
26	 I E E E S o f t w a r E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 	 0 74 0 - 74 5 9 / 0 8 / $ 2 5 . 0 0 © 2 0 0 9 I E E E

Change Analysis
with Evolizer
and ChangeDistiller

Harald C. Gall, Beat Fluri, and Martin Pinzger, University of Zurich

Evolizer, a platform
for mining software
archives, and
ChangeDistiller,
a change extraction
and analysis tool,
enable the
retrospective analysis
of a software
system’s evolution.

S
oftware must undergo continuous change or it becomes progressively less use-
ful.1 Many software systems represent business processes that must be adapted
continuously owing to changing environments, business reorientation, or
modernization.

To understand why a software system be-
comes less evolvable when it undergoes continuous
change, and to reduce its maintenance costs, we in-
vestigate its change history and obtain knowledge
to support its evolution. Our research field, soft-
ware evolution analysis, is the retrospective analy-
sis of software systems’ evolution, or history. Such
evolution comprises all phases and activities in the
software system’s life cycle.

A software system’s historical data has two di-
mensions.2 The what and why dimension focuses
on understanding the software evolution phe-
nomenon—that is, it tries to answer why making
continuous changes to software increases its com-
plexity. The how dimension focuses on support-
ing developers and project managers in their daily
business—for instance, by providing feedback dur-
ing development.

In this article, we discuss the potential of mining
software archives by presenting the results of three
experimental studies and a tool that supports soft-
ware evolution in integrated development environ-
ments (IDEs). Our techniques and tools focus on
change analysis, or discovering all kinds of change
types, from interface to condition and method in-
vocation changes. We also describe how such a
fine-grained change analysis works. Evolizer, our

platform for mining software archives, is the ba-
sis for ChangeDistiller, our change extraction
and analysis tool, which investigates fine-grained
source code changes. While coarse-grained change
analysis is limited to the level of files and textual
differences, fine-grained change analysis provides
detailed information on the level of statement and
declaration changes.

The Evolizer Software
Evolution Analysis Platform
We developed Evolizer, a platform to enable soft-
ware evolution analysis, in Eclipse (www.eclipse.
org). It’s similar to Kenyon3 or eROSE,4 but it sys-
tematically integrates change history with version
and bug data. Evolizer provides a set of metamod-
els to represent software project data along with
adequate importer tools to obtain this data from
software project repositories. Our current imple-
mentation provides support for importing and rep-
resenting data from the versioning control systems
CVS (Concurrent Versions System) and SVN (Sub-
version), the bug-tracking system Bugzilla, Java
source code, and fine-grained source code changes,
as well as the integration of these models. Using the
Eclipse plug-in extension facilities and the Hiber-
nate object-relational mapping framework (www.

focus 1min ing s o f t war e ar c h ive s

	 January/February 2009 I E E E S o f t w a r E 	 27

hibernate.org), extending existing metamodels and
data importers in Evolizer, or adding new ones,
is straightforward. Models are defined by Java
classes, annotated with Hibernate tags, and added
to the list of model classes. Evolizer loads this list
of classes and provides it to the other Evolizer plug-
ins for accessing the software evolution data. Us-
ing the Eclipse plug-in mechanism with extensible
metamodels is Evolizer’s main advantage over ex-
isting mining tools.

Figure 1 depicts Evolizer’s core architecture. The
Evolizer release history database (RHDB) stores a
software system’s extracted historical data, which
includes files, revisions, modification reports, and
author information. On top of the data and persis-
tency layers, analysis tools such as ChangeDistiller

can access all the evolution data that Evolizer

provides.

Source Code Change
Extraction with ChangeDistiller
Source code can be represented by its abstract syn-
tax tree (AST). Eclipse ships with Java Development
Tools (JDTs), which provide a rich set of function-
ality to create and manipulate ASTs of Java source
files. Our change-distilling algorithm uses tree dif-
ferencing on the ASTs of two subsequent versions of
a particular class.5 The algorithm calculates an edit
script that contains basic tree edit operations and
transforms the older AST into the newer AST. We
use the basic tree edit operations—insert, delete, move,
and update—on AST nodes.

Our taxonomy of source code changes defines
change types according to tree edit operations in
the AST. We use the taxonomy to translate an edit
script into concrete source code changes. In addi-
tion, the taxonomy defines the change significance
level, which expresses the possible impact a change
type might have on other source code entities and
whether it might alter the functionality. We use
change significance levels to measure how relevant
each particular source code change would be.

Currently, our taxonomy defines more than
40 change types for source code entities.6 Table 1
shows an excerpt of our current change type tax-
onomy. We divide these change types into body-
part and declaration-part categories of attributes,
classes, and methods. Each change type obtains a

 Evolizer Hibernate Layer

Pe
rs

is
te

nc
y

la
ye

r

Ev
ol

iz
er

 p
la

tfo
rm

Fine-grained change extraction

Ch
an

ge
D

is
til

le
r

Compare

Java Development
Tools

Ec
lip

se

Change-history
metamodel

D
at

a
la

ye
r

Versioning
metamodel

Evolizer release
history database

Figure 1. Evolizer’s core architecture. It
comprises the Evolizer platform, which
integrates various data sources for software
evolution analysis, and ChangeDistiller,
which extracts and analyzes source code
changes.

Table 1
Change types and significance levels6

Change type Significance

Body-part change types

Conditions

Loop condition Medium

Control structure condition Medium

Else-part insert Medium

Else-part delete Medium

Statements

Statement insert/delete Low

Statement ordering change Low

Statement parent change Medium

Statement update Low

Comments

Comment insert/delete None

Comment update None

Declaration-part change types

Classes and interfaces

Class insert/delete Crucial

Class update Crucial

Interface insert/delete Crucial

Interface update Crucial

Parameters

Parameter insert/delete Crucial

Parameter ordering change Crucial

Parameter type change Crucial

Parameter renaming Medium

Return types

Return type insert/delete Crucial

Return type update Crucial

28	 I E E E S o f t w a r E w w w . c o m p u t e r . o r g / s o f t w a r e

change significance level of none, low, medium, high, or
crucial. For certain change types, the change sig-
nificance level adapts to a source code entity’s ac-
cessibility modifier. For instance, a return type
change of a public method has a higher change
significance level than that of a private method.
We aim to differentiate less relevant changes from
significant changes—for instance, changes that
impact functionality.

Leveraging the information provided by ASTs
gives us precise information about a source code
change. In addition to the information that a par-
ticular source code entity has changed, tree edit
operations also provide information about where
the change occurred. For instance, we can tell
that a method invocation fred.bar() was moved into
an if-statement with the condition fred != null.

ChangeDistiller works with Java and is built
on top of the Evolizer platform to mine source
code changes in software archives. It plugs our
change history metamodel into the Evolizer per-
sistency layer to integrate versioning with source
code change data. Figure 2 depicts the integrated
versioning and change history metamodels. The
versioning metamodel represents source files
with all their revisions and modification reports.
Each revision links to the changed classes, meth-
ods, and attributes in the corresponding file re-
vision. For each version of a structure entity, we
reference a list of source code changes. We cat-
egorize source code changes as body and declara-
tion changes. A distilled change type then holds
a reference to the changed piece of code—that is,
nodes in the AST.

Extracting source code changes with Evolizer

and ChangeDistiller is straightforward.

 1. We use the Eclipse CVS plug-in to check out
the HEAD revision or any other release of a CVS
repository holding a Java project.

 2. We configure Evolizer to use a MySQL
database.

 3. We use the Evolizer CVS importer plug-in to
obtain each Java source file’s version history
and store it to the Evolizer RHDB.

 4. We use ChangeDistiller to retrieve the source
code changes between each pair of subsequent
revisions of classes, methods, and attributes.

The result is an RHDB that contains the version-
ing history of all Java source files and the detailed
source code changes for each revision.

Analyzing Source Code Changes
Our experiments with Evolizer and ChangeDistiller

contributed insights for understanding software
evolution, particularly in commenting behavior,
change type patterns, and changes that fixed bugs.

Coevolution of Comments and Code
We studied in detail the following software systems:
ArgoUML, Azureus, 43 Eclipse plug-ins (Core,
JDT, PDE, and so forth), jEdit, JFreeChart, and a
commercial Java Web framework. We also investi-
gated whether—and under which circumstances—
comments and code coevolve. We developed an
approach to associate comment change types with
source code entities and conducted three experi-
ments to study coevolution questions.7

Experiment 1. First, we investigated how the relative
growth rate of source code and comments evolves.
We checked whether the same relative amount of

number
Revision

start
end

Transaction

*

name
date

Release
fullPath

File

name
email

Person

*

*

type
changeSignificanceLevel

ChangeType

treeEditOperation
SourceCodeChangetype

uniqueName
shortName

SourceCodeEntity

BodyChange DeclarationChange

type
uniqueName

StructureEntityVersion

* *

*

Versioning metamodel Change-history metamodel

*

date
linesAdded
linesDeleted
message

ModificationReport

Figure 2. Evolizer versioning and change history metamodels. We integrate the two metamodels representing
versioning and source code change data via the Revision entity.

	 January/February 2009 I E E E S o f t w a r E 	 29

code and comments are added over time. We ex-
pected that over time, the ratio of comments and
source code evolve similarly.

We found that the relative ratio of source code to
comments remains stable over time in all the soft-
ware systems we investigated. This doesn’t neces-
sarily mean that newly added code is commented
well; on the contrary, half of the investigated sys-
tems had less than 50 percent of their source code
commented.

Experiment 2. Next, we examined whether adding
comments depends on the source code entity. We
assumed that particular source code entities are
commented more than others.

We found that whether or not a source code
entity gets commented depends highly on its type.
There’s also a partial order in the likeliness of which
entity gets commented: classes are more often com-
mented than methods and attributes; if-statements
and loops are more often commented than method
invocations or other statements.

Experiment 3. Finally, we looked into whether com-
ments are adapted when source code is changed
(that is, whether comments are kept up-to-date)
and when the adaptations occur. We assumed that
redocumentation is an integral part of the software
development process, and we further assumed that
programmers often neglect to adapt comments
when changing source code.

Our results showed that in six out of eight in-
vestigated systems, code and associated comments
were cochanged in the same revision 90 percent of
the time. Although API comments weren’t changed
in the same revision, they were redocumented later.
Also, source code changes induced more than 50
percent of comment changes.

Quality analysis. We can use our findings to qualify
a software system’s commenting process. Our tools
automatically generate the data for all three ex-
periments and store them in the Evolizer RHDB.
Historical data and change types are available for
tool access, filtering (per class, package, or change
type, such as comment change), or further analysis.
Thus, conventional statistical tools can import and
analyze the data by first merging data and then gen-
erating corresponding plots such as histograms or
correlations. As a result, for each experiment, we
consolidated comment change data and interpreted
the data as follows.

Proportion of code to comments. Comparing the
growth factor of the number of commented and

noncommented lines of code shows whether the
proportion of comment lines to code lines in-
creased, decreased, or remained stable over a soft-
ware system’s history. This doesn’t indicate that the
source code is well commented or that the com-
ments are meaningful, but it does show whether
a system’s developers comment their code consis-
tently over time.

Comment quality. The proportion of code to com-
ments indicates the amount of comments in a soft-
ware system. Computing growth and proportion is
straightforward and can be done on the fly with
modern IDEs. But simply counting the lines of
code and the comment lines hides two major as-
pects: it counts dead code as comment lines, and
it doesn’t consider which source code entity types
are commented. Therefore, we complement the re-
sults and filter out dead code because it harms our
understanding of source code. The type of source
code entity commented—and the extent of the
comments—affects the quality. The less dead code
present, and the more that declaration parts and
scopes are commented, the better the comments’
quality and the system’s maturity.

Up-to-date comments. We can assess whether com-
ments are kept up-to-date or at least adapted in re-
visions after the associated source code entity has
changed. This shows whether redocumentation is
integral to the development process. For instance,
we experienced that redocumentation for decla-
ration parts was major in four of the investigated
software systems. The sooner the comments are
adapted to source code changes, the better we rate
a system’s commenting process. But redocumenta-
tion is also positive because source code comments
are added—better late than never.

Change type Patterns
Certain source code changes are mostly applied
together. For instance, a parameter renaming im-
pacts all statements that access the parameter in-
side the method body. These statements must be
adapted to the parameter change.

We assume that a recurring coding activity
is reflected in the same specific group of change
types. Therefore, we aim to identify those groups
of change types that frequently appear together
and to describe such groups’ semantics by a change
type pattern. To achieve those goals, we apply ag-
glomerative hierarchical clustering on change type
vectors. A change type vector denotes the set of
change types of a method revision obtained from
the Evolizer RHDB.8

The type
of source

code entity
commented—

and the
extent of the
comments—
affects the

quality.

30	 I E E E S o f t w a r E w w w . c o m p u t e r . o r g / s o f t w a r e

We applied the cluster analysis on jEdit,
JFreeChart, and a commercial Java Web frame-
work. The experiments showed that change type
patterns reveal differences in exception flow us-
age and that certain control flow changes indicate
change efforts to make the code consistent to coding
guidelines. We found several change type patterns.

Developers used exception flow to check the param-
eter values for certain conditions. For example, in the
method

public void setCategory(Comparable category) {
 this.category = category;
}

they inserted a parameter check:

public void setCategory(Comparable category) {
 if (category == null) {
 throw new IllegalArgumentException(
 "Null `category’ argument.”);
 }
 this.category = category;
}

Developers also switched from the multiple- to the
single-exit principle. For instance, the method

public boolean hasAnyNextSteps() {
 if (getStep() instanceof SpStep) {
 return true;
 }
 return conf().hasAnyNextSteps(get());
}

was restructured to

public boolean hasAnyNextSteps() {
 boolean result = false;
 if (getStep() instanceof SpStep) {
 result = true;
 } else {
 result = conf().hasAnyNextSteps(get());
 }
 return result;
}

Developers swapped the conditional branches in
If statements. For instance, the method

public void print() {
 DocFile docFile = getDocFile();
 if (selectPrinter != null) {
 OM.getInst().print(docFile, selectPrinter);

 } else {
 OM.getInst().print(docFile);
 }
}

was restructured to

public void print() {
 DocFile docFile = getDocFile();
 if (selectPrinter == null) {
 OM.getInst().print(docFile);
 } else {
 OM.getInst().print(docFile, selectPrinter);
 }
}

Moreover, certain API convention cleanups spread
over a software system’s whole history.

For the population of various change type pat-
terns in a specific software system, we automated
our approach up to the interpretation of the change
type clusters. By specifying a cluster threshold, we
can fully automate the extraction of groups of fre-
quently appearing change types. To make the iden-
tified pattern specific, we just have to confirm the
suggested change type patterns in ChangeDistiller.
Using the specified change type patterns, we can
then search for specific and similar occurrences
automatically.

The identified change type patterns can be lever-
aged for two specific scenarios.

Consistency of changes. Discovering change type
patterns lets us perform a consistency analysis of
the source code changes, especially when paradigm
shifts occur. For example, the introduction of the
single-exit principle in the Web framework started
in a specific period and should have been imple-
mented consistently in all parts of the architecture.
With ChangeDistiller, we can discover this point in
time and find violations of this principle. We can,
therefore, leverage our approach to inform develop-
ers of inconsistent changes.

Feedback during evolution. Most change type pat-
terns can be seen as code cleanup changes, so devel-
opers might argue that they aren’t exciting and ob-
viously happen during software development. But
we can also learn from these patterns: Either coding
guidelines are adapted frequently or they’re not fol-
lowed strictly. Revealing inconsistencies in apply-
ing coding guidelines is an important part of soft-
ware quality assurance. We can provide feedback
during evolution with a recommender that can be
configured either by users or by learning from the

	 January/February 2009 I E E E S o f t w a r E 	 31

occurred change type patterns. Moreover, a recom-
mender notifies programmers, who are new to a
software project, of certain guidelines and supports
their fast adoption and correct usage.

Method Invocation Changes
Like Sunghun Kim, Kai Pan, and James White-
head,9 we were curious about finding change pat-
terns that fix bugs. From these change patterns,
we can learn how to avoid or fix recurring bugs.
We focused on method invocations and obtained
corresponding changes from the Evolizer RHDB.
Next, we postprocessed them to do the following:

Classify the changes into bug fixes and normal
changes. Changes whose revision references a
bug number in the commit message are bug
fixes; all other changes are normal.
Aggregate changes of invocations of the same
method. For each method invocation, the
method signature is resolved and the invo-
cation changes are aggregated to the corre-
sponding signature.
Extract patterns from among the changes. A
pattern appears when we can extract similari-
ties between the single changes. For instance,
when an if-statement with a certain condition
is often put around a method invocation, the
corresponding changes form a pattern.

We obtained promising results by analyzing
the method invocation changes in the Eclipse proj-
ect. Interestingly, method invocations to the JDK
library changed most often and were involved in
many bug fixes. We also could extract patterns
among the changes. For instance, in our experi-
ment with the Eclipse project, a significant amount
of if-statements with <qualifier>.contains(<argument>)
as the condition were put around List.add(Object)
method calls. We aim to avoid future bugs by le-
veraging these change patterns. To achieve this
goal, we’re extending our tools to provide auto-
mated support.

Potential Evolution Support in IDEs
The results of our experiments motivated us to
develop tools that ease software systems’ evolu-
tion. Integrating such tools into Eclipse provides
a closed feedback loop:

historical data of specific development pro-
cesses are collected in the development
environment,
empirical approaches to analyze this data will
be automated, and

■

■

■

■

■

rules as well as recommendations will
emerge from this data to effectively support
developers.10

To show how such an integration will support
developers in their daily business, we describe our
recommendation tool. Figure 3 shows a screen shot
of our current prototype in Eclipse. The tool is built
on top of Evolizer and leverages method invocation
changes extracted by ChangeDistiller. For a de-
tailed discussion of this research prototype, see our
previous research.11

In our experiment with method invocation
changes, we observed that a significant number of
bugs are fixed with similar source code changes.
We aim at providing additional change suggestions
to reduce the number of future bugs. For that, we’ve
developed a tool that suggests changes when a de-
veloper inserts a certain method invocation.

The prototype is integrated into Eclipse’s in-
cremental project builder to generate recommen-
dations for a particular class during development.
Our tool aims to provide instant feedback on suit-
able recommendations using visual representations
familiar to developers and supported by the major-
ity of IDEs.

Assume the following scenario depicted in Fig-
ure 3. Using the Eclipse IDE, a developer is per-
forming a feature change for which she must mod-
ify the method resolveClassPath(..) in the class JavaProject
in the plug-in org.eclipse.jdt.core. She adds the
call resolvedEntries.add(rawEntry). By inspecting the call
and code fragment in which the invocation is in-
serted, the tool queries the Evolizer RHDB to fetch
method invocation change patterns for the added
call. If patterns are available, it marks the corre-
sponding line and highlights the method invocation
statement (see Figure 3, Part 1). This approach inte-
grates seamlessly with the existing views provided
by Eclipse because annotations added by the tool
are additionally listed in the problems view (see
Figure 3, Part 2).

To apply a recommended change, we give the
developer a list of quick fixes (see Figure 3, Part 3).
The tool suggests those changes that were applied
frequently and were often involved in bug fixes. In
the case of the resolvedEntries.add(rawEntry) method in-
vocation, there were two suggestions:

Add an If statement with the condition resolved
Entries != null, and call the method inside the
Then part of the If statement.
Add an If statement with the condition !resolved
Entries.contains(rawEntry)), and call the method in-
side the Then part of the If statement.

■

■

■

32	 I E E E S o f t w a r E w w w . c o m p u t e r . o r g / s o f t w a r e

Selecting a quick fix instantly performs the
modifications to the AST needed for applying
a change. For example, in the Eclipse code base,
several bug fixes with respect to the List.add(Object)
method added a null dereferencing check for the
list object and a check for whether the list already
contains the object.

Ongoing work also foresees the integration of
comment and code coevolution data to suggest
appropriate comment adaptation to code changes
and the integration of change type patterns to sup-
port consistent changes.

S oftware evolution analysis aims at retro-
spectively analyzing software systems’
history to understand software evolution

and reduce maintenance costs. Typically, software
archives such as source code version-control and
issue-tracking systems offer historical data. Several
approaches leverage this information, but existing
techniques suffer from the coarse-grained infor-
mation available for source code changes (for ex-
ample, source lines added or lines deleted).

On the basis of our findings in changes that

fixed bugs, we developed a new prototype tool
that, given an actual source code change, points
the developer to potential pitfalls and recommends
effective fixes. Our tool presents a promising ex-
ample of how fine-grained source code change in-
formation can support evolution. This motivates
us to deepen our knowledge of software evolution
phenomena and provide further evolution support
in our ongoing and future work.

References
 1. M.M. Lehman, “Programs, Life Cycles and Laws of

Software Evolution,” Proc. IEEE, vol. 68, no. 9, 1980,
pp. 1060–1076.

 2. T. Mens and S. Demeyer, eds., Software Evolution,
Springer, 2008.

 3. J. Bevan et al., “Facilitating Software Evolution
Research with Kenyon,” Proc. Joint 10th European
Software Eng. Conf. and the 13th ACM SIGSOFT
Symp. Foundations of Software Eng., ACM Press,
2005, pp. 177–186.

 4. T. Zimmermann et al., “Mining Version Histories to
Guide Software Changes,” IEEE Trans. Software Eng.,
vol. 31, no. 6, 2005, pp. 429–445.

 5. B. Fluri et al., “Change Distilling: Tree Differencing
for Fine-Grained Source Code Change Extraction,”
IEEE Trans. Software Eng., vol. 33, no. 11, 2007, pp.
725–743.

Figure 3. Method invocation change recommendation tool in action. Eclipse’s quick fix feature provides
recommendations for adding argument and qualifier checks before method invocations. (1) After the developer adds
a call, the tool queries Evolizer to fetch change patterns for the call, marks the corresponding line, and highlights
the invocation statement. (2) Eclipse adds the annotated invocations to the problems view. (3) The tool gives the
developer a list of quick fixes.

	 January/February 2009 I E E E S o f t w a r E 	 33

 6. B. Fluri and H.C. Gall, “Classifying Change Types for
Qualifying Change Couplings,” Proc. 9th Int’l Conf.
Program Comprehension, IEEE CS Press, 2006, pp.
35–45.

 7. B. Fluri, M. Würsch, and H.C. Gall, “Do Code and
Comments Co-evolve? On the Relation between Source
Code and Comment Changes,” Proc. 14th Working
Conf. Reverse Eng., IEEE CS Press, 2007, pp. 70–79.

 8. B. Fluri, E. Giger, and H.C. Gall, “Discovering Patterns
of Change Types,” Proc. 23rd IEEE/ACM Int’l Conf.
Automated Software Eng., IEEE CS Press, 2008, pp.
463–466.

 9. S. Kim, K. Pan, and E.J. Whitehead, “Memories of Bug
Fixes,” Proc. 14th ACM SIGSOFT Symp. Foundations
Software Eng., ACM Press, 2006, pp. 35–45.

 10. A. Zeller, “The Future of Programming Environments:
Integration, Synergy, and Assistance,” Proc. Future of
Software Eng., IEEE CS Press, 2007, pp. 316–325.

 11. B. Fluri, J. Zuberbühler, and H.C. Gall, “Recommend-
ing Method Invocation Context Changes,” Proc. 1st
Int’l Workshop Recommender Systems for Software
Eng., ACM Press, 2008; http://pages.cpsc.ucalgary.
ca/~zimmerth/rsse-2008/papers/p1-fluri.pdf.

For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/csdl.

About the Authors
Harald C. Gall is a professor of software engineering in the University of Zurich’s
Department of Informatics. His research interests include software evolution, software
quality analysis, software architecture, reengineering, collaborative software engineering,
and servicecentric software systems. Gall received his PhD in informatics from the Vienna
University of Technology. He’s also a program cochair of the 2011 International Conference
on Software Engineering. Contact him at gall@ifi.uzh.ch; http://seal.ifi.uzh.ch/gall.

Beat Fluri is a senior research associate in the Software Engineering Group in the
University of Zurich’s Department of Informatics. His main research interest is software
evolution, focusing on source code change analysis and recommender systems. Fluri
received his PhD in informatics from the University of Zurich. He’s a member of the IEEE,
the IEEE Computer Society, the ACM, and the ACM Sigsoft. Contact him at fluri@ifi.uzh.ch;
http://seal.ifi.uzh.ch/fluri.

Martin Pinzger is an assistant professor in software engineering in the Department
of Software Technology at the Delft University of Technology. When he was working on
this article, he was a senior research associate in the Software Engineering Group in the
University of Zurich’s Department of Informatics. His research interests are in software en
gineering, focusing on software evolution analysis and software design and quality analysis.
Pinzger received his PhD in informatics from the Vienna University of Technology. He’s a
member of the IEEE, the IEEE Computer Society, and the ACM. Contact him at pinzger@
ifi.uzh.ch; seal.ifi.uzh.ch/pinzger.

