Predicting the Fix Time of Bugs

Emanuel Giger
Department of Informatics
University of Zurich

giger@ifi.uzh.ch

Martin Pinzger
Department of Software
Technology
Delft University of Technology

Harald Gall
Department of Informatics
University of Zurich
gall@ifi.uzh.ch

m.pinzger@tudelft.nl

ABSTRACT

Two important questions concerning the coordination of de-
velopment effort are which bugs to fix first and how long it
takes to fix them. In this paper we investigate empirically
the relationships between bug report attributes and the time
to fix. The objective is to compute prediction models that
can be used to recommend whether a new bug should and
will be fixed fast or will take more time for resolution. We
examine in detail if attributes of a bug report can be used
to build such a recommender system. We use decision tree
analysis to compute and 10-fold cross validation to test pre-
diction models. We explore prediction models in a series of
empirical studies with bug report data of six systems of the
three open source projects Eclipse, Mozilla, and Gnome. Re-
sults show that our models perform significantly better than
random classification. For example, fast fixed Eclipse Plat-
form bugs were classified correctly with a precision of 0.654
and a recall of 0.692. We also show that the inclusion of post-
submission bug report data of up to one month can further
improve prediction models.

1. INTRODUCTION

Several open source projects use issue tracking systems to
enable an effective development and maintenance of their
software systems. Typically, issue tracking systems collect
information about system failures, feature requests, and sys-
tem improvements. Based on this information and actual
project planing, developers select the issues to be fixed. In
this paper we investigate prediction models which support
developers in the cost/benefit analysis by giving recommen-
dations which bugs should be fixed first. We address the re-
search question whether we can classify incoming bug re-
ports into fast and slowly fixed. In particular, we investigate
whether certain attributes of a newly reported bug have an
effect on how long it takes to fix the bug and whether predic-
tion models can be improved by including post-submission
information within 1 to 30 days after a bug was reported. In-
tuitively one would expect that some of the attributes, e.g.,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

RSSE 10, May 4 2010, Cape Town, South Africa

Copyright 2010 ACM 978-1-60558-974-9/10/05 ...$10.00.

52

priority have a significant influence of the fix time of a
bug. The two hypotheses of our empirical studies are: HI—
Incoming bug reports can be classified into fast and slowly fixed
and H2—Post-submission data of bug reports improves prediction
models, e.g., number of comments made to a bug.

We investigate these two hypotheses with bug report data
of six software systems taken from the three open source
projects Eclipse, Mozilla, and Gnome. Decision tree analysis
with 10-fold cross validation is used to train and test predic-
tion models. The predictive power of each model is evalu-
ated with precision, recall, and a summary statistic.

2. ANALYSIS

In the first step we obtain bug report information from
Bugzilla repositories of open source software projects (see
Section 3). For each bug report the set of attributes listed in
Table 1 is computed. Some attributes of a bug report, such as

Table 1: Constant (I) and changing (C) bug report attributes.
Attribute Short Description

monthOpened, |
yearOpened, |
platform, C

os, C

reporter, |
assignee, C
milestone, C
nrPeoplecC,C
priority, C
severity, C
hOpenedBefore-
NextRelease, |
resolution, C
status, C
hToLastFix, I
nrActivities, C
nrComments, C

month in which the bug was opened
year in which the bug was opened
hardware plaform, e.g., PC, Mac
operating system, e.g., Windows XP
email of the bug reporter

email of the bug assignee

identifier of the target milestone
#people in CC list

bug priority, e.g., P1, ..., P5

bug severity, e.g., trivial, critical
hours opened before the next release

current resolution, e.g., FIXED
current status, e.g., NEW, RESOLVED
bug fix-time (from opened to last fix)
#changes of bug attributes
#comments made to a bug report

the reporter and the opening date, are entered once dur-
ing the initial submission and remain constant. Other at-
tributes, such as milestone and status, are changed or
entered later on in the bug treating process. We highlight at-
tributes that remain constant over time in Table 1 by an I and
attributes that can change by a C. The change history of bug
reports is stored in bug activities. We then use the change
history of bug reports to compute the measures marked with
C at specific points in time. In addition to the initial values
we obtain the attribute values at 24 hours (1 day), 72 hours (3

days), 168 hours (1 week), 336 hours (2 weeks), and 720 hours
(~1 month) after a bug report was opened. nrActivities
simply refers to the number of these changes up to a given
point in time. nrComment s is similar but counts the number
of comments entered by Bugzilla users up to the given point
in time. The fix-time hToLastFix of each bug report is mea-
sured by the time between the opening date and the date of
the last change of the bug resolution to FIXED.

In a second step we computed decision trees using Ex-
haustive CHAID algorithm [6]. For each experiment we
binned bug reports into Fast and Slow using the median
of hToLastFix:

Fast : hToLastFix <= median

bugClass = { Slow : hToLastFix > median

bugClass is the dependent variable with Fast selected as
target category. The remaining bug measures are used as in-
dependent variables in all of our experiments. Because both
bins are of equal size, the prior probability for each experi-
ment is 0.5 which corresponds to random classification. We
used the default settings of 100 for the minimum number of
cases for parent nodes and 50 for the minimum number of
cases in leaf nodes. The tree depth was set to 3 levels.

For the validation of each prediction model we used 10-
fold-cross validation [8]. The data set is broken into 10 sets
of equal size. The model is trained with 9 data sets and tested
with the remaining tenth data set. This process is repeated 10
times with each of the 10 data sets used exactly once as the
validation data. The results of the 10 folds then are averaged
to produce the performance measures.

We use precision (P), recall (R), and the area under the re-
ceiver operating characteristic curve (AUC) statistic for mea-
suring the performance of prediction models. Precision (P)
denotes the proportion of correctly predicted Fast bugs: P =
TP/(TP + FP). Recall (R) denotes the proportion of true
positives of all Fast bugs: R =TP/(TP+ FN). AUC is the
area under receiver operating characteristic curve. It can be
interpreted as the probability, that, when randomly selecting
a positive and a negative example the model assigns a higher
score to the positive example [4]. In our case the positive ex-
ample is a bug classified Fast.

3. EXPERIMENTS

We investigated the relationships between the fix-time of
bug reports and their attributes with six (sub-)systems taken
from the three open source software projects Eclipse, Mozilla,
and Gnome. Table 2 lists the number of bugs input to our
experiments.

Table 2: Number of bugs and dates of first and last filed bug
reports of subject systems.

Project #Bugs Observation Period
Eclipse JDT 10,813 Oct. 2001 —Oct. 2007
Eclipse Platform 11,492 Oct. 2001 -Aug. 2007
Mozilla Core 27,392 Mar. 1997 —June 2008
Mozilla Firefox 8,899 Apr. 2001 -July 2008

Gnome GStreamer 3,604
Gnome Evolution 13,459

April 2002 Aug. 2008
Jan. 1999 — July 2008

3.1 Classifying Bugs with Initial Bug Data

In this section we present the results of our investigation of
hypothesis H1—incoming bug reports can be classified into fast

and slowly fixed. Table 3 gives an overview of the performance
measures obtained by the decision tree analysis. We used
Fast as target variable for our calculations.

Table 3: Performance measures of prediction models computed

with initial attribute values.
Project Median Prec. Rec. AUC
Eclipse JDT 122 0.635 0.485 0.649
Eclipse Platform 258 0.654 0.692 0.743
Mozilla Core 727 0.639 0.641 0.701
Mozilla Firefox 359 0.608 0.732 0.701
Gnome GStreamer 128 0.646 0.694 0.724
Gnome Evolution 701 0.628 0.695 0.694

Eclipse.

Looking at Table 3 we see that the decision tree model ob-
tained with Eclipse Platform bug reports outperforms the Ec-
lipse JDT model. The most important attribute in the Eclipse
Platform model is monthOpened. An investigation of the
values, however, yielded no clear trend that bug reports are
treated differently during the year. The second attribute at-
tached to the tree is assignee.The model performance is
significantly higher than random classification which lets us
accept hypothesis H1 for Eclipse Platform.

With a low recall value of 0.485 the Eclipse JDT model
strikes out. A recall value lower than 0.5 indicates that the
model misses more than half of Fast bug reports. Further-
more, the Eclipse JDT model has the lowest AUC value of
all examined projects. The top most attribute of the Eclipse
JDT decision tree is assignee. The overall structure of the
tree affirms the moderate performance of the model. Most
of the nodes in the decision tree show low performance to
distinguish between fast and slowly fixed bugs. We reject
hypothesis H1 for Eclipse JDT.

Mozilla.

Decision tree models computed with bug reports of the
two Mozilla projects show similar performance. The first at-
tribute considered in the decision tree of the Mozilla Core
project is yearOpened. Bug reports opened after the year
2003 were more likely to get fixed fast with a probability
of 0.632. In contrast, bug reports opened before 2001 tend
to be classified S1ow with a probability of 0.639. Bug re-
ports opened between 2001 and 2003 cannot be distinguished
sufficiently by yearOpened. Additionally, the decision tree
model contains the component of a bug as well as informa-
tion about the assignee, the operating system (os), and
monthOpened. Improvements over random classification
are significant and we accept hypothesis H1 for Mozilla Core.

In contrast to Mozilla Core, the Firefox model contains com—
ponent as the most significant predictor. There is one node
predicting perfectly, however, it only covers 0.9% of bug re-
ports. The second most important attribute is the assignee,
and in contrast to the Mozilla Core model, the yearOpened
attribute of Firefox bug reports is of only minor relevance.
Precision, recall, and AUC values let us accept hypothesis
H1 for Mozilla Firefox.

Gnome.

The prediction models of both Gnome projects improve
random classification. The top most attribute of the Gnome
GStreamer decision tree is yearOpened. Similar to Mozilla

Core older bug reports (i.e., opened before 2005) were likely
to take more time to fix than recently reported bugs. The af-
fected component is the second most significant predictor.
An investigation of corresponding tree nodes showed that
bug reports which affected components related to the plugin
architecture of Gnome GStreamer tend to be fixed faster. In
particular recent bug reports followed this trend. As in our
previous experiments prediction models were improved by
including the attributes reporter and assignee. The val-
ues for precision, recall, and AUC let us accept hypothesis
H1 for Gnome GStreamer.

The decision tree model of Gnome Evolution bug reports
contains assignee as first attribute. The attributes on the
second level of the tree are hOpenedBeforeNextRelease,
reporter, yearOpened, and severity. An investigation
of the decision tree did not show any patterns or tendencies,
that enable a straight forward classification of bug reports
into Slow and Fast. Concerning precision, recall, and AUC
the model performs significantly better than random classifi-
cation. We accept hypothesis H1 for Gnome Evolution.

In summary, decision tree analysis with the initial bug at-
tributes obtains prediction models that for five out of six sys-
tems perform 10 to 20% better than random classification.
This is a sufficient indicator that we can compute prediction
models to classify incoming bug reports into Fast and Slow
and we accept hypothesis H1.

3.2 Classifying Bugs with Post-Submission Data

This section presents the results of the evaluation of hy-
pothesis H2—post-submission data of bug reports improves pre-
diction models. For each bug report we obtained post-submis-
sion data at different points in time, namely 1 day, 3 days,
1 week, 2 weeks, and 1 month after the creation date of the
bug report. For each observation period we computed deci-
sion tree models which we validated with 10-fold cross val-
idation. The following paragraphs present and discuss the
results of experiments and performance measures of predic-
tion models.

Eclipse.

Table 4 lists the median fix-time of bugs and the results
of decision tree analysis with bug reports of the Eclipse JDT
project.

Table 4: Median fix-time and performance measures of Eclipse
JDT prediction models.

Days Median #Bugs | Prec. Rec. AUC
0 122 10,813 | 0.635 0485 0.649

1 296 7,732 | 0710 0.577 0.742

3 491 6,277 | 0.693 0.659 0.767

7 865 4,767 | 0.750 0.606 0.785

14 1,345 3,653 | 0.775 0.661 0.823

30 2,094 2,615 | 0.885 0.554 0.806

The inclusion of post-submission information improved
the performance of prediction models as indicated by increas-
ing precision, recall, and AUC. In contrast to the initial de-
cision tree, the models built with post submission data ob-
tained milestone as the top most predictor. New bug re-
ports rarely have a milestone specified which, in the case of
Eclipse JDT, are 36 out of 10,813 bug reports. Within one
week the ratio of pending bugs with milestones increased
to 37% and afterwards remained constant. The inclusion of

54

milestone led to improved performance of prediction mod-
els for the Eclipse JDT project. In addition tomilestone, the
assignee, the reporter, monthOpened, and yearOpened
represent significant predictors in computed decision tree mod-
els. The best performing model takes into account 14 days of
post-submission data. Precision, recall, and AUC values of
this model are higher as the corresponding values of the ini-
tial model. This lets us accept hypothesis H2 for Eclipse JDT.

Table 5 lists the performance measures for the Eclipse Plat-
form bugs. Experiments showed similar results as before
with Eclipse JDT. On average, bugs in the Eclipse Platform
project tend to take longer to fix than in the Eclipse JDT project.
This is indicated by a higher median fix-time for the different
observation periods.

Table 5: Median fix-time and performance measures of Eclipse
Platform prediction models.

Days Median #Bugs | Prec. = Rec. AUC
0 258 11,492 | 0.654 0.692 0.743

1 560 9,003 | 0.682 0.586 0.734

3 840 7,803 | 0.691 0.631 0.749

7 1,309 6,457 | 0.691 0.587 0.738

14 1,912 5307 | 0.743 0.669 0.798
30 2,908 4,135 | 0.748 0.617 0.788

The inclusion of post-submission data of Eclipse Platform
bug reports only sightly improved prediction models. As in
the decision tree computed with Eclipse JDT bug reports, the
milestone attribute was selected as the first attribute in the
tree. Also in the Platform data, milestones are added in the
post-submission phase of bug reports. After one day, mile-
stones were added to 27% of pending bugs. This ratio re-
mained constant for the later observation points. Most of the
undecidable bugs do not have any milestone specified. The
monthOpend, reporter, and assignee are the other sig-
nificant predictors contained by decision tree models. The
model with 14 days of post-submission data performed best.
Improvements over the initial model led to the acceptance of
hypothesis H2 for Eclipse Platform.

Mozilla.

The results of the decision tree analysis with bug reports of
the Mozilla Core project are depicted in Table 6. The median
bug fix-time indicate longer fix times for Mozilla Core than
for Eclipse bugs on average.

Table 6: Median fix-time and performance measures of Mozilla
Core prediction models.

Days Median #Bugs | Prec. = Rec. AUC
0 727 11,377 | 0.639 0.641 0.701

1 935 10424 | 0.708 0.667 0.773

3 1,179 9,524 | 0.727 0.630 0.770

7 1,617 8347 | 0.712 0.697 0.777

14 2,201 7,142 | 0.757 0.671 0.803
30 3,257 5,716 | 0.688 0.708 0.746

Mozilla Core models contained priority, milestone,
assignee,and reporter assignificant predictors. priori-
ty is the first attribute in decision tree models computed
with 3 and 7 days of post-submission data. Bug reports with
low priority take longer to fix than bugs with higher prior-
ity. For example, in the 3-days model 80.7% of 1,255 bug
reports with priority P1 were fixed fast. milestone is the
most significant predictor in the other models that consider

post-submission data. In Mozilla Core few (1.6%) milestones
were entered when the bug was reported. This ratio changed
to 30% within one day whereas most of the reports were as-
signed to the "moz" milestone. The ratio steadily increased
up to 47% within 30 days after bug report submission. In
extension to Eclipse JDT and Platform, the models computed
with Mozilla Core bug reports contained also severity, the
affected component, nrComments, and nrActivities.
Prediction models with post-submission data show improved
performance, hence, we accept hypothesis H2 for Mozilla
Core. The median fix-time and performance measures of
models computed with Mozilla Firefox bugs are listed in Ta-
ble 7. The median fix-time indicates faster fixes of Mozilla
Firefox bugs than Mozilla Core bugs.

Table 7: Median fix-time and performance measures of Mozilla
Firefox prediction models.

Days Median #Bugs | Prec. Rec. AUC
0 359 8899 | 0.609 0.732 0.701

1 587 7478 | 0.728 0.584 0.748

3 801 6539 | 0.697 0.633 0.742

7 1176 5485 | 0.729 0.610 0.759

14 1778 4553 | 0.680 0.683 0.757

30 2784 3440 | 0.751 0.748 0.834

The best model was computed with post-submission data
of up to 30 days. This decision tree model has a precision
of 0.751, a recall of 0.748, and an AUC of 0.834. While in
previous prediction models milestone or priority were
selected as the most significant predictors, nrActivities
and yearOpened were selected in Mozilla Firefox models.
In the models computed with 1, 3, and 7 days of post-submis-
sion data we observed, that bugs with zero or one activity
were fixed slower than bugs with more than 7 activities. The
ratio of bug reports with specified milestones follows a simi-
lar trend as in previous case studies. Surprisingly, the model
with the best performance (30 days) does not contain the
milestone attribute. In this model, yearOpened is the
most significant predictor. In particular, bugs that were re-
ported before the year 2003 took longer to fix on average
than bugs reported after the year 2006. The reporter and
assignee were the other bug attributes contained by this
decision tree. The good performance of the last model (30-
days) lets us accept the hypothesis H2 for Mozilla Firefox.

Gnome.

Table 8 lists the measures of the prediction models com-
puted with the Gnome GStreamer bug reports. Similar to
bug reports of the two Eclipse projects many reports in Gnome
GStreamer have a short fix-time on average as indicated by
lower median fix-time.

Table 8: Median fix-time and performance measures of Gnome
GStreamer prediction models.

Days Median #Bugs | Prec. Rec. AUC
0 128 3604 | 0.646 0.694 0.724

1 406 2553 | 0.581 0.810 0.666

3 708 2052 | 0.606 0.704 0.667

7 1084 1650 | 0.613 0.652 0.669

14 1517 1351 | 0.658 0.561 0.680

30 2268 1018 | 0.538 0.811 0.586

In contrast to previous experiments, the performance of
models computed for Gnome GStreamer decreases with the

55

inclusion of post-submission information. While the AUC
value of the initial model is 0.724 the AUC value of the last
model is only 0.586. One big difference is that in Gnome
GStreamer the milestone attribute is specified for only few
bug reports, hence, was not included into prediction models.
Although, milestones were initially specified for 9% of bug
reports, this ratio increased to only 18% within 30 days which
is lower than the ratio in the Eclipse or Mozilla projects. In
the models with post-submission data, the assignee is the
most significant predictor followed by the reporter and
nrComments. Also with post-submission data we could not
obtain reasonable prediction models, hence, we reject hy-
pothesis H2 for the Gnome GStreamer.

The next series of experiments was with bug reports of the
Gnome Evolution project. The results of the decision tree
analysis are depicted by Table 9. Bugs of this system tend
to take longer to fix on average than in the other subject sys-
tems.

Table 9: Median fix-time and performance measures of Gnome
Evolution prediction models.

Days Median #Bugs | Prec. Rec. AUC
0 701 13459 | 0.628 0.695 0.694

1 1136 11548 | 0.649 0.659 0.727

3 1476 10496 | 0.693 0.611 0.746

7 1962 9335 | 0.636 0.798 0.752

14 2566 8228 | 0.665 0.760 0.766

30 3625 6695 | 0.690 0.682 0.771

Compared to Gnome GStreamer the models computed with
the Gnome Evolution bug reports show better performance
regarding precision, recall, and AUC values. The performance
of the decision tree models increases when including post-
submission information. Similar to the decision trees com-
puted with Eclipse and Mozilla bug reports milestone is
the most significant predictor followed by assignee. Mile-
stones were added for 21% of the bugs within one day. This
ratio increased to 31% within 30 days. Slow bug reports are
indicated by milestones, such as "Later", "Future", or "resched-
ule" while fast bug reports got mainly concrete release num-
bers. Bug reports with no milestone are basically undecid-
able. Other significant predictor variables which appeared
in the various Gnome Evolution models are the reporter,
yearOpened, and monthOpened. Furthermore, severity
and hOpenedBeforeNextRelease are significant. The good
performance of the prediction models with 7 and 14 days of
post-submission data lets us accept hypothesis H2 for Gnome
Evolution.

In summary, the inclusion of post-submission data led to
improved predictive power of models in all systems but Gnome
GStreamer. We therefore accept hypothesis H2.

4. RELATED WORK

Hooimeijer and Weimer [5] used linear regression analy-
sis on bug report data to predict whether a bug report is
triaged within a given amount of time. Similar to our ap-
proach they take into account post-submission data and in-
vestigate how much of this data is needed to yield adequate
predictive power. While they focus on reducing the bug triage
time which they denote as time needed to inspect, under-
stand, and making the initial decision regarding how to ad-
dress the report, we concentrate on the fix-time of bugs. Fur-
thermore, they aim at finding an optimal cut-off value to clas-

sify bug reports into "cheap" and "expensive" while we use
fixed cut-off values for Fast and Slow. Additionally, we use
decision tree analysis instead of linear regression analysis.

Another important basis for our work was done by Pan-
jer in [10]. He used several different data mining models to
predict eclipse bug lifetimes. We extend his work by look-
ing at more systems. Furthermore, while he counted the cc
list, dependent bugs, bug dependencies, and comments we
take into account that other attributes, e.., assignee might
change as well. We rather create different profiles represent-
ing the state of a bug at a certain point of its lifetime.

An approach to assist in bug triage is presented by Anvik
et al. in [1]. They give suggestions to which developer a new
bug report should be assigned. To find suitable developers
among all possible candidates they apply machine learning
techniques to open bug repositories. It would be interesting
to see whether vector support machines instead of decision
trees can improve prediction in our sense.

Wang et al. recognize the mentioned problem of duplicates
and its possible drawbacks on bug triage [11].

Kim and Whitehead argue that the time needed to fix a
bug is a significant factor when measuring the quality of a
software system [7]. Our approach is complementary, in that
it provides a prediction model for estimating whether a bug
will be fixed fast or take more time for resolution.

Given a new bug report Weiss et al. present a method to
predict the effort, i.e., the person-hours spent on fixing that
bug [12]. They apply text mining technique to search reports
that match a new filed bug. They use effort measures from
past bug reports as a predictor. We also use existing data
from recoded bug reports to compute a prediction model but
we remain limited to non-textual features of a bug report.

Bettenburg et al. investigated which elements developers
rely on when fixing a bug [2]. Similar to our approach they
claim that the information given in bug reports has an impact
on the fix time.

Lessmann et al. compare different classification models
for software defect prediction using AUC as benchmark [9].
We use similar analysis techniques and performance evalua-
tion criteria but instead of failure-proneness aim at providing
models to predict the fix time of bugs.

Recently Bird et al. have found evidence the there is a sys-
tematic bias in bug datasets [3]. This might effect prediction
models relying on such biased datasets.

5. CONCLUSIONS & FUTURE WORK

We computed prediction models in a series of experiments
with initial bug report data as well as post-submission infor-
mation from three active open source projects. Summarized,
the results of our experiments are: Between 60% and 70% of
incoming bug reports can be correctly classified into fast and
slowly fixed. assignee, reporter, and monthOpened are
the attributes that have the strongest influence on the fix-time
of bugs. Post-submission data of bug reports improves the
performance of prediction models by 5% to 10%. The best-
performing prediction models were obtained with 14-days
or 30-days of post-submission data. The addition of concrete
milestone information was the main factor for the perfor-
mance improvements (see Section 3.2). Decision tree mod-
els with initial and post-submission bug report data showed
adequate performance when compared to random classifica-
tion. However, the applicability of these models to develop
fully automated recommender systems is questionable. We

56

can think of recommender tools in a way that they provide
valuable input to developers and aid them in deciding which
bugs to address first—though, their decision can not be solely
based on the output of the models. Our models could also be
useful to new developers or bug reporters as they give an
insight in how bugs are prioritized in a software project.
On-going and future work is basically concerned with im-
proving the performance of prediction models. For this we
plan to extend the input data set and investigate other algo-
rithms to compute prediction models. For example, detailed
change information of bug report attributes, data about the
affected components and text analysis will be tested. Fur-
thermore, we plan to evaluate whether Random Forests and
Naive Bayes algorithms can improve prediction models.

6. REFERENCES
[1] J. Anvik, L. Hiew, and G. C. Murphy. Who should fix
this bug? In Proc. of the Int’l Conf. on Softw. Eng., pages

361-370, New York, NY, USA, 2006. ACM.

N. Bettenburg, S. Just, A. Schroter, C. Weiss, R. Premraj,

and T. Zimmermann. What makes a good bug report?

In Proc. of the Int’l Symp. on Foundations of Softw. Eng.,

pages 308-318, 2008.

C. Bird, A. Bachmann, E. Aune, J. Duffy, A. Bernstein,

V. Filkov, and P. Devanbu. Fair and balanced?: bias in

bug-fix datasets. In Proc. of the Joint Meeting of the

European Softw. Eng. Conf. and the ACM SIGSOFT Symp.

on the Foundations of Softw. Eng., pages 121-130, New

York, NY, USA, 2009. ACM.

D. M. Green and J. A. Swets. Signal Detection Theory and

Psychophysics. John Wiley & Sons, Inc., New York NY,

1966.

[5] P. Hooimeijer and W. Weimer. Modeling bug report
quality. In Proc. of the Int’l Conf. on Autom. Softw. Eng.,
pages 34-43, New York, NY, USA, 2007. ACM.

[6] G. V. Kass. An exploratory technique for investigating

large quantities of categorical data. Journal of Applied

Statistics, 29(2):119-127, 1980.

S. Kim and J. E. James Whitehead. How long did it take

to fix bugs? In Proc. of the Int’l Workshop on Mining

Softw. Repositories, pages 173-174, New York, NY, USA,

2006. ACM.

R. Kohavi. A study of cross-validation and bootstrap

for accuracy estimation and model selection. In Proc. of

the Int’l Joint Conf. on Artificial Intelligence, pages

1137-1143. Morgan Kaufmann, 1995.

S. Lessmann, B. Baesens, C. Mues, and S. Pietsch.

Benchmarking classification models for software defect

prediction: A proposed framework and novel findings.

IEEE Trans. on Softw. Eng., 34(4):485-496, 2008.

L. D. Panjer. Predicting eclipse bug lifetimes. In Proc. of

the Int’l Workshop on Mining Softw. Repositories, page 29,

Washington, DC, USA, 2007. IEEE Computer Society.

X. Wang, L. Zhang, T. Xie,]. Anvik, and J. Sun. An

approach to detecting duplicate bug reports using

natural language and execution information. In Proc. of
the Int’l Conf. on Softw. Eng., pages 461-470, New York,

NY, USA, 2008. ACM.

C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller.

How long will it take to fix this bug? In Proc. of the Int’l

Workshop on Mining Softw. Repositories, page 1,

Washington, DC, USA, 2007. IEEE Computer Society.

(2]

(4]

(7]

