for the intended use.
This is necessary because the semantics of the DPL pattern
most likely changes when using high-level matchers. To
emphasize this, Figure 16 compares the language of an
original REGEX with the language of its converted DPL
pattern before and after detection of high-level matchers.
Even in the event that the languages of both REGEX and
DPL pattern are semantically equivalent (see left part of
Figure 16, i.e., a "perfect" translation), high-level matchers
can still be employed. After this, the defined languages of the
REGEX and DPL pattern may differ (right part of Figure 16).
However, this is acceptable as long as the optimized DPL
pattern continues to include the desired language, which rep-
resents the REGEX author’s true intent. Note that a REGEX
often is an approximation of this desired language [20].

Figure 16: Language comparison of a RegEx and DPL pattern
before (left) and after (right) the optimization step

Original 
RegEx

Converted 
DPL

Desired Desired
Original
RegEx

Optimized 
DPL

4.3.2. Matcher Prediction
To detect the high-level DPL matchers as explained

above, the basic DPL pattern as a result of the rule-based
translation is sent together with the problem and task to
GPT-4.

One advantage of GPT-4 is that the model is already pre-
trained [44] and can understand inputs in natural language as
well as programming languages and deliver results without
fine-tuning. OpenAI does not provide specific information
about the training data used. Instead, it is vaguely stated
that it includes "publicly available data (such as internet
data)" [44]. Consequently, the training dataset may also
contain the public DPL documentation [25]. However, our
initial interactions with the model have shown that GPT-4 is
not able to generate valid DPL patterns from a target descrip-
tion alone (e.g., "Generate a DPL pattern that matches...").
Therefore, we chose to use the zero-shot prompting strategy
describing the optimization task in detail. This technique can
lead to more robust results compared to prompts containing
demonstrations [45].

The prompt consists of the following four sections: First,
the basic DPL pattern is presented as a whole and separated
into fragments. We use the term fragments to refer to the
individual matchers, alternatives, and groups on the highest
level of a pattern. For example, "a"*"b"("c"|"d")? consists
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Figure 17: Reptile’s frontend showing a converted pattern including high-level matcher suggestions after pattern optimization

of three fragments "a"*, "b", and ("c"|"d")?. Then, the
optimization task is described including a list of high-level
matchers which can be suggested for each fragment. To
reduce complexity (also in regards to evaluation), the list
of included high-level matchers is limited to the selection
of five specific and generic matchers listed below9. These
matchers were selected, because we observed that real-world
application logs often contain recurring information such as
IP addresses, timestamps, IP ports, HTTP response codes,
etc. which are covered by these DPL matchers.

• IPADDR (matching IPv4 and IPv6 addresses)
• INT, LONG, DOUBLE
• TIMESTAMP (with default format yyyy-MM-dd HH:mm:ss)
Next, criteria are defined, based on which matchers

can be predicted, namely a matcher’s export name and its
accepted language. It is explained that parentheses can be
omitted if an entire group is replaced by a matcher and where
the export name must be attached. Lastly, the response for-
mat is restricted to JSON and the expected response schema
is defined. Each prompt is preceded with the following
message: "You act as a backend suggesting optimizations
for the DPL (Dynatrace Pattern Language) responding in
plain JSON." The full prompt is provided in a public GitHub
repository [46].
4.4. REPTILE Frontend (Step 4)

The Frontend component, implemented solely for vali-
dation purposes, displays conversion and validation results.
It also facilitates the review process during pattern optimiza-
tion. Figure 17 shows a screenshot of REPTILE’s frontend10.
The REGEX for conversion can be entered in the topmost
input field. Then, the "Convert" button in the top right initi-
ates the rule-based conversion. After conversion is finished,

9A complete list of built-in matchers is available online [36].
10We also provide a screencast to illustrate the tool and its frontend

https://video.dynatrace.com/watch/oxUekmeEehmGHTAZ29d8HN?

the generated DPL pattern is shown in the input field on the
bottom where the result can be modified if necessary. Above,
the results of the verification and validation steps are shown
as explained in Section 4.2. Test results can be analyzed in
detail, by clicking the "... tests passed" chip, which opens a
sheet overlay containing the test results.

For visibility, the pattern fragments (↪ Section 4.3.2)
are shown in the central component labeled "Pattern Con-
version". When the mouse cursor is moved over a fragment,
both the fragment and its REGEX or DPL counterpart are
highlighted. This way, the user can trace how each fragment
of the REGEX was converted into which fragment of the
DPL pattern. This is most relevant in case of a best-effort
conversion (shown as an "unsafe" conversion in the UI). That
is, the affected greedy or lazy quantifier is transformed into
its corresponding possessive DPL quantifier. In this case, the
respective fragment’s background color is changed to yellow.
Moreover, the reason why a conversion could not be safely
done is shown for the respective fragment, e.g., because the
quantified matcher intersects with its successor. Based on
this information, the user can decide whether to accept or
modify the pattern.

Optionally, the user can initiate the optimization of the
DPL pattern. Each suggested alternative is then rendered
above its respective fragment. The user can decide which
alternative to choose by clicking on the fragments. The final
DPL pattern in the bottom line is updated after every selec-
tion. After each update, the syntax is checked automatically.
Generating and executing the test cases can be triggered
manually via "Run tests" or "Rerun" buttons respectively.
4.5. Implementation Details

We created REPTILE as a custom React single-page
application (SPA) that uses two services from the Dynatrace
environment to validate DPL patterns. To verify the DPL
patterns’ syntax, the Query Assistance Service is used. To
validate the semantics, the pattern is matched against the test
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cases described in Section 4.2 with the help of the Pattern
Developer Service. Furthermore, the App Toolkit [47] facil-
itates rapid app development, setup, and deployment, while
the Strato Design System [48] offers pre-built UI components
for creating a contemporary and consistent user interface.
We currently cannot provide a publicly available version of
the prototype because it is bound to internal services of Dy-
natrace. However, in the future we will work on minimizing
the dependency on the Dynatrace environment to facilitate
the usage of our prototype.

To detect the high-level DPL matchers as explained
in Section 4.3, a dedicated GPT-4 instance without fine-
tuning is used. It is accessed via the Azure OpenAI Ser-
vice [49]. To detect if the defined languages of an element
and its successor intersect (↪ Section 4.1), we use the green-
ery library [41]. Because this library is written in Python,
it cannot be directly used within REPTILE. To overcome
this limitation, we deployed greenery as an AWS Lambda
serverless function. This library is also used to obtain a
REGEX’s complement necessary to generate negative test
cases (↪ Section 4.2). The reregexp library [50] is used to
generate random strings based on the original REGEX and its
complement, which serve as positive and negative test cases
as described in Section 4.2.

5. Evaluation
This section evaluates the REPTILE approach. First,

Section 5.1 assesses the proportion of safely convertible
REGEXES. Please note, as described above, we use the term
"safe" conversion if a REGEX can be converted into DPL
while retaining the original semantics. Second, Section 5.2
evaluates the accuracy of REPTILE’s pattern optimization.
5.1. Rule-Based Conversion

To answer RQ2, this section assesses the efficacy of our
approach. To this end, we utilized the real-world dataset
from Section 3 to assess the number of REGEXES affected
by our conversion strategies. The program for counting the
REGEX features was extended by a new feature category for
every conversion strategy presented in Section 4.1.

Tables 3 and 4 show the coverage of the quantifier
conversion strategies presented in Section 4.1. Overall,
2,640 greedy quantifiers were found in 893 out of 946
REGEXES of our industrial dataset. The majority of greedy
quantifiers, namely 1,546 (58.56%), are NGQs occurring
in 386 REGEXES. Note, while LGQs did not occur most
frequently, they affected more REGEXES, namely 550. Re-
garding greedy quantifiers, 658 (i.e., 893 - 235) out of
893 (= 73.7%) affected REGEXES were safely converted
with REPTILE. 235 REGEXES contained at least one greedy
quantifier for which REPTILE does not provide a conversion
strategy.

In contrast to greedy quantifiers, only 177 lazy quanti-
fiers were found in 63 out of 946 REGEXES. The majority of
them, namely 41, are SLQs occurring in 41 REGEXES. Our

Table 3
Greedy quantifier conversion results

Type Total # Affected #

Fixed Greedy Quantifier (FGQ) 167 94
Last Greedy Quantifier (LGQ) 558 550
Non-Intersecting Greedy Quantifier (NGQ) 1546 386
Remaining 369 235

Total Greedy Quantifiers 2640 893

Table 4
Lazy quantifier conversion results

Type Total # Affected #

Fixed Lazy Quantifier (FLQ) 0 0
Non-Intersecting Lazy Quantifier (NLQ) 8 6
Last Lazy Quantifier (LLQ) 0 0
Last Successor Lazy Quantifier (SLQ) 41 41
Remaining 128 21

Total Lazy Quantifiers 177 63

industrial dataset did not contain any FLQs or LLQs. Re-
garding lazy quantifiers, 42 (i.e., 63 - 21) out of 63 (= 66.7%)
affected REGEXES were safely converted with REPTILE.

Table 5 shows the results for all conversion strategies ap-
plied in combination. Column Affected # corresponds to the
number of REGEXES covered. Affected % reports the same
proportion relative to the dataset size (946 REGEXES). The
results show that REPTILE’s rule-based conversion increased
the number of safely converted REGEXES by 681 to 697 (=
16 + 681) or 73.7% safely converted REGEXES.

Due to an occurrence of a quantified named capturing
group, conversion was syntactically impossible for only
2 REGEXES. For the remaining 26.1% of the REGEXES,
REPTILE provided a best-effort conversion. The majority
of these (17.2%) cannot be safely converted, because they
contain a quantified dot-matcher (either greedy or lazy).
The remaining 8.9% contain some other quantified matcher,
which in all cases are observed to be greedy. Note that these
REGEXES may also contain dot-matchers, but additionally
contain at least one other quantified matcher.

The correctness was validated for the 697 (= 16 +
681) converted REGEXES, using randomly generated sam-
ples as described in Section 4.2. Due to a dependency on
the greenery library (as discussed in Section 4.5), negative
test case generation was only conducted for a subset of
REGEXES. The reason for this is that greenery is rigorous in
its handling of escapings. While in PCRE, for example, both
\% and % are recognized as literal matchers, greenery only
allows the latter variant. However, not all special cases are
documented in the library. To work around this issue and also
save resources, we created negative tests for 200 randomly
selected REGEXES which are accepted by greenery.

We performed two test runs with 500 test cases each, re-
sulting in 1,000 samples per REGEX. All 897,000 generated
test cases (697 * 1,000 = 697,000 positive and 200 * 1,000 =
200,000 negative test cases) were reported to be successful.
That is, for positive tests, both the overall matches and their
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Table 5
Conversion results for all conversion strategies applied in combination

Type Affected # Affected % Combined % Conversion

Initially converted 16 1.7% 73.7% safeAdditionally converted 681 72.0%

Dot-matcher with greedy or lazy quantifier 163 17.2% 26.1% best-effortRemaining greedy quantifiers 84 8.9%

Quantified named capturing groups 2 0.2% 0.2% not possible

Total 946 100.0% 100.0% -

individual captured values were found to be equivalent. For
the negative tests, no match was reported as desired. In con-
clusion, these results indicate full semantic congruence and,
therefore, correct conversion of all converted REGEXES.

Answer to RQ2

In a real-world dataset containing 946 REGEXES,
REPTILE increased the number of safely converted
REGEXES (that is, automatically without human judg-
ment) from initially 1.7% to 73.7%.

5.2. Pattern Optimization
This section presents the evaluation of the correctness

of REPTILE’s DPL pattern optimization to answer the final
research question RQ3.
5.2.1. Evaluation Datasets

For this evaluation, we require a set of REGEXES and
actual log entries that represent the ground truth to check
whether the optimized DPL patterns correctly match the
corresponding parts of a log entry. For that, we could not use
the REGEXES from the previous evaluation because, due to
confidentiality reasons, we did not have access to the actual
log files from our industrial partner.

To address this issue, we first selected a set of technolo-
gies and then searched the internet for corresponding logs
and REGEXES to parse them. We limited the technologies
to logs, such as from Apache, NGINX, AWS, for which
DPL Architect [51] provides built-in DPL patterns. For
each technology, we entered "[technology] logs" on Google
and perplexity11 to search the internet for log files from
the respective technology. Next, we entered "[technology]
regex" to search the internet for REGEXES with which re-
spective log files can be parsed. In total, we collected 23
REGEXES from 13 technologies, which are enumerated in
Table 6. The column Logs # shows the overall number of
log entries found for each technology. The column Sources
provides information on the logs’ origins. The majority of
REGEXES originates from the Regex101 community [52] and
the official ChaosSearch documentation [53]. Their length
ranges from 121 to 787 characters, with an average length of
271.6 characters. We provide the REGEXES and links to the
corresponding log files in a public GitHub repository [46].

11https://www.perplexity.ai/

For each technology, we first combined all logs into a
single file. Next, we executed each REGEX on the corre-
sponding log file to collect all log entries that match the
REGEX. These log entries represent the positive test cases.
Conversely, negative test cases were obtained by filtering
the corresponding log file for non-matching log entries. The
columns 𝜀+ and 𝜀− in Table 6 show the number of positive
and negative test cases respectively. Note, for REGEXES with
more than 1,000 test cases, the log entries were sampled
randomly and limited to 1,000 (marked as * in Table 6).

Furthermore note, for seven REGEXES (P1a–P1d, P7a,
P8a–P8b), we observed that some of the corresponding log
entries contain optional elements. For example, some log
entries contain dashes in places where IP addresses are
expected. These are matched by the original REGEX and
its corresponding DPL pattern (e.g., via LD or NSPACE), but
not by the high-level matcher IPADDR, because a dash is not
a valid IP address. Therefore, we removed these log entries
and, consequently, test cases from the datasets leading to the
number of positive test cases actually used for the evaluation
presented in column 𝜀+𝑆 in Table 6.
5.2.2. Experimental Set-Up

Using the dataset from above, we first applied REPTILE’s
rule-based conversion to convert each of the 23 REGEXES
to a DPL pattern and optimize it with REPTILE’s DPL
optimization (↪ Section 4.3). As already explained in that
section, we used an OpenAI’s GPT-4 instance via Azure
OpenAI Service and our zero-shot prompting strategy for the
optimization.

Next, for every optimized DPL pattern we obtained the
fragments (↪ Section 4.3.2) for which a prediction of a
high-level matcher was made. For each predicted high-level
matcher in a DPL pattern, we classified it as True Positive
(TP) or False Positive (FP) by replacing the fragment by
the predicted matcher and execute the pattern on the test
cases listed in Table 6. If all test cases passed, the prediction
was categorized as TP, otherwise as FP. An exception to
this is the TIMESTAMP matcher. Because this matcher is used
with its default date format (↪ Section 2.2.3), a prediction
was categorized as TP if it was predicted for any fragment
matching a timestamp (= fragment hit), even if the default
format was incorrect.

The remaining fragments of a pattern were manually
categorized as True Negatives (TN) or False Negatives (FN)
as follows. A fragment for which the matcher can be applied
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Table 6
23 RegExes with their corresponding positive (𝜀+), sanitized
positive (𝜀+𝑆), and negative (𝜀−) test cases; entries marked as *
are randomly sampled and limited to 1,000

RegEx Technology Sources Logs # 𝜀+ 𝜀+𝑆 𝜀−

P1a

Apache Access [54, 55] 95,332

*1,000 981 -
P1b *1,000 973 470
P1c *1,000 982 *1,000
P1d *1,000 986 *1,000

P2a Apache Error [54] 67,456 *1,000 1,000 *1,000
P2b 110 110 *1,000

P3a

NGINX Access [52] 51,462

*1,000 1,000 51
P3b *1,000 1,000 51
P3c *1,000 1,000 -
P3d *1,000 1,000 -

P4a OpenSSH [52, 56] 2,035 525 525 *1,000

P5a
AWS Cloudfront [57] 76

10 10 66
P5b 76 76 -
P5c 76 76 -

P6a AWS Route 53 [58] 5 5 5 -

P7a AWS S3 [59] 10 10 8 -

P8a AWS VPC Flow [60–62] 24 24 21 -
P8b 24 19 -

P9a Core DNS [52, 63, 64] 15 15 15 -

P10a Log4j [52] 42 42 42 -

P11a NGINX Error Log [52] 27 27 27 -

P12a SV.NET Service Bus [52] 22 22 22 -

P13a HDFS Audit Log [52] 31 31 31 -

but was not predicted was categorized as FN. All other
remaining fragments were categorized as TN. These are the
fragments for which the matcher could not be applied and
was also not predicted by REPTILE. The manual categoriza-
tion was performed by the first author and the results were
validated by a senior software engineer at Dynatrace, who
is responsible for the development and maintenance of the
DPL. Conflicting cases were discussed by both of them and
agreement was reached for all cases.

Consider the DPL pattern LD*:ip ":" WORD+:msg that con-
sists of the three fragments LD*:ip, ":", and WORD+:msg. For
the sake of argument, assume that IPADDR was predicted for
the first and last fragment during optimization. This results
in TP=1 (correct prediction of first fragment, assuming all
test cases passed) and FP=1 (incorrect prediction of last
fragment, assuming at least one test case failed). Further,
FN=0, because there is no additional fragment where IPADDR

could have been correctly predicted. Lastly, TN=1, because
the matcher was not predicted for the remaining middle
fragment (which is correct).

Based on the TPs, FPs, FNs, and TNs, the precision, re-
call, F1-score, and Matthews correlation coefficient (MCC)
were calculated for each high-level matcher using the formu-
las below.

Precision = TP
TP + FP Recall = TP

TP + FN

used to obtain the F1-score as follows:

F1-score = 2 × Precision × Recall
Precision + Recall

MCC = TP × TN − FP × FN
√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

5.2.3. Results
Table 7 shows the results for each high-level matcher

across all 23 patterns as described before. The column ∑

shows the total number of fragments in our dataset, namely
579. Referring to the results, we observe high precision
values of more than 0.85 across all matchers. This is due to
the low number of false positives (FPs) ranging between 0
and 5 for the five high-level matchers. This means that when
a prediction is made by REPTILE, it is correct in most cases.

The recall values indicate that for most fragments for
which a high-level matcher is possible, such a matcher is
also predicted by REPTILE. We emphasize that a recall
of 1.00 was achieved for the three matchers IPADDR, LONG,
and TIMESTAMP, indicating that all optimization potential was
utilized. A relatively low recall of 0.71 is only observed for
the DOUBLE matcher. However, this can be attributed to the
limited number of 7 fragments for this matcher, potentially
leading to less representative results.

Looking at the F1-score and MCC values in Table 7, we
observe values of 0.91 and higher for 4 high-level match-
ers, whereas the best result (0.98 F1-score and MCC) was
obtained for TIMESTAMP. Also the F1-score and MCC of 0.83
and 0.84, respectively, for DOUBLE indicate good prediction
performance of REPTILE’s pattern optimization.

Answer to RQ3

Optimizing 23 real-world patterns, REPTILE shows an
average F1-score of 0.91 and an average MCC of 0.92
for high-level matcher prediction across five selected
matchers.

6. Discussion
In this section, we first discuss potential implications of

our results on practitioners and researchers. Thereafter, we
discuss threats to validity of the results from our experi-
ments.
6.1. Implications

The results of our evaluation show that REPTILE can au-
tomatically and correctly convert 73.7% of the REGEXES to
DPL patterns. Furthermore, for the other 26.5% of REGEXES,
it provides a best-effort conversion that need to be reviewed
by a user. However, for these best-effort conversions, most
manual work is eliminated by REPTILE because the review is
only needed for parts/fragments of the REGEXES that could
not be converted by one of REPTILE’s conversion strategy.
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Table 7
Reptile’s pattern optimization results for 23 RegExes consisting of 579 pattern fragments

Matcher
∑

TP FP FN TN Precision Recall F1-score MCC

IPADDR 579 20 3 0 556 0.87 1.00 0.93 0.93
INT 579 43 5 3 528 0.90 0.93 0.91 0.91
LONG 579 11 2 0 566 0.85 1.00 0.92 0.92
DOUBLE 579 5 0 2 572 1.00 0.71 0.83 0.84
TIMESTAMP (fragment hit) 579 23 1 0 555 0.96 1.00 0.98 0.98

Average - - - - - 0.91 0.93 0.91 0.92

This clearly shows that REPTILE will save users time and
effort.

Furthermore, REPTILE’s pattern optimization offers po-
tential improvements that only need to be confirmed or
rejected by the user. The results from the evaluation show
high precision and recall values across five selected high-
level matchers. Consequently, if a fragment in a DPL pattern
can be replaced by an adequate high-level matcher, REPTILE
predicts it, and most likely it is the correct one. This helps
users to create easier-to-understand and maintain DPL pat-
terns with little extra effort.

REPTILE is currently deployed in a Dynatrace internal
environment to test its usefulness. Several internal users
started using it — within 4 months, we recorded 29 user
sessions with an average duration of more than 50 minutes.
The tool was also presented at the Dynatrace Principal
Solution Engineer Summit 2024 in Denver. We received
positive feedback from Solution Engineers that REPTILE is
conceived to be highly useful and is expected to greatly
support the conversion process. Both pieces of evidence
support the benefits of our approach.

Researchers also benefit from the presented results. First,
we provide a detailed description of our approach that allows
other researchers to adopt it for converting REGEXES to
other pattern languages, such as Grok. As mentioned in Sec-
tion 4.5, we will also work on minimizing the dependency on
the Dynatrace environment to allow other researchers to use
and extend REPTILE. Finally, we provide a publicly available
dataset that currently contains 23 real-world REGEXES and
corresponding log files. It can be used to evaluate future
extensions of REPTILE or other approaches for converting
REGEXES to DPL or other pattern languages.
6.2. Threats to Validity

We identify the following threats to internal and ex-
ternal validity of our findings. Regarding internal validity,
we found typos in few REGEXES of the industrial dataset.
Figure 18 shows an example where the escaping of the dot in
HTTP\/1.1 is missing. This error remained undetected, as the
dot-matcher matches everything, including the desired literal
dot. This resulted in an incorrect count of the matcher as dot-
matcher in Section 3, despite its intended purpose of being
a literal matcher. However, a manual inspection of a random
sample of REGEXES showed that this issue only affects a

few patterns, posing little risk to the validity of the presented
results.
Figure 18: RegEx containing a dot with missing escaping

HTTP\/1.1 (?<RespCode>[0-9]+) (?<RespSize>[0-9]+)

Another threat to internal validity concerns the evalua-
tion of the correct conversion of REGEXES to DPL patterns
in RQ2. Due to a limitation of greenery, negative test cases
were not generated for all real-world REGEXES (↪ Sec-
tion 5.1). But, we are confident that the results are still valid
because positive test cases were generated and passed for
all patterns which suggests that the converted patterns fully
cover the language of the original REGEXES. Furthermore,
we performed this evaluation with negative test cases for
a random sample of 200 REGEXES which are accepted by
greenery. We view this sample as sufficiently large.

Regarding external validity, we performed the experi-
ments for RQ1 and RQ2 with one industrial dataset from
a single organization in a specific industry. Therefore, the
results might not generalize to other companies. We mit-
igated this threat by having our dataset assessed by two
experienced solution engineers at Dynatrace. Both found
that the dataset contains REGEXES that encompass common
use cases for extracting key performance indicators (KPIs)
and other business information, similar to those seen from
customers in other business domains, such as banking. Fur-
thermore, the evaluation of REPTILE’s pattern optimization
demonstrated that our approach indeed generalizes to unseen
patterns from various other sources. Regarding RQ3, we
mitigated this threat by considering REGEXES and log files
from 13 different popular technologies.

REPTILE currently supports only the conversion from
REGEXES to DPL, which limits the generalizability of the
results. However, as mentioned in Section 1, DPL is the log
parsing pattern language offered by Dynatrace. And Dyna-
trace is a leading company in providing software observabil-
ity solutions [27] used by many companies from different
business domains. Therefore, we can safely assume that DPL
is a representative pattern language. In addition, REPTILE
follows a modular design in which individual components,
such as the Converter or the Optimizer (↪ Figure 7), can
be extended or replaced. This facilitates the adaption of
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REPTILE’s conversion strategies and optimization approach.
We plan such extensions as part of our future work, for
instance to convert REGEXES to Grok.

Another threat to external validity concerns the evalu-
ation of REPTILE’s pattern optimization in RQ3 (↪ Sec-
tion 5.2). The evaluation was limited to five common high-
level matchers while DPL provides more such matchers. We
mitigated this threat by selecting the five matchers based on
our observations from the real-world dataset. They showed
that IP addresses, timestamps, IP ports, HTTP response
codes, and other numbers occur frequently in log entries.
In future work, we plan to extend our approach to consider
further high-level matchers, such as HEXINT or CREDITCARD.

Lastly, REPTILE’s pattern optimization was only per-
formed and evaluated with GPT-4 using one prompting
strategy which might limit the generalizability of the results.
First, we would like to emphasize that the goal of this study
was not to find the best-performing LLM and prompting
strategy, but to assess the feasibility of LLM-based pattern
optimization. Second, we chose GPT-4 because it showed
good performance in solving many other software engineer-
ing tasks [65]. Future work will be concerned with exploring
other LLMs and deep learning algorithms in addition to
model fine-tuning [66] and other prompt engineering strate-
gies, such as few-shot prompting [45] or chain-of-thought
prompting [67].

7. Related Work
Due to the breadth of its use, the body of research on

regular expressions is extensive and in it’s entirety beyond
the scope of this work. Thus, we focus here on approaches
with similar intent — the generation or conversion from and
to regular expressions within a limited set of applications.

The conversion of regular expressions has been of inter-
est for a longer time starting with Glushkov’s automata [68]
to convert a REGEX into nondeterministic finite automata
(NFA) [69–71]. In addition, the conversion to parsing ex-
pression grammars (PEG) [72] has been proposed [73, 74]
as PEGs have a more formal basis compared to the diverging
definitions and use of REGEXES.

While REGEXES are very powerful in many applica-
tion scenarios such as log parsing [1, 2], their creation
and maintenance are difficult and cumbersome [1, 2]. Thus
researchers have previously investigated advanced methods
for creating REGEXES. In the context of log parsing, syn-
thesizing REGEXES from examples is a very interesting
but non-trivial option [75]. Bartoli et al. [12] approached
the REGEX synthesis problem by applying multi-objective
genetic programming (GP), a paradigm rooted in evolution-
ary principles [76]. Later work [13] provides support for
additional features, including alternatives and lookarounds.
In a related study, Wang et al. [77] generated patterns for use
in filtering tasks. Very recently, Chen et al. [78] introduced
the concept of semantic regular expressions with a corre-
sponding synthesis approach specifically targeted at data

extraction scenarios. Semantic REGEXES generalize stan-
dard REGEXES by considering a type and some additional
criterion. For instance, the match needs to be a city (type) in
Germany (criterion).

Further work focused on generating more robust REG
EXES [18, 79]. Synthesizing REGEXES from natural lan-
guage has been a promising research direction in recent years
[43, 67, 80, 81]. Despite promising results, these approaches
are not yet ready for practical use [16]. The benchmarks
used for validation only contain short REGEXES and natural
language descriptions with limited vocabulary. Real-world
REGEXES are longer and more complicated, requiring more
complex natural language descriptions.

A recent study by Zhang et al. [21] demonstrated that
high-quality results can be achieved with current large lan-
guage models (LLMs) even without model fine-tuning. The
authors criticized the use of sequence-to-sequence models in
previous works, which generate REGEX patterns character
after character from left to right. It was recognized that
this is not aligned with the order in which REGEXES are
evaluated during pattern matching, which introduces the risk
of syntactically incorrect patterns.

In contrast, their methodology is based on the concept
of chain-of-thought prompting [67], which involves con-
structing multiple prompts in a step-by-step manner. This
approach has been demonstrated to enhance the perfor-
mance and interpretability of results produced by pre-trained
LLMs. In their approach, the authors presented a novel
REGEX formulation named chain-of-inference, where each
chain represents a single sub-REGEX. During generation,
these sub-problems are solved in the order of pattern match-
ing, which mimics the human way of thinking. At the same
time, no changes to the model or its training process are
required.

To overcome some limitations of the approaches pre-
sented above, others have suggested multi-modal approaches
[16, 17]. Here, a synthesis from natural language is the
first step with a resulting incomplete pattern. In a second
step, provided examples are used to complete the patterns.
While promising, in those approaches errors propagate in a
way that if the initially generated pattern contains errors, so
will the final pattern. Li et al. [15] compensate for this by
first generating complete patterns from natural language and
then checking against provided examples and correcting if
required. The described two-step approaches bear similarity
to our work presented here as also our conversion requires
multiple steps to ensure results with a high conversion rate.

As shown here, the conversion and generation of REG
EXES has been intensively studied but to the best of our
knowledge, no approach to the translation between pattern
languages — as we have demonstrated — exists.

A key issue with REGEXES in real-world applications
is an effect called catastrophic backtracking [14, 18, 19,
34, 35] which can occur when matchers with backtracking
behavior are used (as it is common in many programming
languages). This will cause super-linear runtime complexity
for the matcher which is a functional issue but could also
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lead to a vulnerability called Regular Expression Denial of
Service (REDoS) [82]. Besides great care in REGEX design
and thorough edge-case testing, approaches to combat this
issue have been proposed, often by using static analysis of
program code to detect vulnerable REGEXES [35, 83, 84] or
by synthesizing safe ones [18]. Languages like DPL that do
not strive for universal applicability but are targeted at spe-
cific use-cases do not employ backtracking exactly to avoid
such issues. In usage scenarios such as the ones sketched
in this work, converting REGEXES to such a representation
has to be done in multiple steps to achieve a high degree of
compatibility.
8. Conclusion

In this work, we presented REPTILE, an approach that
combines a rule-based approach for converting REGEXES to
DPL patterns with a best-effort approach for cases where a
full conversion is not possible. Furthermore, we presented
REPTILE’s pattern optimization approach to optimize the
obtained DPL patterns by predicting high-level matchers.
For that, we explored the capabilities of using GPT-4 and
a zero-shot prompting strategy.

The evaluation of REPTILE’s rule-based conversion with
946 REGEXES collected from a large company showed that
REPTILE safely converted 73.7% of them. For the remaining
26.3% REGEXES it provided a best-effort conversion that
required the input from the user to safely convert them. The
evaluation of REPTILE’s pattern optimization with 23 other
real-world REGEXES collected from 13 different, popular
technologies showed an average F1-score and MCC above
0.91 across five high-level DPL matchers. These results have
ample practical implications for companies that migrate or
migrated to a modern log analytics platform, such as Dy-
natrace. They can use REPTILE to automatically and safely
convert their REGEXES to DPL patterns.

In future work, we will extend REPTILE to consider
other source and target pattern languages, such as Grok.
Furthermore, we plan to extend our evaluation to REGEXES
from other business domains. Regarding REPTILE’s pattern
optimization, we plan to extend our approach to consider
further high-level matchers, such as HEXINT or CREDITCARD.
Furthermore, we plan to explore other LLMs and prompting
strategies, such as few-shot prompting [45] or chain-of-
thought prompting [67].
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