
Using the Gini Coefficient for Bug Prediction in Eclipse

Emanuel Giger
Department of Informatics

University of Zurich
giger@ifi.uzh.ch

Martin Pinzger
Department of Software

Technology
Delft University of Technology

m.pinzger@tudelft.nl

Harald Gall
Department of Informatics

University of Zurich
gall@ifi.uzh.ch

ABSTRACT
The Gini coefficient is a prominent measure to quantify the
inequality of a distribution. It is often used in the field of
economy to describe how goods, e.g., wealth or farmland,
are distributed among people. We use the Gini coefficient
to measure code ownership by investigating how changes
made to source code are distributed among the developer pop-
ulation. The results of our study with data from the Eclipse
platform show that less bugs can be expected if a large share
of all changes are accumulated, i.e., carried out, by relatively
few developers.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—performance measures,
process measures, software science

General Terms
Management, Measurement, Reliability, Experimentation

Keywords
Gini coefficient, bug prediction, code ownership

1. INTRODUCTION
Prior work found out that not only properties of the source

code itself, e.g., size and complexity, but also the social con-
text of the development process affect the quality of a sys-
tem. For instance, the number of authors and the contribu-
tion structure, i.e., who modified a certain part of the source
code, are related to bugs as reported in [3, 15, 17].

In this paper we analyze the relationship between code
ownership and bugs in source files using the Gini coefficient.
This coefficient is well known in the field of economy to mea-
sure the disparity of a good’s distribution among individu-
als [10]. Analogously, we apply the Gini coefficient to histor-
ical change data and developer information to quantify how

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IWPSE-EVOL’11, September 5–6, 2011, Szeged, Hungary.
Copyright 2011 ACM 978-1-4503-0848-9/11/09 ...$10.00.

source code changes are distributed among developers. In
particular we investigate the following two hypotheses:

H 1: The Gini coefficient based on change data correlates
negatively with the number of bugs.
H 2: The Gini coefficient based on change data can clas-
sify source files into bug-prone and not bug-prone files.

Our hypotheses are motivated by the rationale that when
a few developers contribute a major portion of all changes—
resulting in a high Gini coefficient—possibly less bugs occur
as there is a clear responsibility and ownership. Whereas the
case of the "too many cooks-situation" results in more uncoor-
dinated, fragmented, and bug-prone changes.

Furthermore, we examine the extent to which measuring
source code changes at three different levels of granularity,
i.e., file revisions (R), lines modified (LM), and fine-grained
source code changes (SCC) [7], affects the results of our study.

Our results with data from the Eclipse platform suggest
that focusing code changes on a relatively small group of
dedicated developers is beneficial with respect to bugs. In
addition, using the Gini coefficient we can compute models
to successfully identify bug-prone files.

2. GINI COEFFICIENT
In this work we understand code ownership by the fact

that a relatively small subgroup of developers accumulates
a major share of all changes done to a system (or to parts of
it). Analyzing this kind of inequality and concentration of a
measure is a common task in descriptive statistics when char-
acterizing distributions. Moreover, inequality is often used
by economists to describe the disparity of assets in a popula-
tion. Two examples are: Examining the market concentration
by looking at the shares of several companies, and measuring
the distribution of wealth among the individuals of a society.
In these examples, inequality is usually considered to be un-
favorable. Less developed countries typically show a larger
inequality in the distribution of wealth among its people. A
few big competitors that dominate the market could abuse
their power to suppress market mechanisms.

The Lorenz curve is a primary graphical method to express
inequality and was first used to measure the concentration
of wealth [12]. It is a function of the cumulative distribution,
i.e., it plots on the x-axis the % of the population against the
allocated % of the total wealth on the y-axis. Figure 1 shows
an example of a Lorenz curve of the Eclipse Resource plugin
project. We used developers as the ”population” and file re-
vision as the ”wealth” in this figure. A Lorenz curve equal to
the diagonal line represents perfect equality where everyone
owns the same share of the total wealth. Deviation from the

51

diagonal line means inequality; perfect inequality is where
one individual owns everything.

In Figure 1 the curve exhibits a serious deviation from the
diagonal line, i.e., there is inequality in the distribution of the
revisions among the developers that contributed to Eclipse
Resource. On the one hand, we can see that 85% of all de-
velopers accumulate only 20% of all revisions. On the other
hand, 15% of all developers are responsible for almost 80%
of all revisions. Numerically expressed: Eclipse Resource
strongly depends on two developers—they committed 6’200
revisions out of 7’932 in total.

10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Cumulative % of Developer Population

C
u
m
u
la
ti
v
e
 %
 o
f
R
e
v
is
o
n
s

Lorenz Curve of Eclipse Resource

A

B

Figure 1: Lorenz curve of the Eclipse Resource plugin
project using developers and revisions

The Gini coefficient was proposed by Corrado Gini in [10]
and is a popular measure of inequality in economy. This co-
efficient is closely related to the Lorenz curve. In Figure 1, A
is the area between the diagonal line of perfect equality and
the Lorenz curve, B is the area under the lorenz curve. The
Gini coefficient is then defined as A/(A+B) [5]. It takes val-
ues within the range [0,1]: 0 is perfect equality and 1 reflects
perfect inequality. The Gini coefficient is a robust measure
and allows the comparison of the disparity of an attribute
of differently sized populations [21] since it does not rely on
any assumptions regarding the distribution of that underly-
ing attribute. These characteristics are particularly beneficial
in the context of software systems where the distributions
of attributes and metrics are often heavily skewed and non-
Gaussian [21].

3. DATA COLLECTION
For the empirical study in Section 4 and the computation of

the Gini coefficient we collected (1) the historical versioning
data, i.e., file revisions (R) and lines modified (LM) including
developer information, (2) fine-grained source code changes
(SCC), and (3) the number of bugs per file (#Bugs).
1. Versioning Data: Versioning repositories, e.g., CVS, GIT,
or SVN, provide log entries about the history of a system.
Those entries contain information about each revision of all
files of that particular system including a manually entered
commit message and the name of the developer that com-
mitted a revision. LM is the sum of lines added, deleted, and
changed per each file revision. We use EVOLIZER [8] to auto-
matically access the log entries and extract above mentioned
information. Using this versioning information we compute
the Gini coefficient for each source file, once based on the
distribution of file revisions (GiniR) and once based on the
distribution of LM (GiniLM) among developers.
2. Fine-Grained Source Code Changes (SCC): Versioning
systems record changes solely on file level and handle source

Table 1: Eclipse dataset used in this study
Eclipse Project Files Rev. LM SCC #Bugs Time [M,Y]
Compare 278 3’736 140’784 21’137 665 May01-Sep10
jFace 541 6’603 321582 25’314 1’591 Sep02-Sep10
JDT Debug 713 8’252 218’982 32’872 1’019 May01-July10
Resource 449 7’932 315’752 33’019 1’156 May01-Sep10
Runtime 391 5’585 243’863 30’554 844 May01-Jun10
Team Core 486 3’783 101’913 8’083 492 Nov01-Aug10
CVS Core 381 6’847 213’401 29’032 901 Nov01-Aug10
Debug Core 336 3’709 85’943 14’079 596 May01-Sep10
jFace Text 430 5’570 116’534 25’397 856 Sep02-Oct10
Update Core 595 8’496 251’434 36’151 532 Oct01-Jun10
Debug UI 1’954 18’862 444’061 81’836 3’120 May01-Oct10
JDT Debug UI 775 8’663 168’598 45’645 2’002 Nov01-Sep10
Help 598 3’658 66’743 12’170 243 May01-May10
JDT Core 1’705 63’038 2’814K 451’483 6’033 Jun01-Sep10
OSGI 748 9’866 335’253 56’238 1’411 Nov03-Oct10
UI Workbench 3’723 38’505 1’427K 168’988 5’000 Sep02-Oct10

code files internally as text files. Therefore, revisions and LM
can be too coarse-grained or ignore the semantics of changes
to accurately describe all the detailed maintenance activities
that occur between two revisions. Fluri et al. developed a
tree differencing algorithm based on the abstract syntax tree
(AST) structure to extract code changes and their semantics
at a fine-grained level, i.e., statement level [7]. The algorithm
is part of CHANGEDISTILLER [8] that compares the ASTs of
subsequent file revisions obtained from the versioning sys-
tem. Including the name of the developer that committed
the revision corresponding to a certain version of the AST,
we then can compute the Gini coefficient based on the distri-
bution of SCC among developers (GiniSCC) for each file.
3. Bugs: Bug repositories, such as Bugzilla, record the in-
formation about bug reports of a system. Currently Bugzilla
does implicitly not provide direct links to versioning reposi-
tories. Therefore, the information which file was affected by
a specific bug and when, i.e., in which revision that bug was
fixed, is usually missing. However, developers often man-
ually enter a bug report reference, e.g.,”fixed bug 16745” or
”bug1859”, into the commit messages of file revisions when
fixing bugs. Prior research developed matching techniques
to query those references and to establish the missing links
between bugs and file revisions, e.g., [20]. Again, we use
EVOLIZER to automate this linkage process. Based on this in-
formation we then count the number of bugs per file (#Bugs).

GiniR, GiniLM , GiniSCC , and #Bugs are then stored in one
dataset on file level granularity.

4. STUDY
We investigated our two research hypotheses using data

extracted from 16 plug-in projects of the Eclipse platform.
Table 1 gives an overview of the dataset: Files denotes the
number of unique *.java files. Rev. denotes the total num-
ber of file revisions. LM is the sum of the total number of
lines added, deleted, and changed. SCC represents to total
number of fine-grained source code changes. #Bugs is the to-
tal number of bugs. Time represents the observation period.

4.1 Correlation Analysis
In this section we investigate the correlation between the

Gini coefficient and the number of bugs on file level (H 1).
Furthermore, we analyze if there is a difference in the corre-
lation when calculating the Gini coefficient based on R, LM,
and SCC. For the correlation analysis we used the Spearman
rank correlation ρ. It is more robust than the Pearson corre-

52

lation since it does not make any assumption regarding the
distribution of the data and is not restricted to linear relations
between two measured variables [6]. Spearman values of +1
and -1 indicate exceptionally strong correlations, whereas a
value of 0 denotes the absence of any correlation. Follow-
ing [17], we consider correlation values of −0.5 >= ρ >= 0.5
as substantial and values of −0.7 >= ρ >= 0.7 as strong cor-
relations.

Table 2 shows the correlation values of the Gini coefficient
based on R (GiniR), LM (GiniLM), and SCC (GiniSCC) on
source file level for each project. We can see that all cor-
relation values are negative. This means that an increase in
the inequality of one of the three change measures among
all developers—resulting in a larger Gini coefficient—comes
with a decrease in the number of bugs. In other words, the
more changes in a source file are done by a small group of de-
velopers, the less bugs it will have. In contrast, if the changes
of a file are scattered more evenly among the developers it is
more likely to have bugs.

For all three Gini coefficients the median correlations are
below -0.5. With a median of -0.58 GiniSCC has the strongest
correlation of all three coefficients and the strongest correla-
tion in 10 out of 16 projects. Furthermore, 10 projects show
a substantial correlation, five out of these are even strong
correlations. GiniR has the second highest median of -0.55.
Compared to GiniSCC it shows only for three projects the
highest correlations. GiniR has for nine projects substantial
correlation values out of which three are strong. CVS Core,
Help, and OSGI show no correlation at all. GiniLM exhibits
a slightly lower median correlation (-0.54). It has 10 substan-
tial and two strong correlations on project level, and in four
cases it shows the highest values.

We used a Related Samples Friedman Test to examine these
differences between the correlation values of the three Gini
coefficients. This test is the non-parametric, rank-based al-
ternative of the One-Way ANOVA procedure for comparing
related samples. Therefore, we can relax any assumptions
regarding the distribution of the data [6]. Since the test was
not significant at α = 0.05 we conclude that the observed
differences of the correlations in Table 2 are not significant.

To assess the strength of the correlations, we performed
three One-Sample Wilcoxon Signed Rank Tests [6] for each Gini
coefficient against the hypothesized value of -0.5, i.e., sub-
stantial, negative correlation. Similarly to the afore used Fried-
man Test, this test is the non-parametric counter-part of the
One-Sample T-Test. Again, there are no required assumptions
with respect to the distribution of the data. The test only
requires a certain degree of symmetry, i.e., approximately the
same number of samples above and below the median which
is true in our dataset. Furthermore, it can also be applied to
smaller sized samples. All three tests were not significant at
α = 0.05, i.e., the median correlations of all three Gini coeffi-
cients are not significantly different from -0.5. Therefore, we
accept H 1 stated in Section 1—Gini coefficients based on change
data correlate (substantially) negatively with the number of bugs.

4.2 Predicting Bug-Prone Files
In the previous Section 4.1 we observed a substantial, neg-

ative correlation between the Gini coefficient based on the
distribution of change data among developers. The purpose
of H 2 is to analyze whether the Gini coefficient of a file can
be used to identify bug-prone files with reasonable perfor-
mance. For that we applied six different machine learning

Table 2: Non-parametric Spearman rank correlation be-
tween #Bugs and the Gini coefficients based on R, LM, and
SCC on source file level. (* significant at α = 0.01)

Eclipse Project GiniR GiniLM GiniSCC

Compare -0.68∗ -0.69∗ -0.74∗

jFace -0.66∗ -0.63∗ -0.71∗

Resource -0.55∗ -0.57∗ -0.57∗

Team Core -0.28∗ -0.36∗ -0.4∗

CVS Core -0.05 -0.5∗ -0.4∗

Debug Core -0.35∗ -0.34∗ -0.49∗

Runtime -0.33∗ -0.42∗ -0.43∗

JDT Debug -0.63∗ -0.4∗ -0.7∗

jFace Text -0.54∗ -0.52∗ -0.51∗

JDT Debug UI -0.6∗ -0.63∗ -0.7∗

Update Core -0.72∗ -0.75∗ -0.69∗

Debug UI -0.48∗ -0.55∗ -0.59∗

Help -0.08 -0.34∗ -0.29∗

JDT Core -0.74∗ -0.67∗ -0.67∗

OSGI -0.09 -0.37∗ -0.47∗

UI Workbench -0.79∗ -0.74∗ -0.76∗

Median -0.55 -0.54 -0.58

algorithms: Logistic Regression (LogReg), Random Forest (Rnd-
For), and J48 Decision Tree (J48) as implemented by the WEKA
toolkit [24], Neural Network (NN), Naive Bayes (NB), and Sup-
port Vector Machine (LibSVM) as implemented by the Rapid-
Miner toolkit [14]. The rationale for choosing several learn-
ing algorithms stems from previous results presented in [11]
that discovered that more sophisticated algorithms, such as NN,
LibSVM, and RndFor, or Bayesian Methods [13] achieve pos-
sibly better classification performance. We binned all files
of each project into the observed, target classes not bug-prone
and bug-prone using the median of the number of bugs per
file (#Bugs) of that particular project, i.e., equal frequency bin-
ning using two classes:

bugClass =

{
not bug − prone : #Bugs <= median

bug − prone : #Bugs > median

We then conducted three different classification experiments
each using one of the Gini coefficients as input variable at a
time. In each experiment we trained the six learning algo-
rithms on all projects and computed for each project the fol-
lowing performance measures using 10-fold cross-validation:
area under the receiver operating characteristic curve statis-
tic (AUC) [13], precision (P), and recall (R).

We mainly use AUC in the performance discussion. AUC
is a robust performance measure for classification models
since it is independent of prior probability and therefore fa-
cilitates the comparison of different approaches [1].

Table 3 lists the median of AUC, P, and R over all projects
of each learning algorithm for a given Gini coefficient. Except
for RndFor and J48, both using GiniLM as input variable, all
prediction models obtain AUC values above 0.7, what Less-
man et al. denote as promising results [11]. The models com-
puted with the six machine learning algorithms differ in their
performance as indicated by the different median AUC val-
ues. In the following we discuss these differences with re-
spect to each Gini coefficient. For that, we use the Related-
Samples Friedman Test using α = 0.05. In the case of obtain-
ing a significant probability, i.e., there is an overall signifi-
cant difference regarding the AUC values among all learn-
ing algorithms, we apply pairwise-post hoc tests including
an adjustment of the α-level to investigate between which
two learners the differences actually occur:
GiniR. RndFor performs the best with a median AUC of 0.81.
All other learners exhibit lower values between 0.73 and 0.75.

53

Table 3: Median AUC, Precision, and Recall of prediction
models computed with each machine learning algorithm
(M-Learner) for the three Gini coefficients

GiniR GiniLM GiniSCC

M-Learner AUC P R AUC P R AUC P R
NN 0.74 0.65 0.8 0.75 0.66 0.83 0.78 0.7 0.84
LogReg 0.73 0.64 0.78 0.74 0.67 0.81 0.78 0.71 0.82
RndFor 0.81 0.79 0.78 0.69 0.66 0.6 0.72 0.72 0.66
NB 0.74 0.7 0.78 0.74 0.67 0.81 0.77 0.71 0.83
LibSVM 0.73 0.64 0.79 0.74 0.67 0.81 0.77 0.71 0.83
J48 0.75 0.81 0.29 0.65 0.73 0.33 0.74 0.76 0.2

The Friedman Test was barely significant. The post-hoc tests
showed that this is due to the better performance of RndFor.
GiniLM . NN shows the highest AUC median (0.75). LogReg,
NB, and SVM perform only slightly lower than NN. RndFor
and J48 have median values below 0.7. The comparable low
performance of RndFor was confirmed by the result of the
pairwise post-hoc tests as it had the lowest mean rank of all
learners. This is surprising as RndFor was the best method
in case of GiniR.
GiniSCC . NN and LogReg both perform the best with a me-
dian AUC of 0.78. With a median AUC of 0.77 NB and Lib-
SVM are second. Similarly to the case of GiniLM , RndFor and
J48 exhibit the lowest prediction performance. Again, this
is confirmed by the Friedman Test and the pairwise post-hoc
tests. The other algorithms do not exhibit significant differ-
ences in terms of their AUC values.

The comparison of the performance of different machine
learning methods in our work supports the findings made
in [11]: Some methods might perform better than others but
in most cases not significantly. Consequently, the selection of
a particular machine learning technique should not be based
on classification performance alone.

In Section 4.1 we could not observe a significant difference
regarding the correlation of GiniR, GiniLM , and GiniSCC with
#Bugs. Analogously, we applied a Related-Samples Friedman
Test to the AUC values of the best performing learners of
each Gini coefficient, i.e., RndFor for GiniR, NN for GiniLM ,
and NN and LogReg for GiniSCC . The test was not signif-
icant: The Gini coefficients based on the distribution of R,
LM, and SCC among developers can equally well discrimi-
nate between not bug-prone and bug-prone files in our dataset.
RandFor using GiniR obtained the highest median AUC and
resulted also in adequate values for precision and recall (0.79
and 0.78 respectively). Therefore, we accept H 2 stated in Sec-
tion 1—Gini coefficients based on change data can be used to clas-
sify source files into bug- and not bug-prone files.

4.3 Discussion of the Results
In this work we empirically investigated the relation of

how changes are distributed among developers and the num-
ber of bugs in source files. For that, we computed the Gini
coefficient—a prominent economic measure for the inequal-
ity of distributions—using three different change measures,
i.e., revisions, lines modified, and fine-grained source code
changes. The results show that the more changes of a source
file are done by a relativly small group of developers, the
less likely it will have bugs. The findings suggest that code
ownership in terms of changes should be enforced (at least
to a certain degree) and contributions made to a file should
be focused on a few dedicated developers. Moreover, our
models can list potentially bug-prone files whose ownership
should be re-organized in order to reduce the likelihood of

bugs. Since the collection of all required data can be fully
automated in a straightforward way and the tools, such as
EVOLIZER and CHANGEDISTILLER exist, our models could
be integrated into a versioning system for tool support.

We see two main potential threats to the validity our work
that need to be discussed: First, our study used only data
from the Eclipse platform. Therefore, our results are possi-
bly biased by the unique characteristics of the Eclipse devel-
opment process. This fact might threaten the generalizabil-
ity to systems other than Eclipse. Nevertheless, Eclipse is
a mature system that has been subject of numerous studies
before, e.g., [9, 15]. As such, we can benefit from and con-
tribute to prior knowledge. Furthermore, our results confirm
prior findings that the contribution structure of source code,
e.g., [3, 17], is related to bugs.

Second, different commit policies and behaviors among
the developers can influence the measurement of the change
data. For example, some developers might regularly commit
(small) individual changes for each modification task, e.g., a
single bug fix, while others only commit larger changes, e.g.,
refactorings including bug fixes. In addition, some projects
follow certain commit policies that allow only a set of core
developers to commit changes to the versioning repository.
The original developers of the changes are not mentioned.

For both threats, additional studies with different systems
are required to sustain our findings in this work. Further-
more, it is reported that versioning systems—and hence com-
mit messages—might contain a systematic bias regarding the
full population of (reported) bug fixes [2].

5. RELATED WORK
Vasa et al. were among the first to describe the distribution

of software engineering data using the Gini coefficient [21].
They collected a number of product metrics on class level,
e.g., Number of Methods, and used the Gini coefficient to an-
alyze how those metrics are distributed among the classes
on several systems. Analogously, the Theil index was used
to measure the inequality of software metrics in [19]. Sim-
ilarly to our work, Winston computed the Gini coefficient
based on change data and its distribution among develop-
ers [23]. However, he used it as a project risk measure rather
than an indicator for bugs: The higher the Gini coefficient,
the more a project depends on a few key developers—a sit-
uation often termed as key man risk. Closer to our work are
studies that relate the contribution structure of source code
to defects. Pinzger et al. found out that the position of Win-
dows Vista binaries in the developer contribution network is
an indicator of failures [17]. Bird et al. investigated the ef-
fect of minor contributors on failures in such networks [3].
Somewhat contrary, other work stated that the number of
developers does not significantly affect bugs [22]. Moser et
al. presented a comparative study using change and prod-
uct metrics to predict defects in Eclipse [15]. Among oth-
ers, their change metrics include the number of authors that
committed a file. Schroeter et al. showed that import rela-
tions of files and packages in Eclipse correlate with their bug-
proneness [18]. In addition to traditional complexity metrics,
the structure of the abstract syntax tree of Eclipse source code
was used to predict defects [25]. Another study on Eclipse in-
vestigated the relation between post-release failures and de-
pendency network measures [16].

An extensive review and comparison of more recent bug
prediction approaches is given in [4].

54

6. CONCLUSIONS & FUTURE WORK
We empirically investigated the relationship between code

ownership and bugs in source files. For that we computed
the Gini coefficient for each file in our dataset based on the
distribution of the changes of that particular file among all
developers. We measured changes at three different gran-
ularity levels: Revisions, lines modified, and fine-grained
source code changes. A high Gini coefficient for a given file
means that a relatively small group of developers is respon-
sible for a large amount of changes, i.e., there is a high degree
of code ownership for that file with respect to changes. Sum-
marized, the results of our study are:

• The number of bugs in a file correlates negatively with
the Gini coefficient: The more changes of a file are done
by a few dedicated developers (high Gini coefficient)
the less likely it will have bugs (H 1).

• The Gini coefficient on file level can be used to identify
bug-prone files with adequate performance. The best re-
sults (AUC of 0.81) are obtained with a Random For-
est prediction model using the Gini coefficient based on
the distribution of revisions among developers (H 2).

Future work is basically concerned with extending our ex-
periments to systems other than Eclipse. To shed more light
on the characteristics of source code changes, we plan to in-
clude information about the types of changes. For instance,
is it more critical with respect to bugs that code ownership is
enforced in case of declaration changes than it is in the case
of source code statement changes, e.g., assignments.

7. REFERENCES
[1] A. Bernstein, J. Ekanayake, and M. Pinzger. Improving

defect prediction using temporal features and non
linear models. In Proc. Int’l Workshop on Principles of
Softw. Evolution, pages 11–18, 2007.

[2] C. Bird, A. Bachmann, E. Aune, J. Duffy, A. Bernstein,
V. Filkov, and P. Devanbu. Fair and balanced?: bias in
bug-fix datasets. In Proc. Joint European Softw. Eng. Conf.
and ACM SIGSOFT Symposium on the Foundations of
Softw. Eng., pages 121–130, 2009.

[3] C. Bird, N. Nagappan, H. C. Gall, P. Devanbu, and
B. Murphy. An analysis of the effect of code ownership
on software quality across windows, eclipse, and
firefox. Tech. Report 140, Microsoft Research, October
2010.

[4] M. D’Ambros, M. Lanza, and R. Robbes. An extensive
comparison of bug prediction approaches. In Proc. Int’l
Workshop on Mining Softw. Repositories, pages 31–41,
2010.

[5] R. Dorfman. A formula for the gini coefficient. The
Review of Economics and Statistics, 61(1):146–149,
February 1979.

[6] S. Dowdy, S. Weardon, and D. Chilko. Statistics for
Research. Probability and Statistics. John Wiley and
Sons, Hoboken, New Jersey, third edition, 2004.

[7] B. Fluri, M. Würsch, M. Pinzger, and H. C. Gall.
Change Distilling: Tree Differencing for Fine-Grained
Source Code Change Extraction. IEEE Trans. on Softw.
Eng., 33(11):725–743, November 2007.

[8] H. C. Gall, B. Fluri, and M. Pinzger. Change analysis
with evolizer and changedistiller. IEEE Software,
26(1):26–33, January/February 2009.

[9] E. Giger, M. Pinzger, and H. C. Gall. Comparing
fine-grained source code changes and code churn for
bug prediction. In Proc. Int’l Workshop on Mining Softw.
Repositories, page to appear, 2011.

[10] C. Gini. Variabilità e mutabilità. Memorie di metodologica
statistica, 1912.

[11] S. Lessmann, B. Baesens, C. M. Swantje, and Pietsch.
Benchmarking classification models for software defect
prediction: A proposed framework and novel findings.
IEEE Trans. on Softw. Eng., 34(4):485–496, July 2008.

[12] M. O. Lorenz. Methods of measuring the concentration
of wealth. Publications of the American Statistical
Association, 9(70):209–219, June 1905.

[13] T. Menzies, J. Greenwald, and A. Frank. Data mining
static code attributes to learn defect predictors. IEEE
Trans. on Softw. Eng., 33(1):2–13, January 2007.

[14] I. Mierswa, M. Wurst, R. Klinkenberg, M. Scholz, and
T. Euler. Yale: Rapid prototyping for complex data
mining tasks. In Proc. Int’l Conf. on Knowledge Discovery
and Data Mining, pages 935–940, 2006.

[15] R. Moser, W. Pedrycz, and G. Succi. A comparative
analysis of the efficiency of change metrics and static
code attributes for defect prediction. In Proc. Int’l Conf.
on Softw. Eng., pages 181–190, 2008.

[16] T. Nguyen, B. Adams, and A. Hassan. Studying the
impact of dependency network measures on software
quality. In Proc. Int’l Conf. on Softw. Maintenance, pages
1 –10, 2010.

[17] M. Pinzger, N. Nagappan, and B. Murphy. Can
developer-module networks predict failures? In Proc.
ACM SIGSOFT Symposium on the Foundations of Softw.
Eng., pages 2–12, 2008.

[18] A. Schroeter, T. Zimmermann, and A. Zeller. Predicting
component failures at design time. In Proc. Int’l
Symposium on Empirical Softw. Eng., pages 18–27, 2006.

[19] A. Serebrenik and M. van den Brand. Theil index for
aggregation of software metrics values. In Proc. Int’l
Conf. on Softw. Maintenance, pages 1–9, 2010.

[20] J. Śliwerski, T. Zimmermann, and A. Zeller. When do
changes induce fixes? In Proc. Int’l Workshop on Mining
Softw. Repositories, pages 1–5, 2005.

[21] R. Vasa, M. Lumpe, P. Branch, and O. Nierstrasz.
Comparative analysis of evolving software systems
using the gini coefficient. In Proc. Int’l Conf. on Softw.
Maintenance, pages 179 –188, 2009.

[22] E. Weyuker, T. Ostrand, and R. Bell. Do too many cooks
spoil the broth? using the number of developers to
enhance defect prediction models. Empirical Softw. Eng.,
13(5):539–559, October 2008.

[23] R. Winston.
The gini coefficient as a measure of software project risk.
http://www.theresearchkitchen.com/blog/archives/219.

[24] I. Witten and E. Frank. Data Mining: Practical Machine
Learning Tools and Techniques. Data Management
Systems. Morgan Kaufmann, second edition, June 2005.

[25] T. Zimmermann, R. Premraj, and A. Zeller. Predicting
defects for eclipse. In Proc. Int’l Workshop on Predictor
Models in Softw. Eng., pages 9–15, 2007.

55

