
The Journal of Systems and Software 213 (2024) 112037

A
0

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

PASDA: A partition-based semantic differencing approach with best effort
classification of undecided cases✩

Johann Glock a,∗, Josef Pichler b, Martin Pinzger a

a Department of Informatics Systems, University of Klagenfurt, Universitätsstraße 65-67, Klagenfurt, 9020, Austria
b School of Informatics, Communications and Media, University of Applied Sciences Upper Austria, Softwarepark 11, Hagenberg im Mühlkreis, 4232, Austria

A R T I C L E I N F O

Dataset link: https://doi.org/10.5281/zenodo.7
595851

Keywords:
Equivalence checking
Program analysis
Symbolic execution

A B S T R A C T

Equivalence checking is used to verify whether two programs produce equivalent outputs when given
equivalent inputs. Research in this field mainly focused on improving equivalence checking accuracy and
runtime performance. However, for program pairs that cannot be proven to be either equivalent or non-
equivalent, existing approaches only report a classification result of unknown, which provides no information
regarding the programs’ non-/equivalence.

In this paper, we introduce PASDA, our partition-based semantic differencing approach with best effort
classification of undecided cases. While PASDA aims to formally prove non-/equivalence of analyzed program
pairs using a variant of differential symbolic execution, its main novelty lies in its handling of cases for which
no formal non-/equivalence proof can be found. For such cases, PASDA provides a best effort equivalence
classification based on a set of classification heuristics.

We evaluated PASDA with an existing benchmark consisting of 141 non-/equivalent program pairs. PASDA
correctly classified 61%–74% of these cases at timeouts from 10 s to 3600 s. Thus, PASDA achieved equivalence
checking accuracies that are 3%–7% higher than the best results achieved by three existing tools. Furthermore,
PASDA’s best effort classifications were correct for 70%–75% of equivalent and 55%–85% of non-equivalent
cases across the different timeouts.
1. Introduction

In the context of software programs, the goal of functional equiva-
lence checking is to verify whether two programs produce equivalent
outputs when given equivalent inputs (Godlin and Strichman, 2009).
This information can be used, for example, to verify compiler optimiza-
tions (Dahiya and Bansal, 2017), to provide assurance that refactorings
do not introduce unintended functional changes (Person et al., 2008),
to check whether changes in libraries affect their clients (Mora et al.,
2018), or even for security related analyses such as distinguishing
benign integer overflows from harmful ones (Sun et al., 2016) and clas-
sifying which malware family a given program belongs to (Mercaldo
and Santone, 2021).

Classification accuracy and runtime performance of equivalence
checking approaches have seen continuous improvements throughout
the years (Person et al., 2011; Backes et al., 2013; Felsing et al.,
2014; Jakobs and Wiesner, 2022), which has enabled these approaches
to provide non-/equivalence proofs for more complex programs in
shorter amounts of time. However, for cases that cannot be proven

✩ Editor: Burak Turhan.
∗ Corresponding author.
E-mail address: johann.glock@aau.at (J. Glock).

to be either equivalent or non-equivalent, existing approaches such
as UC-KLEE (Ramos and Engler, 2011), PEQcheck (Jakobs, 2021), and
ARDiff (Badihi et al., 2020) only output a classification of Unknown,
which provides no indication about the potential non-/equivalence
of the two analyzed programs. For example, ARDiff classifies the
two equivalent programs shown in Listing 1 as well as the two non-
equivalent programs shown in Listing 2 as Unknown, but does not
provide any further information beyond this.

In this paper, we introduce PASDA, our partition-based semantic
differencing approach with best effort classification of undecided cases.
While PASDA aims to formally prove non-/equivalence of analyzed
program pairs, its main novelty lies in its handling of cases for which
no such formal proof can be found. Instead of classifying all such cases
as Unknown, PASDA reports a best effort equivalence classification of
either Maybe_Eq or Maybe_Neq if it can provide at least part of a non-
/equivalence proof on either the program or partition level. In this
way, PASDA offers a more complete description of program behaviors
than existing approaches since it reduces the part of the input space for
which no information is provided.
vailable online 28 March 2024
164-1212/© 2024 The Author(s). Published by Elsevier Inc. This is an open access a

https://doi.org/10.1016/j.jss.2024.112037
Received 17 October 2023; Received in revised form 7 February 2024; Accepted 22
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

March 2024

https://www.elsevier.com/locate/jss
https://www.elsevier.com/locate/jss
https://doi.org/10.5281/zenodo.7595851
https://doi.org/10.5281/zenodo.7595851
https://doi.org/10.5281/zenodo.7595851
https://doi.org/10.5281/zenodo.7595851
https://doi.org/10.5281/zenodo.7595851
https://doi.org/10.5281/zenodo.7595851
https://doi.org/10.5281/zenodo.7595851
https://doi.org/10.5281/zenodo.7595851
https://doi.org/10.5281/zenodo.7595851
https://doi.org/10.5281/zenodo.7595851
https://doi.org/10.5281/zenodo.7595851
https://doi.org/10.5281/zenodo.7595851
https://doi.org/10.5281/zenodo.7595851
https://doi.org/10.5281/zenodo.7595851
https://doi.org/10.5281/zenodo.7595851
https://doi.org/10.5281/zenodo.7595851
https://doi.org/10.5281/zenodo.7595851
https://doi.org/10.5281/zenodo.7595851
https://doi.org/10.5281/zenodo.7595851
https://doi.org/10.5281/zenodo.7595851
https://doi.org/10.5281/zenodo.7595851
https://doi.org/10.5281/zenodo.7595851
https://doi.org/10.5281/zenodo.7595851
https://doi.org/10.5281/zenodo.7595851
https://doi.org/10.5281/zenodo.7595851
https://doi.org/10.5281/zenodo.7595851
https://doi.org/10.5281/zenodo.7595851
https://doi.org/10.5281/zenodo.7595851
https://doi.org/10.5281/zenodo.7595851
https://doi.org/10.5281/zenodo.7595851
https://doi.org/10.5281/zenodo.7595851
https://doi.org/10.5281/zenodo.7595851
https://doi.org/10.5281/zenodo.7595851
https://doi.org/10.5281/zenodo.7595851
https://doi.org/10.5281/zenodo.7595851
https://doi.org/10.5281/zenodo.7595851
https://doi.org/10.5281/zenodo.7595851
https://doi.org/10.5281/zenodo.7595851
mailto:johann.glock@aau.at
https://doi.org/10.1016/j.jss.2024.112037
https://doi.org/10.1016/j.jss.2024.112037
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2024.112037&domain=pdf
http://creativecommons.org/licenses/by/4.0/

The Journal of Systems & Software 213 (2024) 112037J. Glock et al.

1
1

L
e
f
P
s
e
a
w
n

o
i
c

1 double eq_v1(int x, double y) {

2 for (int i = 0; i < 1 ; i++) { x += 0 ; }

3 return x + y + 1 ;

4 }
5
6 double eq_v2(int x, double y) {

7 for (int i = 0; i < x ; i++) { x *= 1 ; }

8 return 1 + x + y;

9 }

Listing 1: Example of two equivalent programs.

1 double neq_v1(double x) {

2 if (x <= 0) { return 1 ; }

3 if (x > 9) { return Math.tan(1 * x); }

4 return Math.tan(1 * x) < 0 ? -1 : 0;

5 }
6
7 double neq_v2(double x) {

8 if (x <= 0) { return 2 ; }

9 if (x > 9) { return Math.tan(2 * x); }

0 return Math.tan(2 * x) < 0 ? -1 : 0;

1 }

Listing 2: Example of two non-equivalent programs.

For example, PASDA classifies the two equivalent programs in
isting 1 as Maybe_Eq rather than Unknown because it can provide
quivalence proofs for all partitions up to a pre-configured depth limit
or loop exploration. For the two non-equivalent programs in Listing 2,
ASDA can even provide an overall non-equivalence proof, thus clas-
ifying the two programs as Neq rather than Unknown. In this case, the
ight identified partitions (see Table 3) of the non-equivalent programs
re classified as either Eq, Neq, Maybe_Neq, or Unknown depending on
hether (i) both, (ii) one of, or (iii) none of reachability and output
on-/equivalence can be proven.

To further improve the utility of its outputs, PASDA does not
nly process this partition-level information internally, but also reports
t as supporting information alongside its program-level equivalence
lassification results. Specifically, for each input partition that PASDA

identifies during a symbolic execution (King, 1976) of the two target
programs, it aims to collect (a) concrete and symbolic input and output
values, (b) a partition-level equivalence classification, and (c) the lines
of code that are covered by the corresponding execution path. Such
information has been found to benefit developers’ understanding of
program analysis results (LaToza and Myers, 2010; Parnin and Orso,
2011; Winter et al., 2022). Similar information is provided by some
existing equivalence checking approaches such as DSE (Person et al.,
2008), SymDiff (Lahiri et al., 2012), and PRV (Böhme et al., 2013).

Our implementation of PASDA takes the source code of two Java
programs as its input and first constructs a product program (Barthe
et al., 2011; Beckert and Ulbrich, 2018) that combines the behavior of
these two target programs. PASDA then uses the symbolic execution
engine Symbolic PathFinder (Păsăreanu and Rungta, 2010) to sym-
bolically execute the product program. For each partition identified
during the symbolic execution, PASDA collects the corresponding path
condition and symbolic output values of the two target programs. This
information is sent to the theorem prover Z3 (De Moura and Bjørner,
2008) to produce an equivalence classification for each partition. Once
all partitions have been analyzed, PASDA aggregates the partition-level
results to produce a program-level result. If the program-level result
is a proof of non-/equivalence, PASDA reports this as the final result
of its analysis. Otherwise, PASDA employs iterative abstraction and
2

refinement of unchanged parts of the source code (Badihi et al., 2020)
to conduct further analysis iterations until a non-/equivalence proof is
found or a given timeout is reached.

We evaluated the equivalence checking accuracy and runtime per-
formance of PASDA with an existing benchmark (Badihi et al., 2020)
consisting of 73 equivalent and 68 non-equivalent program pairs and
compared the results to the three existing tools ARDiff (Badihi et al.,
2020), DSE (Person et al., 2008), and PRV (Böhme et al., 2013). PASDA
correctly classified 61%–74% of analyzed cases at six different timeout
settings ranging from 10 seconds (s) to 3600 s. In our evaluation,
PASDA’s classification accuracy is, therefore, 3%–7% higher than those
that we observed for the three existing tools, which correctly classified
at most 58% of cases at the 10 s timeout setting and at most 67%
of cases at the 3600 s timeout setting. Furthermore, PASDA’s best
effort classifications for undecided cases were correct for 70%–75% of
equivalent cases and 55%–85% of non-equivalent cases across the six
analyzed timeout settings.

We envision that PASDA’s best effort equivalence classifications
and corresponding partial non-/equivalence proofs will benefit use
cases such as test case prioritization (Khatibsyarbini et al., 2018),
fault localization (Wong et al., 2016), and general support for manual
debugging tasks. All of these use cases benefit from more complete
information about non-/equivalent program behaviors even without
full non-/equivalence proofs. While an in-depth analysis of such use
cases is beyond the scope of this paper, we plan to investigate them in
our future work.

The contributions that we make in this paper are as follows:

1. PASDA, an equivalence checking approach for software pro-
grams that provides best effort classifications for cases that
cannot be proven to be non-/equivalent,

2. an evaluation of PASDA’s equivalence checking accuracy and
runtime performance by comparing it to three state-of-the-art
equivalence checking tools using an established equivalence
checking benchmark,

3. an evaluation of PASDA’s best effort classification results,
4. a publicly available implementation of PASDA that supports

equivalence checking of Java programs.

Throughout the remainder of this paper, we first present back-
ground information on the use of symbolic execution for equivalence
checking in Section 2. In Section 3, we describe PASDA and evaluate it
in Section 4. Section 5 discusses the benefits and potential use cases of
our approach as well as threats to the validity of our results. We present
related work in Section 6 and draw the conclusions in Section 7.

2. Background

This section introduces relevant terminology that we use throughout
the rest of this paper to describe our approach. Furthermore, it provides
descriptions of the three equivalence checking approaches DSE (Person
et al., 2008), ARDiff (Badihi et al., 2020), and PRV (Böhme et al., 2013)
which originally introduced key ideas (differential symbolic execution,
iterative abstraction and refinement, and partition-based regression
verification) that we reuse in our approach.

2.1. Symbolic execution

Symbolic execution is a technique for systematically exploring all
possible execution paths of a given program (Baldoni et al., 2018;
Cadar and Sen, 2013). The main ideas employed by symbolic execution
are to (i) use symbolic rather than concrete values to represent the
program state and to (ii) follow all reachable execution paths whenever
a branching point is encountered during the execution (King, 1976). For
each execution path, symbolic execution collects a path condition that
contains the constraints that have to be satisfied by the input variables

The Journal of Systems & Software 213 (2024) 112037J. Glock et al.

p
o
h
e
t
p

c
u
p
d
S

2

c
g
m
c
g
b
d
a
n
p

p
p
t

b
l
e
t
b
r
e

b
d
e
a

o
t
a

g
r
e
t
c
l
a
H
f
o

v
i
o
f
a
t
o
s

p
a
i
p
s

to reach the path, and the outputs produced by following the path,
which are represented as a function of the input variables (Păsăreanu
and Visser, 2009). The input values that satisfy a given path condition
are commonly referred to as an (input) partition.

Once all reachable paths have been explored, symbolic execution
outputs a program summary which consists of a disjunction of one or
more partition-effects pairs (Person et al., 2008). Each partition-effects
air consists of a conjunction of the path condition and corresponding
utputs of a single execution path. Unreachable paths, i.e., paths that
ave unsatisfiable path conditions, are skipped during the symbolic
xecution and not included in the program summaries. For example,
he program summary that is produced by a symbolic execution of the
rogram neq_v2 in Listing 2 is the following:

1 x<=0 ∧ RET=2
2 ∨ !(x<=0) ∧ x>9 ∧ RET=tan (2*x)
3 ∨ !(x<=0) ∧ !(x>9) ∧ tan (2*x) <0 ∧ RET=-1
4 ∨ !(x<=0) ∧ !(x>9) ∧ !(tan(2*x) <0) ∧ RET=0

Limitations of symbolic execution include its high computational
ost, its inability to produce complete summaries in the presence of
nbounded loops and recursion, and its inability to handle complex ex-
ressions (e.g., non-linear arithmetic) which are intractable for modern
ecision procedures (Person et al., 2008; Cadar et al., 2011; Cadar and
en, 2013).

.2. Differential symbolic execution

Differential symbolic execution (DSE) uses symbolic execution to
haracterize differences in the input–output behavior of two pro-
rams (Person et al., 2008). More specifically, DSE first collects sum-
aries of the two target programs via symbolic execution. It then

ompares these summaries to identify inputs for which the two pro-
rams produce different outputs. If no differences in the input–output
ehavior are identified, the two programs are equivalent and DSE
oes not produce any further output. However, if the two programs
re non-equivalent, DSE outputs a behavioral delta that consists of the
on-equivalent input partitions and corresponding outputs that are
roduced for these inputs by the two target programs.

To avoid some of the limitations of symbolic execution, DSE re-
laces parts of the source code that are unchanged across the two target
rograms with calls to uninterpreted functions (UIFs) before running
he symbolic execution. For example, assuming that line 2 of eq_v1 is

syntactically equivalent to line 7 of eq_v2 in Listing 1, both lines would
e replaced with a UIF call 𝑥 = 𝑈𝐼𝐹 (𝑥). While this abstraction would
ead to an overapproximation of actual program behavior, it would
nable DSE to prove the two programs to be equivalent without having
o bound the number of loop iterations that are analyzed. Similar
enefits can be achieved when abstracting program constructs such as
ecursion and non-linear arithmetic that are also difficult for symbolic
xecution to handle.

One of the main limitations of DSE is that it needs to fully analyze
oth target programs before an equivalence classification can be pro-
uced. This makes it unsuitable for use cases where its execution time
xceeds given time constraints. Furthermore, DSE exhibits lower equiv-
lence checking accuracy than more recent tools such as ARDiff (Badihi

et al., 2020). Finally, even though DSE produces behavioral deltas
for Neq partitions, it does not provide input–output descriptions for
partitions classified as Eq or Unknown. For example, DSE classifies the
programs in Listing 1 as Unknown due to depth-limiting, and Listing 2
as Unknown due to the presence of the tan() function (which generally
is not fully modeled by modern decision procedures), but does not
3

provide any information beyond this. f
2.3. Iterative abstraction and refinement

The goal of ARDiff (Badihi et al., 2020) is to reduce the number
f programs that cannot be provably classified as non-/equivalent due
o the introduction of UIFs while preserving the benefits that this
bstraction provides. ARDiff accomplishes this through an iterative

process that starts with the same abstraction of unchanged source code
that DSE uses. If no non-/equivalence proof can be found at this level of
abstraction, ARDiff refines one of the UIFs, replacing it with the original
unchanged source code. The resulting partially refined program is
again checked for equivalence, and further refinement iterations are
conducted until non-/equivalence can be proven, no further refinement
is possible, or a timeout is reached.

To choose which UIF should be refined in each iteration, ARDiff
employs three heuristics. Heuristic 1 (H1) marks those UIFs as re-
finement candidates for which an assignment exists that enables a
non-/equivalence proof irrespective of the assignments of all other
UIFs. Heuristic 2 (H2) marks those UIFs as refinement candidates that
occur a different number of times in the two programs. Heuristic 3 (H3)
then ranks the refinement candidates according to how deeply they are
nested in loops and how many non-linear arithmetic operations each
candidate replaces. If no refinement candidates are identified by H1
and H2, all UIFs are included in H3’s ranking. The UIF with the lowest
rank is refined. We refer the reader to Badihi et al. (2020) for a more
detailed description of the three heuristics.

While ARDiff achieves better equivalence checking accuracy than
DSE, this comes at the cost of longer runtimes. Furthermore, ARDiff
inherits DSE’s requirement that the two target programs have to be fully
analyzed before an equivalence classification can be provided. Finally,
ARDiff does not preserve DSE’s behavioral deltas as a description of
non-equivalent program behaviors — it only produces program-level
equivalence classifications. For example, ARDiff reports the two cases
shown in Listings 1 and 2 as Unknown for the same reasons as DSE,
but does not provide any other information beyond these equivalence
classifications.

2.4. Partition-based regression verification

DSE and ARDiff both need to fully analyze the two target pro-
rams before a non-/equivalence proof can be provided. Partition-based
egression verification (PRV), on the other hand, can provide non-
quivalence proofs for many cases after only a partial analysis of
he target programs (Böhme et al., 2013). PRV accomplishes this by
hecking non-/equivalence on the partition level instead of the program
evel. With this approach, two programs are proven to be equivalent if
ll partitions can be proven to be so, which still requires a full analysis.
owever, two programs are proven to be non-equivalent as soon as the
irst input partition for which the two target programs produce different
utputs is identified.

PRV’s analysis starts by identifying a random assignment of input
alues from the common input space of the two target programs. These
nputs are used to execute both programs, which provides the program
utputs and the corresponding path conditions. Outputs are checked
or non-/equivalence, thus marking the partition as either Eq or Neq if
non-/equivalence proof is found, or Unknown otherwise. Exploration

hen continues with a new set of input values from the unexplored part
f the common input space. The process repeats until the full input
pace has been explored or some timeout is reached.

There are two main benefits that PRV’s partition-based approach
rovides: (i) non-equivalence of two programs can be proven without
full analysis of all program paths, and (ii) even if the analysis is

nterrupted ahead of time, non-/equivalence proofs for all explored
artitions are preserved. However, PRV does not employ UIFs to ab-
tract unchanged parts of the source code and, therefore, cannot benefit

rom the advantages that such an abstraction entails (see Section 2.2).

The Journal of Systems & Software 213 (2024) 112037J. Glock et al.

b
b

1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3

Fig. 1. Overview of PASDA’s semantic differencing process. Elements with a white
ackground are identical to the state-of-the-art, whereas elements with a gray
ackground are modified or newly introduced by PASDA.

Furthermore, PRV still distinguishes only three equivalence classifica-
tions (Eq, Neq, and Unknown) at the partition level. For example, PRV
classifies all partitions in Listing 2 that return via line 4 in neq_v1 and
line 10 in neq_v2 as Unknown because it cannot generate inputs that
satisfy the corresponding path conditions (due to the presence of the
tan() function), but does not provide any further information beyond
the Unknown equivalence classification for these partitions.

3. The PASDA approach

Our approach, which we refer to as PASDA, combines ideas from
DSE (Person et al., 2008) (abstraction of unchanged code parts),
ARDiff (Badihi et al., 2020) (iterative abstraction and refinement), and
PRV (Böhme et al., 2013) (partition-based analysis) and further extends
them with a best effort classification of programs and partitions that
cannot be formally proven to be either equivalent or non-equivalent.

An overview of the full approach is shown in Fig. 1. PASDA starts
with a source code instrumentation step that creates a product program
which combines the two target programs 𝑝1 and 𝑝2. Starting at PASDA’s
second iteration, this step also replaces unchanged parts of the source
code of the two target programs with UIFs. Once the instrumentation is
complete, PASDA symbolically executes the product program to collect
information for equivalence checking. If non-/equivalence cannot be
proven based on the collected information, the three heuristics pro-
posed by Badihi et al. (2020) are used to choose a UIF to replace
with the original unchanged code, thereby creating two new programs
that are again checked for non-/equivalence. This iterative refinement
process continues until one of the following conditions holds: (i) equiv-
alence or non-equivalence can be proven, (ii) no further refinement is
possible, or (iii) the runtime exceeds the configured timeout.

The main difference that sets PASDA apart from existing equiva-
lence checking approaches is how it handles limitations of the used
decision procedures. For example, if a program path cannot be proven
to be reachable or unreachable, or if the outputs of two programs
cannot be proven to be equivalent or non-equivalent, existing tools
simply classify the corresponding programs or partitions as Unknown.
PASDA, on the other hand, takes a more differentiated view. Rather
than classifying all such cases as Unknown, it distinguishes between
Maybe_Eq, Maybe_Neq, and Unknown results based on a set of classifica-
tion heuristics (see Step 3 and Step 4). Furthermore, PASDA provides
not only program- and partition-level equivalence classifications, but
also aims to provide execution traces as well as concrete and symbolic
inputs and outputs for identified partitions (see Step 2 and Section 3.6)
since such information has been found to benefit developers’ under-
standing of program analysis results (LaToza and Myers, 2010; Parnin
4

and Orso, 2011; Winter et al., 2022).
1 public class ProductProgram {
2 ...
3
4 public static void main(String [] args) {
5 ProductProgram.run(${values });
6 }
7
8 public static ${type} run(${params }) {
9 ${type} result1 = ${defaultValue };
0 ${type} result2 = ${defaultValue };
1 Throwable error1 = null;
2 Throwable error2 = null;
3
4 try {
5 result1 = ${cls1}.${method1 }(${vars});
6 } catch (Throwable e) {
7 error1 = e;
8 }
9 try {
0 result2 = ${cls2}.${method2 }(${vars});
1 } catch (Throwable e) {
2 error2 = e;
3 }
4
5 checkEquivalence(error1 , error2);
6 checkEquivalence(result1 , result2);
7
8 return result2;
9 }
0
1 public static void checkEquivalence (...)
2 throws DifferentOutputsException { ... }
3 }

Listing 3: The product program template used by PASDA.

In the following, we provide more detailed descriptions of PASDA’s
five processing steps (i.e., source code instrumentation, symbolic exe-
cution, partition equivalence classification, program equivalence classi-
fication, and abstraction refinement) in Sections 3.1–3.5. A description
of the outputs that PASDA produces is then provided in Section 3.6.

3.1. Step 1: Source code instrumentation

At the start of every iteration, PASDA constructs a product pro-
gram (Barthe et al., 2011; Beckert and Ulbrich, 2018) that enables
it to check the equivalence of the two target programs in a single
symbolic execution run (Lahiri et al., 2012; Ramos and Engler, 2011).
Furthermore, starting at its second iteration, PASDA replaces parts of
the source code that are unchanged across the two target programs with
UIFs (Person et al., 2008).

Construction of the product program. Listing 3 shows the template that
is used by PASDA to construct the product program. The product
program first executes the two given target programs (lines 15 and
20) and then checks whether their effects, i.e., return values or thrown
exceptions, are equivalent (lines 25 and 26). If the effects are not
equivalent, a DifferentOutputsException is thrown. Otherwise, the
result produced by the two programs is returned as the output of the
product program (line 28).

For the product program template to be applicable to a given pair
of target programs, the following assumptions must hold: (i) the two
programs must take the same number of input arguments, and the types
of the input arguments as well as the output types of the two programs
must match, (ii) all effects produced by the two target programs must

be observable via return values or raised exceptions, and (iii) the two

The Journal of Systems & Software 213 (2024) 112037J. Glock et al.

2
2
o
b

3

2
i
o

e
c
L
t
P
S
p
I
c

U
i
t
t
i
p
a
n

D
c
S
c
F
w
l
t
s
𝑥

c
p
s
h

e
h
t

3

t
e
p
o
a
f
c

P
R
b
p
w
k
a
a
R
Z
i
a

target programs must both be deterministic, i.e., both programs must
always produce equivalent effects when called with equivalent inputs.

Assumptions (i) and (ii) could potentially be lifted through a more
refined preprocessing approach. More specfically, program pairs that
do not satisfy assumption (i) could be detected and classified as non-
equivalent through a lightweight preprocessing step that compares
the input and output types of the two target programs. Furthermore,
programs that do not satisfy assumption (ii) could be transformed to
include side effects (e.g., modifications of global variables, console
outputs, etc.) in the outputs of the programs prior to equivalence
checking. We leave such improvements for future work.

Introduction of UIFs. Starting at its second iteration, PASDA uses in-
strumented variants of the two target programs as the targets of its
analysis. In these instrumented programs, parts of the source code
that are syntactically unchanged across the two original programs are
replaced with UIFs. We reuse ARDiff’s implementation (Badihi et al.,
022) of this instrumentation step, which uses GumTree (Falleri et al.,
014) to identify unchanged parts of the source code. When applied to
ur examples in Listings 1 and 2, none of the statements are replaced,
ecause each line of code contains a syntactic change.

.2. Step 2: Symbolic execution

PASDA uses Symbolic PathFinder (SPF) (Păsăreanu and Rungta,
010) to symbolically execute the product program created during the
nstrumentation step. For each identified path that is either provably
r maybe reachable (for further details on reachability, see partition
reachability classification in Section 3.3), PASDA aims to collect the
following information:

(𝑎) one partition-effects pair for each program version,
(𝑏) equivalence information for the two partition-effects pairs,
(𝑐) information about the lines of code covered by the path.

The (𝑎) partition-effects pairs and (𝑐) coverage information are
collected via listeners that hook into the lifecycle events of SPF. For
example, coverage information is collected by storing the current line
number whenever SPF raises an instructionExecuted event. The (𝑏)
quivalence information is calculated whenever a checkEquivalence
all is reached in lines 25 and 26 of the product program shown in
isting 3. For exceptions, PASDA only checks whether their types are
he same to determine non-/equivalence. For regular return values,
ASDA performs the partition equivalence classification described in
tep 3. Note that the full data for (𝑎)–(𝑐) can only be collected for
aths that (i) are (maybe) reachable, and (ii) are not depth-limited.
n the following paragraphs, we describe which parts of the data are
ollected for the remaining paths that do not satisfy these criteria.

nreachable paths. A path is said to be unreachable if its path condition
s provably unsatisfiable. For example, in eq_v1 in Listing 1, all paths
hat perform more than a single loop iteration are unreachable because
he looping condition 𝑖 < 1 cannot be satisfied anymore once 𝑖 has been
ncremented at the end of the first loop iteration. Since unreachable
aths represent program flow that cannot occur in practice, all unreach-
ble paths are skipped during the symbolic execution, and PASDA does
ot collect any of the data listed in (𝑎)–(𝑐) for them.

epth-limited paths. For paths that are not fully analyzed due to the
onfigured depth limit, PASDA only collects partial data for (a)–(c).
pecifically, it collects (𝑎′) the path condition of the path, and (𝑐′) the
overed lines of code up to the point where the depth limit was reached.
or example, when eq_v2 from Listing 1 is symbolically executed
ith a depth limit setting of 10, all inputs 𝑥 > 10 produce depth-

imited paths. For these inputs, execution proceeds as normal until
he program is about to enter the 11th loop iteration. At this point,
ymbolic execution of the current path stops with a path condition of
5

> 10, having covered only line 2. No (𝑏) equivalence information
an be collected because no return value has been produced at this
oint. The corresponding partition is classified as Depth_Limited and the
ymbolic execution then proceeds as usual for the remaining paths that
ave not been explored yet.
PASDA alternates between symbolic execution (Step 2) and partition

quivalence classification (Step 3) until all (maybe) reachable paths
ave been explored and checked for non-/equivalence. The process
hen continues with program equivalence classification (Step 4).

.3. Step 3: Partition equivalence classification

As described in the previous section, the values returned by the two
arget programs are checked for equivalence whenever the symbolic
xecution reaches the checkEquivalence call in line 26 of the product
rogram shown in Listing 3. Two factors are combined to produce the
verall partition-level equivalence classification: partition reachability
nd partition output equivalence. In this section, we describe how these
actors are calculated and how the overall partition-level equivalence
lassification is derived from them.

artition reachability classification. Reachability can be classified as
eachable, Maybe_Reachable, or Unreachable. Classification is influenced
y two factors: (i) the presence of UIFs in the path condition of the
artition (Uif = yes/no), and (ii) the result of a Z3 query that checks
hether the path condition is satisfiable (Pc-Query = Sat/Unsat/Un-
nown). An enumeration of the possible combinations of these factors
nd their corresponding classifications are shown in Table 1. For ex-
mple, paths in neq_v2 from Listing 2 that return via line 8 or 9 are
eachable. Paths that return via line 10 are Maybe_Reachable because
3 cannot prove whether 𝑀𝑎𝑡ℎ.𝑡𝑎𝑛(2 ∗ 𝑥) < 0 holds for all 𝑥. Paths
n eq_v1 from Listing 1 that perform more than one loop iteration
re Unreachable. As described in the previous section, Unreachable

partitions are skipped by the symbolic execution and, therefore, do not
have to be considered during partition equivalence classification.

Partition output equivalence classification. Output equivalence can be
classified as Eq, Neq, Maybe_Eq, Maybe_Neq, or Unknown. Classification
is influenced by three factors: (i) the presence of UIFs in the partition-
effects pairs of the current path (Uif = yes/no), (ii) the result of a Z3
query that checks whether the outputs of the two programs are non-
equivalent (Neq-Query = Sat/Unsat/Unknown), and (iii) the result of
a Z3 query that checks whether the outputs of the two programs are
equivalent (Eq-Query = Sat/Unsat/Unknown). An overview of the possi-
ble combinations of these factors and their corresponding classifications
are shown in Table 2. For example, the path that returns via line 2 in
neq_v1 and line 8 in neq_v2 in Listing 2 is classified as Neq, whereas the
path that returns via line 3 in neq_v1 and line 9 in neq_v2 is classified
as Unknown because Z3 cannot prove whether or not 𝑀𝑎𝑡ℎ.𝑡𝑎𝑛(1 ∗ 𝑥)
and 𝑀𝑎𝑡ℎ.𝑡𝑎𝑛(2 ∗ 𝑥) are equivalent for all 𝑥.

Overall partition equivalence classification. The partition reachability
classification and partition output classification are combined to pro-
duce the overall partition-level equivalence classification. Specifically,
a reachability result ofMaybe_Reachable turns Neq results intoMaybe_Neq
results (because in this case, it is not possible to prove that the non-
equivalence can be observed in a concrete execution of the two original
programs). For all other combinations, the overall classification is the
same as the output classification. Thus, each partition is assigned to one
of six equivalence classes: Eq, Neq, Maybe_Eq, Maybe_Neq or Unknown
if the partition is not depth-limited (as described in this section), or
Depth_Limited otherwise (as described in the previous section). Classi-
fication results are returned to Step 2 which then continues with the

analysis of the remaining paths of the product program.

The Journal of Systems & Software 213 (2024) 112037J. Glock et al.
Table 1
Partition reachability classification.
Uif Pc-Query Reachability classification

No Sat Reachable
No Unsat Unreachable
No Unknown Maybe_Reachable
Yes Sat Maybe_Reachable
Yes Unsat Unreachable
Yes Unknown Maybe_Reachable

Table 2
Partition output equivalence classification.
Uif Neq-Query Eq-Query Output classification

∗ Unsat ∗ Eq
∗ Unknown Sat Maybe_Eq
∗ Unknown Unsat Neq
∗ Unknown Unknown Unknown
No Sat ∗ Neq
Yes Sat Sat Maybe_Neq
Yes Sat Unsat Neq
Yes Sat Unknown Maybe_Neq

3.4. Step 4: Program equivalence classification

Once the symbolic execution concludes, the results of the partition-
level equivalence classifications are aggregated to produce the program-
level equivalence classification of the current iteration. A program-level
result of Eq is reported if all partitions could be identified, analyzed,
and proven to be Eq within the given timeout. A result of Maybe_Eq is
reported if at least some partitions were identified and classified as Eq
or Maybe_Eq but none were classified as Neq or Maybe_Neq. Otherwise,
the program-level result is determined by the partition-level result with
the highest priority, where priorities are as follows: Neq > Maybe_Neq
> Unknown > Depth_Limited. For example, Table 3 lists the partition-
level data obtained by PASDA for neq_v1 and neq_v2 in Listing 2.
Because at least one partition is classified as Neq, the two programs are
classified as Neq. Special handling exists to provide classifications in the
presence of errors and timeouts. If an error (e.g., OutOfMemoryError)
occurs during PASDA’s execution, a classification of Error is reported. If
PASDA cannot analyze even a single partition within the given timeout,
a classification of Timeout is reported.

3.5. Step 5: Abstraction refinement

Abstraction refinement takes place at the end of an iteration if
neither equivalence nor non-equivalence can be proven. Refinement,
in this case, refers to the process of selecting one of the UIFs that
were introduced during the instrumentation step and marking it to be
excluded from abstraction in all following iterations. Consequently, the
number of UIFs that remain in the instrumented programs is reduced by
one for every iteration that concludes with a program-level equivalence
classification that is neither Eq nor Neq. We are reusing ARDiff’s
implementation (Badihi et al., 2022) of the abstraction refinement step
that applies the three refinement heuristics described in Section 2.3.
For a more detailed description of these heuristics, we refer the reader
to the ARDiff paper by Badihi et al. (2020).

3.6. Program output

The data that is collected by PASDA is stored in an SQLite database
to make it easily available for further processing and analysis. For
example, Table 3 shows a subset of the partition-level data that PASDA
collects when checking equivalence of neq_v1 and neq_v2 from Listing
2. As described in Section 3.2, the collected data contains (𝑎) partition-
effects pairs for the two program versions (columns Path Condition
6

and Output v1/v2), (𝑏) equivalence information (columns Reachability
Classification, Output Classification, and Overall Classification), and (𝑐) in-
formation about the lines of code that are reached when executing the
two target programs with input values that satisfy the corresponding
path condition (columns Covered Lines v1/v2).

For runs that finish within the configured timeout, PASDA always
reports the data collected during its last iteration as the result of its
overall analysis. For runs that do not finish within the timeout, PASDA
either reports the data of (i) the last iteration 𝑖𝑛 (which did time out)
or (ii) the second-to-last iteration 𝑖𝑛−1 (which did not time out) based
on the following criteria: if 𝑖𝑛 is the only iteration or produces a non-
equivalence proof, the data of 𝑖𝑛 is reported. Otherwise, the data of
𝑖𝑛−1 is reported. This special logic is applied to avoid situations where
little to no data would be reported when a timeout occurs shortly after
a new iteration is started. Note that an equivalence proof can never
be produced for timed-out iterations because equivalence can only be
proven if all partitions are analyzed.

4. Evaluation

The goals of our evaluation are (i) to compare the equivalence
checking accuracy and runtime performance of PASDA to state-of-the-
art equivalence checking approaches, and (ii) to measure the accuracy
of PASDA’s best effort equivalence classification for undecided cases,
i.e., program pairs for which no non-/equivalence proof can be found.
In line with these goals, we define the following research questions:

• RQ1: What is the program-level equivalence classification accu-
racy of PASDA compared to existing equivalence checking ap-
proaches?

• RQ2: How accurate are PASDA’s best effort equivalence classifi-
cations of undecided cases?

• RQ3: How many partitions are classified as (maybe) non-/
equivalent by PASDA compared to PRV?

• RQ4: What is the runtime performance of PASDA compared to
existing equivalence checking approaches?

In the following, we first describe the tools included in our evalua-
tion in Section 4.1 and the benchmark cases on which the evaluation
was performed in Section 4.2. Throughout Sections 4.3–4.6, we then
describe the evaluation results corresponding to the four research
questions RQ1–RQ4.

4.1. Evaluated tools/approaches

The equivalence checking approaches that we included in our eval-
uation are PASDA, ARDiff (Badihi et al., 2020), DSE (Person et al.,
2008), and PRV (Böhme et al., 2013). Table 4 shows an overview of the
main properties along which these approaches can be differentiated.
ARDiff and DSE are both summary-based tools that introduce uninter-
preted functions (UIFs) as an abstraction for unchanged parts of the
source code. Furthermore, ARDiff iteratively refines these abstractions
to mitigate their drawbacks while preserving their benefits at the cost
of increased runtimes. PRV, on the other hand, is a partition-based
approach that does not introduce UIFs into the analyzed programs.
Our own approach, PASDA, is also partition-based, but does use UIFs
and UIF refinement. Additionally, PASDA newly introduces best effort
classification of undecided cases, which results in a classification of
Unknown results into Maybe_Eq, Maybe_Neq, and Unknown.

ARDiff. The publicly available implementation of ARDiff (Badihi et al.,
2022) was modified by us to fix two bugs that caused false positive
Neq results in the original ARDiff implementation for a small number
of cases. The first fix concerns the incorrect handling of temporary
variables introduced by SPF to hold the results of explicit and implicit
type casts between integers and doubles. The second fix concerns the
incorrect handling of programs that are depth limited for different input
partitions. We provide further details about the bugs and fixes in our

replication package (Glock et al., 2023).

The Journal of Systems & Software 213 (2024) 112037J. Glock et al.
Table 3
Partition-level data collected by PASDA when checking equivalence of neq_v1 and neq_v2 shown in Listing 2.

Path condition Covered lines Output Reachability Output Overall

v1 v2 v1 v2 classification class. class.

1 𝑥 < 0 2 8 1 2 Reachable Neq Neq
2 𝑥 = 0 2 8 1 2 Reachable Neq Neq
3 𝑥 > 0 ∧ 𝑥 < 9 ∧ 𝑡𝑎𝑛(𝑥) < 0 ∧ 𝑡𝑎𝑛(2𝑥) < 0 2, 3, 4 8, 9, 10 −1 −1 Maybe_Reach. Eq Eq
4 𝑥 > 0 ∧ 𝑥 < 9 ∧ 𝑡𝑎𝑛(𝑥) < 0 ∧ 𝑡𝑎𝑛(2𝑥) > 0 2, 3, 4 8, 9, 10 −1 0 Maybe_Reach. Neq Maybe_Neq
5 𝑥 > 0 ∧ 𝑥 < 9 ∧ 𝑡𝑎𝑛(𝑥) > 0 ∧ 𝑡𝑎𝑛(2𝑥) < 0 2, 3, 4 8, 9, 10 0 −1 Maybe_Reach. Neq Maybe_Neq
6 𝑥 > 0 ∧ 𝑥 < 9 ∧ 𝑡𝑎𝑛(𝑥) > 0 ∧ 𝑡𝑎𝑛(2𝑥) > 0 2, 3, 4 8, 9, 10 0 0 Maybe_Reach. Eq Eq
7 𝑥 > 0 ∧ 𝑥 = 9 ∧ 𝑡𝑎𝑛(𝑥) < 0 ∧ 𝑡𝑎𝑛(2𝑥) < 0 2, 3, 4 8, 9, 10 0 0 Maybe_Reach. Eq Eq
8 𝑥 > 0 ∧ 𝑥 > 9 2, 3 8, 9 𝑡𝑎𝑛(𝑥) 𝑡𝑎𝑛(2𝑥) Reachable Unknown Unknown
w
6
t
t
C
S
a
p

R
o
1
t
b
t
w
4
1
n
c
—
a

Table 4
Properties of the evaluated equivalence checking approaches.

Tool Type UIFs UIF Maybe
refinement classes

PASDA Partition-based ✓ ✓ ✓

ARDiff Summary-based ✓ ✓ ✗

DSE Summary-based ✓ ✗ ✗

PRV Partition-based ✗ ✗ ✗

DSE. For DSE, we also used a fixed version of the tool that is based
on a reimplementation by Badihi et al. (2022). Use of the original
implementation of DSE is not possible since the tool is not publicly
available (Person et al., 2008; Badihi et al., 2020). The reimplemen-
tation by Badihi et al. faithfully reconstructs the equivalence checking
process described in the DSE paper by Person et al. (2008) but does not
include the calculation of behavioral deltas. The fixes that we applied
are the same as for ARDiff and are also available in our replication
package (Glock et al., 2023).

PRV. No publicly available implementation of PRV exists and we could
not get access to the tool by contacting the authors of the PRV paper.
We therefore used a variant of PASDA that exhibits the same basic
properties as PRV (see Table 4) as a proxy for PRV in our evaluation.
Specifically, this variant only performs PASDA’s first iteration and does
not include best effort classification of undecided cases. While the
absolute classification accuracies and runtimes of this variant are likely
different from the original PRV implementation, having this variant
allows us to compare the relative advantages and disadvantages of
PASDA’s extensions compared to a PRV-like baseline.

4.2. Benchmark programs

For our evaluation, we used the equivalence checking benchmark
built by Badihi et al. (2020) to evaluate ARDiff. The benchmark consists
of 141 Java program pairs (73 equivalent, 68 non-equivalent) with
seeded changes. All programs are single-threaded and deterministic,
and every program is implemented in a single Java class consisting of
one or more methods. Program sizes range from 8 lines of code (LOC) to
201 LOC, with an average size of 52.5 LOC. Program constructs used in
the benchmark include loops, method calls, and non-linear arithmetic,
but do not include recursion. Data types in the programs are limited to
integers and doubles. Other data types were not included by the authors
of the benchmark because SPF and Z3 only offer limited support for
non-primitive data types such as arrays, strings, and other classes.

4.3. RQ1: Equivalence classification accuracy

Setup. We collected the equivalence classification results for all 141
cases in the ARDiff benchmark for each of the four evaluated tools at
six different timeout settings: 10 seconds (s), 30 s, 90 s, 300 s, 900 s,
and 3600 s. To further improve confidence in the collected results,
we conducted five runs for each benchmark:tool:timeout combination,
7

resulting in a total of 16 920 runs across the 3384 five-run-groups. For
3360 of the five-run-groups, all five runs produced the same classifi-
cation result. For the remaining 24 groups – all of which produced
two different results across the five runs in the group – we report
the classification result produced by the majority of the runs as the
group result. Inter-group classification differences are generally caused
by slight runtime differences across the runs of a group, which affect
the analysis progress that can be made within the given timeout. Thus,
inter-group differences can be observed across all four evaluated tools
and all six evaluated timeout settings.

All experiments were run on a 2022 MacBook Air with M2 chip
and 24 GB of RAM. Java’s InitialHeapSize and MaxHeapSize settings

ere left at their default values of 384 MB (i.e., 1∕64th of RAM) and
GB (i.e., 1∕4th of RAM), respectively. The four tools were configured

o use a depth limit setting of 10, which we found to offer a good
rade-off between tool runtimes and result accuracy in our own testing.
ollected results were stored in an SQLite database and analyzed via
QL queries to produce the results of the evaluation. All collected data
nd the corresponding analysis scripts are available in our replication
ackage (Glock et al., 2023).

esults. Tables 5 and 6 show the program-level classification results
f the four tools. Overall, PASDA correctly classifies between 86 of
41 cases (61%) at the 10 s timeout and 104 of 141 cases (74%) at
he 3600 s timeout, with correctly classified cases at higher timeouts
eing (proper) supersets of those that are correctly classified at lower
imeouts. Looking at equivalent and non-equivalent cases separately,
e find that PASDA correctly classifies 38 of 73 (52%) equivalent and
8 of 68 (61%) non-equivalent cases when using a timeout setting of
0 s. This increases to 51 of 73 (70%) equivalent and 53 of 68 (78%)
on-equivalent cases at the 3600 s timeout setting. Most remaining
ases are classified as Unknown' (i.e., Maybe_Eq, Maybe_Neq or Unknown

for further details, see Section 4.4). Only a small minority of cases
re classified as Depth_Limited, Timeout or Error, with all Error classifica-

tions across all tools being caused exclusively by OutOfMemoryErrors.
No Eq cases are incorrectly classified as Neq or vice versa.

Compared to PRV, PASDA correctly classifies a higher number of
Eq cases (e.g., 38 vs. 34 at 10 s and 51 vs. 42 at 3600 s) and the
same number of Neq cases. In fact, the set of cases that is correctly
classified by PASDA is a (proper) superset of those that are correctly
classified by PRV. This is generally guaranteed by our experimental
setup (PRV is identical to the first iteration of PASDA). Nevertheless,
these results demonstrate that the use of UIFs and UIF refinement can
improve the classification accuracy of Eq cases for not only summary-
based tools – as demonstrated by ARDiff (Badihi et al., 2020) – but
also for partition-based tools such as PASDA, albeit at the cost of longer
runtimes (see Section 4.6). Neq cases, on the other hand, generally do
not benefit from abstraction via UIFs because it is usually not possible
to tell whether non-equivalences that were identified in the abstracted
programs (which overapproximate the original program behaviors) can
also be observed in the original programs.

Compared to ARDiff, PASDA correctly classifies more cases at all
timeout settings (e.g., 86 vs. 78 at 10 s and 104 vs. 86 at 3600 s).
For Eq cases, PASDA correctly classifies fewer cases than ARDiff at low

timeouts (e.g., 38 vs. 45 at 10 s) and more at high timeouts (e.g., 51

The Journal of Systems & Software 213 (2024) 112037J. Glock et al.

o

t
v
c
s
c
c
s
b
p
a
t
a
i
O
E
P
f

Table 5
Program-level Eq, Neq, and Unknown' classifications of the four evaluated tools at the six evaluated timeout settings. To aid comparison across tools, Unknown' shows an aggregate
f Maybe_Eq, Maybe_Neq, and Unknown classifications for PASDA.
Tool Expected Eq Neq Unknown'

10 s 30 s 90 s 300 s 900 s 3600 s 10 s 30 s 90 s 300 s 900 s 3600 s 10 s 30 s 90 s 300 s 900 s 3600 s

PASDA Eq 38 41 45 47 50 51 0 0 0 0 0 0 32 31 27 25 23 22
PASDA Neq 0 0 0 0 0 0 48 50 50 52 52 53 17 17 17 15 16 14

ARDiff Eq 45 48 48 48 48 49 0 0 0 0 0 0 16 16 18 19 19 18
ARDiff Neq 0 0 0 0 0 0 33 35 35 36 37 37 27 26 26 24 22 21

DSE Eq 30 30 30 30 30 30 0 0 0 0 0 0 32 36 38 38 37 37
DSE Neq 0 0 0 0 0 0 21 21 21 21 21 21 39 40 40 40 40 41

PRV Eq 34 37 39 41 41 42 0 0 0 0 0 0 36 35 33 31 32 31
PRV Neq 0 0 0 0 0 0 48 50 50 52 52 53 17 17 17 15 16 15
Table 6
Program-level Depth_Limited, Timeout, and Error classifications of the four evaluated tools at the six evaluated timeout settings.

Tool Expected Depth_Limited Timeout Error

10 s 30 s 90 s 300 s 900 s 3600 s 10 s 30 s 90 s 300 s 900 s 3600 s 10 s 30 s 90 s 300 s 900 s 3600 s

PASDA Eq 1 0 0 1 0 0 2 1 1 0 0 0 0 0 0 0 0 0
PASDA Neq 1 0 0 1 0 0 2 1 1 0 0 0 0 0 0 0 0 1
ARDiff Eq 0 0 0 0 0 0 12 9 7 6 4 4 0 0 0 0 2 2
ARDiff Neq 0 0 0 0 0 0 8 7 7 7 6 5 0 0 0 1 3 5
DSE Eq 0 0 0 0 0 0 11 7 5 5 5 4 0 0 0 0 1 2
DSE Neq 0 0 0 0 0 0 8 7 7 7 6 5 0 0 0 0 1 1
PRV Eq 1 0 0 1 0 0 2 1 1 0 0 0 0 0 0 0 0 0
PRV Neq 1 0 0 1 0 0 2 1 1 0 0 0 0 0 0 0 0 0
c
p

c
c
o
p
6
c
o

(
2
a
a
n
e
c
/
o
t
o

a
5

vs. 49 at 3600 s). For Neq cases, PASDA correctly classifies more cases
han ARDiff at all timeout settings (e.g., 48 vs. 33 at 10 s and 53
s. 37 at 3600 s). While there is significant overlap across the sets of
ases that are correctly classified by PASDA and ARDiff, neither is a
uperset of the other. For example, at the 300 s timeout, 44 of the 73 Eq
ases are correctly classified by both tools, whereas 3 are only correctly
lassified by PASDA and 4 are only correctly classified by ARDiff. At the
ame 300 s timeout, 35 of the 68 Neq cases are correctly classified by
oth tools, 17 only by PASDA, and 1 only by ARDiff. PASDA generally
erforms better than ARDiff on cases that are best analyzed without
bstraction, i.e., without using UIFs to represent unchanged parts of
he source code. This is because PASDA checks equivalence without
bstraction in its first iteration, whereas ARDiff does this in its last
teration (which generally is not reached within the given timeout).
n the other hand, PASDA generally performs worse than ARDiff for
q cases that ARDiff can fully analyze within the given timeout but
ASDA cannot due to its higher runtime requirements (see Section 4.6
or further details about runtime differences).

Compared to DSE, which is identical to ARDiff’s first iteration,
PASDA correctly classifies more Eq cases as well as more Neq cases
at all timeout settings. Intuitively, the comparatively low classification
accuracy of DSE can be attributed to the fact that DSE introduces
UIFs not only to replace complex program constructs that are difficult
to reason about (e.g., loops, non-linear arithmetic, etc.) but also for
simple ones (e.g., variable assignments, linear arithmetic, etc.). This re-
sults in unnecessary overapproximations that hinder non-/equivalence
proofs. PASDA and ARDiff mitigate these negative effects through their
abstraction refinement process as proposed by Badihi et al. (2020).
However, this comes at the cost of longer runtimes (see Section 4.6)
because multiple analysis iterations have to be performed to find an
appropriate level of abstraction.

Answer to RQ1: PASDA achieves an overall program-level equiva-
lence classification accuracy between 61% at the 10 s timeout setting
and 74% at the 3600 s timeout setting. Compared to the three existing
tools included in our analysis, which achieve classification accuracies
between 36–58% at the 10 s timeout setting and 36–67% at the
3600 s timeout setting, PASDA therefore correctly classifies a larger
number of cases at all six of the analyzed timeout settings.
8

o

4.4. RQ2: Best effort classification accuracy

Setup. To evaluate the accuracy of PASDA’s best effort equivalence
lassifications, we used the same basic setup as for RQ1. For the
urpose of accuracy calculations, we consider Maybe_Eq classifications

as correct if they are reported for Eq benchmark cases, and as incorrect
if they are reported for Neq benchmark cases. Similarly, we consider
Maybe_Neq classifications as correct when reported for Neq cases and
as incorrect when reported for Eq cases. To allow us to compare
the effectiveness of PASDA’s best effort classification approach across
different baselines, we retrofitted it to the three existing tools ARDiff,
DSE, and PRV. This causes a classification of their Unknown results into
Maybe_Eq, Maybe_Neq and Unknown. None of their other classifications
are affected by this change.

Results. Table 7 shows the best effort classification results for all
benchmark cases that were previously classified as Unknown (see
olumns Unknown' in Table 6). For PASDA, around 10%–15% of these
ases retain their Unknown classifications (e.g., 5 of 49 at the 10 s time-
ut and 4 of 36 at 3600 s), signifying that none of the fully analyzed
artitions provide any indication of potential non-/equivalence. Around
5%–80% of cases (e.g., 38 of 49 at 10 s and 27 of 36 at 3600 s) are
lassified as Maybe_Eq and 10%–25% are classified as Maybe_Neq (e.g., 6
f 49 at 10 s and 5 of 36 at 3600 s).

Among theMaybe_Eq cases, around 70%–75% are correctly classified
e.g., 28 of 38 at 10 s and 19 of 27 at 3600 s), whereas the remaining
5%–30% are incorrectly classified. Incorrect Maybe_Eq classifications
rise for the following two reasons: (i) the programs were only partially
nalyzed (due to the configured timeout and/or depth limit) and the
on-equivalent partitions were not reached by the analysis, (ii) the non-
quivalent partitions were reached by the analysis but non-equivalence
ould not be proven due to limitations of Z3, which we use for non-
equivalence checks. These reasons directly follow from the definitions
f our classification heuristics (see Sections 3.3 and 3.4) and could
hus potentially be improved upon through the use of a different set
f heuristics. We leave such refinements for future research.

Among the Maybe_Neq cases, fluctuations in classification accuracy
re higher than for Maybe_Eq cases, with correct classifications reaching
5%–85% across the different timeouts (e.g., 4 of 6 at 10 s and 4

f 5 at 3600 s). Incorrect Maybe_Neq classifications primarily arise

The Journal of Systems & Software 213 (2024) 112037J. Glock et al.

o

a
p
c
c
s
t
u
v
t
t
c

a
a
t
e
c
o

Table 7
Program-level Maybe_Eq, Maybe_Neq, and Unknown classifications at the six evaluated timeout settings. ARDiff, DSE, and PRV were modified by us to differentiate between these
three classes for cases that were previously classified as Unknown.

Tool Expected Maybe_Eq Maybe_Neq Unknown

10 s 30 s 90 s 300 s 900 s 3600 s 10 s 30 s 90 s 300 s 900 s 3600 s 10 s 30 s 90 s 300 s 900 s 3600 s

PASDA Eq 28 28 23 19 20 19 2 2 3 4 1 1 2 1 1 2 2 2
PASDA Neq 10 9 8 7 7 8 4 4 5 5 5 4 3 4 4 3 4 2

ARDiff Eq 8 9 10 11 11 11 5 1 1 1 0 0 3 6 7 7 8 7
ARDiff Neq 2 2 2 2 2 2 16 10 10 8 7 6 9 14 14 14 13 13

DSE Eq 5 6 6 6 6 6 19 20 21 21 21 21 8 10 11 11 10 10
DSE Neq 2 2 2 2 2 2 32 33 33 33 34 35 5 5 5 5 4 4

PRV Eq 33 32 30 28 29 28 0 0 0 0 0 0 3 3 3 3 3 3
PRV Neq 11 10 9 8 8 8 2 2 3 3 3 3 4 5 5 4 5 4
Table 8
Occurrence frequencies of different partition-level classifications when running PASDA with a timeout setting of 300 s. Partition-level classifications (columns 4–9) that cannot
ccur for the corresponding program-level classification (column 3) are marked with a ‘‘–’’.
Program-level Program-level Average % of ⟨Classification⟩ partitions per run

expected actual Eq Neq Maybe_Eq Maybe_Neq Unknown Depth_Limited

1 Eq Eq 100.0 – – – – –
2 Eq Maybe_Eq 67.3 – 0.0 – 0.9 31.8
3 Eq Maybe_Neq 54.8 – 1.9 21.9 1.9 19.6
4 Eq Unknown – – – – 100.0 0.0
5 Eq Depth_Limited – – – – – 100.0

6 Neq Neq 22.3 42.5 0.0 0.9 7.3 27.0
7 Neq Maybe_Eq 58.4 – 0.0 – 35.1 6.6
8 Neq Maybe_Neq 35.9 – 0.0 33.7 1.5 28.9
9 Neq Unknown – – – – 60.0 40.0

10 Neq Depth_Limited – – – – – 100.0

11 * * 50.8 20.5 0.1 3.5 6.1 18.9
p
r
o
a
h
T
p
#
c
c
r
d
U
(

when (i) the observed non-equivalent program behaviors only manifest
due to the overapproximations caused by the introduction of UIFs or
(ii) partitions with a reachability classification of Maybe_Reachable and
n output classification of Neq are actually Unreachable but could not be
roven to be so due to limitations of Z3, which we use for reachability
hecks. Again, the classification accuracy that is achieved for such cases
ould potentially be improved upon through the use of a different
et of classification heuristics. Alternatively, the concrete input values
hat are provided by PASDA to demonstrate non-equivalence could be
sed to check whether concrete executions of the two original program
ersions produce non-equivalent results for these inputs. If they do,
he result is a true positive. Otherwise, it is a false positive. Note that
his approach cannot be used to check the correctness of Maybe_Eq
lassifications. This is because, in the Maybe_Eq case, we need to prove

that the two programs are equivalent for all inputs, which cannot be
achieved by checking a single set of input values.

Best effort classification accuracies show similar trends for ARDiff,
DSE, and PRV as they do for PASDA. Specifically, correct classifications
re consistently above 60% for both Maybe_Eq and Maybe_Neq cases
t all timeout settings. For high timeout settings of ARDiff and all
imeout settings of PRV, classification accuracies of Maybe_Neq cases
ven reach 100%. However, this is not guaranteed in general, since PRV
an still produce false positive Maybe_Neq classifications in the presence
f incorrect Maybe_Reachable reachability classifications, and ARDiff

can additionally produce false positive Maybe_Neq classifications due
to overapproximations introduced by UIFs. ARDiff and DSE produce
moreMaybe_Neq results than PASDA and PRV because the two partition-
based tools can often prove the corresponding cases to be Neq instead.
Similarly, PASDA produces fewer Maybe_Eq results than PRV because it
can often prove them to be Eq instead.

As described in Section 3.4, program-level (best effort) classifications
are generally derived from partition-level (best effort) classifications
through a set of classification heuristics. Exceptions to this rule are (i)
runs during which an error occurs, which are always classified as Error,
and (ii) runs for which not even a single partition can be analyzed
9

within the given timeout, which are always classified as Timeout. For the
retrofitted variants of ARDiff and DSE, we consider the single program-
level equivalence check to be representative of a partition that covers
the whole input space. Otherwise, the same classification heuristics are
applied to produce (best effort) classification results.

To provide a better understanding of these heuristics, Table 8
shows how often each partition-level result is observed, on average,
across runs with a particular program-level classification when running
PASDA with a timeout setting of 300 s. By definition, a program-
level result of Eq is only reported when PASDA is able to analyze all
artitions within the given timeout and proves them all to be Eq (see
ow #1). Maybe_Eq is reported when some partitions are classified as Eq
r Maybe_Eq, but none are classified as Neq or Maybe_Neq (see rows #2
nd #7). Otherwise, cases are classified based on the partition with the
ighest priority, where Neq > Maybe_Neq > Unknown > Depth_Limited.
hus, program-level Neq cases are the only ones that can contain Neq
artitions, but might also contain all other types of partitions (see row
6). Similarly, Neq and Maybe_Neq cases are the only ones that can
ontain Maybe_Neq partitions (see rows #3, #6, and #8). Depth_Limited
ases, on the other hand, can only contain Depth_Limited partitions (see
ows #5 and #10), since any other partition-level result would force a
ifferent program-level classification to be chosen. For the same reason,
nknown cases can only contain Unknown and Depth_Limited partitions

see rows #4 and #9).

Answer to RQ2: Through the introduction of our best effort classifi-
cation approach, 65-80% of previously Unknown cases are classified
as Maybe_Eq, 10–25% as Maybe_Neq, and 10–15% retain their Un-
known classifications. Maybe_Eqs are correct for 70–75% of cases
across the six evaluated timeout settings between 10 s and 3600 s.
Maybe_Neqs are correct for 55–85% of cases. We observed similar best
effort classification accuracies when retrofitting PASDA’s best effort
classification approach to ARDiff, DSE and PRV.

4.5. RQ3: Partition-level non-/equivalence proofs

Setup. To answer RQ3, we executed PASDA and PRV five times each
for every case in the benchmark across each of the six timeout settings

The Journal of Systems & Software 213 (2024) 112037J. Glock et al.

a
a
a
p
i
a
d
a
f

Table 9
Overall partition-level equivalence classification results of PASDA and PRV across the six analyzed timeout settings.

Tool Timeout (s) # Partitions Average % of ⟨Classification⟩ Partitions

Eq Neq Maybe_Eq Maybe_Neq Unknown Depth_Limited

PASDA 10 3298 52.5 23.1 0.0 2.8 5.3 16.3
PASDA 30 4724 47.8 20.7 0.1 2.1 6.0 23.2
PASDA 90 5155 52.6 20.0 0.1 3.2 6.1 18.0
PASDA 300 5502 50.8 20.5 0.1 3.5 6.1 18.9
PASDA 900 5430 52.3 20.9 0.1 1.3 6.1 19.3
PASDA 3600 5535 51.4 20.4 0.1 1.5 5.7 20.9

PRV 10 3500 51.4 21.8 – – 7.8 19.0
PRV 30 4804 47.8 20.4 – – 6.9 24.9
PRV 90 5361 49.6 19.2 – – 6.7 24.5
PRV 300 5727 47.8 19.7 – – 6.5 26.1
PRV 900 5768 47.7 19.6 – – 6.4 26.3
PRV 3600 5809 47.4 19.7 – – 6.4 26.5
of 10 s, 30 s, 90 s, 300 s, 900 s, and 3600 s. ARDiff and DSE are
not included in the partition-level analysis since neither tool produces
partition-level results. The remaining hardware and tool configurations
are the same as for RQ1.

Results. Table 9 provides an overview of the partition-level equiva-
lence classification results produced by PASDA and PRV across the six
analyzed timeout settings. In total, PASDA identifies 3298 partitions
cross the 705 runs (i.e., 5 runs for each of the 141 benchmark cases)
t the 10 s timeout setting. This number increases to 5535 partitions
t the 3600 s timeout setting, whereas PRV identifies between 3500
artitions at 10 s and 5809 at 3600 s. The number of reported partitions
s generally lower for PASDA than for PRV because of PASDA’s iterative
bstraction and refinement process. After all, partition counts can
ecrease if the data of the last (partially analyzed) iteration is reported
s PASDA’s analysis result (see Section 3.6), and partition counts can
urther fluctuate as UIFs are added and removed throughout PASDA’s

analysis process. This also explains why PASDA reports fewer partitions
when raising its timeout setting from 300 s to 900 s.

Partition counts across different benchmark cases are highly
skewed. For example, partition counts reported by PASDA at the
300 s timeout setting have a skewness value of 1.2 (mean: 7.8, me-
dian: 4, mode: 3), which indicates that most cases in the benchmark
have relatively few partitions, but some cases exist that have much
higher partition counts. High partition counts are most commonly
found among cases that contain (nested) loops and/or many (nested)
if constructs. Furthermore, Neq cases tend to have higher partition
counts than corresponding Eq cases. Intuitively, this is because the
introduction of semantic changes often causes some Eq partitions to
be split into multiple Eq and Neq subpartitions.

Looking at PASDA’s classification results, we find that it proves
50.8% of identified partitions to be Eq and 20.5% to be Neq at the
300 s timeout setting. For the remaining 28.7% of Maybe_Eq (0.1%),
Maybe_Neq (3.5%), Unknown (6.1%), and Depth_Limited (18.9%) parti-
tions, no non-/equivalence proofs can be provided due to (i) depth
limiting, (ii) UIF-induced overapproximations, and (iii) limitations of
Z3, which we use for reachability and non-/equivalence checks. As
timeouts are changed, the proportions held by the different classifi-
cations fluctuate by a few percentage points, but no clear upward or
downward trend emerges for any of them. However, since a larger
number of partitions is analyzed at higher timeouts, this means that
a larger part of the overall input space can be proven to be Eq or Neq,
or classified as either Maybe_Eq or Maybe_Neq. For example, only 452 of
705 runs (64%) finish at least one analysis iteration (i.e., fully analyze
the original programs without UIFs) at the 10 s timeout, whereas 620
(88%) runs finish at least one iteration at 3600 s.

Compared to PRV, PASDA provides (best effort) non-/equivalence
classifications for a larger percentage of identified partitions across
all six analyzed timeout settings. More specifically, PASDA classifies
0.0–4.6% more partitions as Eq, 0.3–1.3% more as Neq, 0.0–0.1% as
10

Maybe_Eq, and 1.5–3.2% as Maybe_Neq. Consequently, the percentage
of partitions for which no (best effort) non-/equivalence classifications
can be provided by PASDA is consistently lower than that of PRV,
reaching a 0.4–2.5% lower percentage of Unknown partitions and a 1.7–
7.2% lower percentage of Depth_Limited partitions. These results match
our expectations. After all, the introduction of UIFs intends to enable
Eq proofs for previously Unknown and Depth_Limited partitions, but can
also lead to an increase of other non-Depth_Limited classifications if no
Eq proof can be provided. Additionally, the introduction of best effort
classifications intends to replace some previously Unknown results with
Maybe_Eq or Maybe_Neq.

Answer to RQ3: Across the six analyzed timeout settings, PASDA
provides non-/equivalence proofs for 70.7–78.4% of identified parti-
tions, whereas PRV provides such proofs for 67.1–73.2% of identified
partitions. At identical timeout settings, PASDA therefore provides
non-/equivalence proofs for 2.5–7.4% more of the total partitions
than PRV. Additionally, PASDA provides best effort non-/equivalence
classifications for 1.4–3.6% of identified partitions, whereas PRV, by
design, cannot provide any best effort classifications.

4.6. RQ4: Runtime performance

Setup. To answer RQ4, we reused the basic setup from RQ1 described
before. Thus, each of the four tools was executed five times for each
benchmark case at each of the six analyzed timeout settings from 10 s
to 3600 s. Runtime measurements were taken for each processing step
of the four tools using a custom wrapper around the Apache Commons
StopWatch class (The Apache Software Foundation, 2007). On average,
there is around a 10% difference between the fastest and the slowest
run of each five-run-group. We present the runtime results based on the
median runtimes of each group to mitigate the influence of occasional
random outliers. The full runtime data is available in our replication
package (Glock et al., 2023).

Results. Fig. 2 shows the runtime distributions of the four analyzed
tools at timeout settings of 10 s, 300 s, and 3600 s. Note that the
measured runtimes are highly skewed for all tools, reaching skewness
values between 0.91 and 2.00 across the different tool:timeout com-
binations. Consequently, median runtimes remain largely unchanged
across the different timeouts, ranging from 2.2 s to 4.8 s across all tools.
Mean runtimes, on the other hand, increase significantly as timeouts
are raised. More specifically, they start at around 5 s for all tools at the
10 s timeout setting and go up to 300–700 s across the different tools
at the 3600 s setting.

For Eq cases, DSE generally has the shortest runtimes of all tools
because it only performs a single analysis iteration (whereas PASDA
and ARDiff perform multiple iterations) and often abstracts program
constructs such as loops that would otherwise be expensive to analyze
(whereas PRV does not use any abstraction). For Neq cases, PRV gener-
ally has the shortest runtimes because it only performs a single iteration

The Journal of Systems & Software 213 (2024) 112037J. Glock et al.

e
(
P

s
c
s
i
c
b
o

Fig. 2. Runtime distributions of the four evaluated tools (PASDA, ARDiff, DSE, PRV) at timeout settings of 10 s, 300 s, and 3600 s per type of benchmark case (Eq vs. Neq).
p
l

(whereas PASDA performs multiple iterations) and can provide non-
quivalence proofs without fully analyzing the two target programs
whereas ARDiff and DSE have to fully analyze the target programs).
ASDA has the longest runtimes for Eq cases and ARDiff for Neq cases.

On average, PASDA takes around 6%–17% longer to analyze the
ame cases than PRV. This holds for both Eq as well as Neq benchmark
ases at all timeout settings, though the difference in runtimes is
mallest at low timeouts and largest at high timeouts. Since PRV is
dentical to PASDA’s first iteration in our setup, runtime differences
an be attributed to the iterative abstraction refinement process used
y PASDA. At the 10 s timeout setting, PASDA performs more than
ne iteration for 18% of Eq and 9% of Neq cases. These numbers go

up as timeouts are increased because fewer cases are interrupted by
the timeout before the analysis reaches later iterations, which also
explains the larger runtime difference between PRV and PASDA at
higher timeouts. At the 3600 s timeout setting, PASDA performs more
than one iteration for 32% of Eq cases and 19% of Neq cases. The
number of cases for which PASDA runs into the timeout decreases from
42% of cases at 10 s to 18% at 3600 s.

Compared to ARDiff, PASDA is generally slower to provide equiva-
lence proofs but faster to provide non-equivalence proofs. More specif-
ically, for Eq cases that both tools classify correctly, PASDA takes, on
average, 20%–35% longer to produce equivalence proofs than ARDiff
across the different timeouts. The primary reason for this difference is
that ARDiff only executes all paths in each of the two target programs
once (𝑂(𝑚 + 𝑛)). PASDA, on the other hand, executes every path in
the second program once for every path in the first program (𝑂(𝑚 ⋅ 𝑛))
when symbolically executing the product program described in Listing
3. However, many paths are only partially explored because they are
quickly identified to be unreachable, which significantly reduces the
runtime impact caused by PASDA’s higher runtime complexity. For
Neq cases, ARDiff takes around 2–3 times as long to provide non-
equivalence proofs as PASDA does. This is mainly because ARDiff only
checks non-/equivalence after both programs have been fully explored
by the symbolic execution. PASDA, on the other hand, checks non-
/equivalence multiple times throughout its execution, i.e., every time
a single program path has been fully explored. Consequently, PASDA
can often provide a non-equivalence proof after having analyzed only
a small subset of all program paths.

Table 10 shows the average runtimes of PASDA’s processing steps
across the six analyzed timeout settings from 10 s to 3600 s. The
largest factor contributing to PASDA’s overall runtime is the symbolic
execution step, which takes an average of 4.5 s at the 10 s timeout
11
Table 10
Average runtimes of PASDAs processing steps at the six evaluated timeout settings.

Step Ø Runtime (s)

10 s 30 s 90 s 300 s 900 s 3600 s

Initialization 1.1 1.0 1.1 1.2 1.1 1.2
Instrumentation 0.2 0.3 0.3 0.3 0.3 0.4
Symb. Execution 4.5 11.4 26.4 67.1 147.3 454.3
Part. Classification 0.3 1.1 4.0 14.0 36.1 115.4
Prog. Classification 0.0 0.0 0.0 0.0 0.0 0.0
Abstr. Refinement 0.0 0.1 0.6 2.5 10.1 31.4
Finalization 0.0 0.0 0.0 0.0 0.0 0.0

setting and increases to 454.3 s at the 3600 s timeout setting. The
partition classification and abstraction refinement steps also show no-
ticeable runtime increases as timeouts are raised, reaching average
runtimes of 115.4 s and 31.4 s, respectively, at the 3600 s timeout.
Runtime requirements for the remaining steps of PASDA’s analysis
process (i.e., initialization, instrumentation, program classification, and
finalization) remain largely the same at around 1 s or less per step
across the different timeout settings. As such, they only affect PASDA’s
overall runtimes in relatively minor ways, particularly at higher time-
outs where the runtime requirements of symbolic execution, partition
classification, and abstraction refinement (all three of which involve
the use of constraint solving) are much larger.

Answer to RQ4: For Eq cases, ARDiff, DSE, and PRV generally have
10–50% shorter runtimes than PASDA. For Neq cases, PRV’s runtimes
are generally 5–15% shorter than PASDA’s whereas the runtimes of
ARDiff and DSE are often multiple times as long. The processing step
that makes up the largest portion of PASDA’s overall runtimes is the
symbolic execution step, followed by the partition classification step
and the abstraction refinement step.

5. Discussion

In the following subsections, we discuss the benefits that PASDA
rovides compared to existing equivalence checking approaches, out-
ine potential use cases for PASDA’s best effort equivalence classifica-

tions, and list possible threats to the validity of our results as well as
how we addressed them.

The Journal of Systems & Software 213 (2024) 112037J. Glock et al.

l
𝑁
c
c
𝑁
n
b
f

M
v
l
b
i
d
e
i
e
a
p
i
w
(
o
a
l
i
I
U
S
c
p
f
h
a

5

C
m
c
a
b
p
i

I
s
l
f
i
o
v
d

5.1. Benefits of PASDA

As shown by our evaluation, there are two main dimensions along
which PASDA achieves measurable improvements compared the cur-
rent state-of-the-art for equivalence checking of software programs:
(i) PASDA provides non-/equivalence proofs for a larger percentage
of analyzed programs and partitions than existing tools (see RQ1 and
RQ3), and (ii) PASDA provides best effort equivalence classifications of
Maybe_Eq and Maybe_Neq for some programs and partitions that existing
tools simply classify as Unknown (see RQ2 and RQ3). PASDA achieves
these improvements at the cost of runtimes that are moderately longer
than those of existing tools (see RQ4). Increases in equivalence check-
ing accuracy directly benefit use cases that depend on equivalence
checking as part of their analysis process. Such use cases are quite
diverse, including the verification of compiler optimizations (Dahiya
and Bansal, 2017), refactoring assurance for developers (Person et al.,
2008), test suite amplification (Danglot et al., 2019), and many others
beyond those (see, e.g., Sun et al. (2016), Mora et al. (2018) and
Mercaldo and Santone (2021)).

Regarding the potential benefits of best effort equivalence clas-
sifications, it is important to note that these classifications always
arise as the result of a partial proof of non-/equivalence. After all, a
program-level result of Maybe_Eq is reported when PASDA proves that
the two target programs produce equivalent outputs for some partitions
but cannot provide a full equivalence proof because (i) some outputs
cannot be proven to be non-/equivalent (i.e., are Unknown) or (ii) some
partitions are not reached by PASDA’s analysis due to the used depth
limit or timeout settings. Similarly, a result of Maybe_Neq is reported
when PASDA cannot prove whether a specific path through the two
target programs is reachable by a concrete execution of the product
program but can prove that some outputs are non-equivalent iff the
path is reachable (or vice versa). As such, the introduction of best effort
equivalence classifications leads to a more complete description of the
overall program behavior than would be achieved without them.

5.2. Potential use cases for best effort classifications

Based on the understanding that best effort equivalence classifica-
tions are always supported by a partial non-/equivalence proof, we
envision the potential use cases for this information to include, for
example, test case prioritization (Khatibsyarbini et al., 2018), fault
localization (Wong et al., 2016), and general support for manual de-
bugging tasks. What these use cases have in common is that they all
benefit from more complete descriptions of program behaviors even in
the absence of full non-/equivalence proofs. In the following, we discuss
how the information provided by PASDA could be integrated into
corresponding approaches to improve the results that they produce. A
more in-depth investigation of the derived benefits is beyond the scope
of this paper and therefore left for future work.

Test case prioritization. In test case prioritization, a commonly targeted
goal is to execute tests that are likely to reveal regressions as early as
possible in the execution of a given test suite (Khatibsyarbini et al.,
2018). Partition-level equivalence checking results can be used to
achieve this goal by prioritizing tests whose input values fall within
input partitions that are classified as Neq over those that are classified
as Unknown and, lastly, Eq. Best effort classifications enable a better
informed ranking approach that additionally prioritizes Maybe_Neq par-
titions over Unknown and Maybe_Eq ones, resulting in a prioritization of
Neq > Maybe_Neq > Unknown > Maybe_Eq > Eq. For example, assuming a
test suite for the non-equivalent programs in Listing 2 exists, test cases
that use inputs that match path conditions #1 or #2 (Neq) in Table 3
should be executed first. Next, test cases matching partitions #4 or
#5 (Maybe_Neq) should be executed, followed by test cases matching
12

partition #8 (Unknown), and finally #3, #6, or #7 (Eq). E
Fault localization. The goal of fault localization approaches is to iden-
tify parts of the source code that are likely to be the root cause
of observed program crashes or test failures (Wong et al., 2016).
Commonly, this is achieved through spectrum-based fault localization
approaches that assign a suspiciousness value to each line of code based
on the number of times the line is executed in passing and failing
tests (Idrees and Beszédes, 2022). Partition-level equivalence checking
results can be used instead of test outcomes by using the number of
times a line is covered by Eq and Neq partitions to replace successful
and failing test execution counts. For example, we can use 𝑠 = 𝑁𝑐𝑓 +
𝑁𝑢𝑠 (Wong et al., 2016) as our test outcome-based suspiciousness
formula. Here, 𝑁𝑐𝑓 is the number of failing tests that cover a line,
and 𝑁𝑢𝑠 is the number of successful tests that do not cover the same
ine. This formula can be transformed to 𝑠 = 𝑁𝑐𝑁𝐸𝑄 + 𝑁𝑢𝐸𝑄, where
𝑐𝑁𝐸𝑄 and 𝑁𝑢𝐸𝑄 are the number of Neq and Eq partitions a line is (not)

overed by. To integrate best effort classifications into this formula, we
ould further transform it to 𝑠 = 𝑁𝑐𝑁𝐸𝑄 + 𝑤1 ⋅ 𝑁𝑐𝑀𝐴𝑌 𝐵𝐸_𝑁𝐸𝑄 + 𝑤2 ⋅

𝑢𝑀𝐴𝑌 𝐵𝐸_𝐸𝑄 + 𝑁𝑢𝐸𝑄. Here, 𝑁𝑐𝑀𝐴𝑌 𝐵𝐸_𝑁𝐸𝑄 and 𝑁𝑢𝑀𝐴𝑌 𝐵𝐸_𝐸𝑄 are the
umber of Maybe_Neq and Maybe_Eq partitions a line is (not) covered
y. These are modified by two weighting factors 𝑤1 and 𝑤2 to account
or the uncertainty associated with best effort classification results.

anual debugging. To aid manual debugging processes, PASDA outputs
arious partition-level information alongside its program-level equiva-
ence checking classifications (see Section 3.6). Such information has
een found to benefit developers’ understanding of program behav-
ors and program analysis results by multiple existing studies with
evelopers (LaToza and Myers, 2010; Parnin and Orso, 2011; Winter
t al., 2022). While the reported information is most comprehensive
f non-/equivalence can be proven, PASDA still provides parts of it
ven in the absence of an overall non-/equivalence proof. For example,
program-level classification of Maybe_Eq is always accompanied by

artition-level equivalence proofs for some (but not all) of a program’s
nput space. Similarly, a partition-level classification of Maybe_Neq al-
ays contains a proof of either reachability or output non-equivalence

but not both). As a practical example of these properties, we can
bserve that PASDA classifies the two equivalent programs in Listing 1
s Maybe_Eq. To support this classification, PASDA provides partition-
evel equivalence proofs as well as line coverage information for all
nput values up to a pre-configured depth limit for loop exploration.
n contrast, ARDiff (Badihi et al., 2020) classifies these programs as
nknown and does not provide any further information beyond this.
imilarly, given the two non-equivalent programs in Listing 2, PASDA
lassifies partitions #4 and #5 shown in Table 3 as Maybe_Neq and
rovides output non-equivalence proofs as well as line coverage in-
ormation for both of them. PRV (Böhme et al., 2013), on the other
and, classifies these partitions as Unknown and does not provide any
dditional information for them.

.3. Threats to validity

onstruct validity. Benchmarking is widely established as one of the
ain methodologies for comparing the runtime performance and ac-

uracy of newly developed approaches to the state-of-the-art. We used
well established benchmark (Badihi et al., 2020) that was also used

y ARDiff to measure the accuracy and runtime performance of our ap-
roach, thus demonstrating our approach’s effectiveness and efficiency
n an evidence-based and reproducible way.

nternal validity. To mitigate threats to the internal validity of our re-
ults, we manually validated the outputs (program-level and partition-
evel equivalence classifications, partition-effects pairs, coverage in-
ormation, etc.) produced by the four tools for a random sample of
nvestigated cases. During this validation, we did not identify any
utputs that we would deem incorrect. The results of this manual
alidation are further supported by the results of our evaluation, which
emonstrate that neither of the analyzed tools produced false positive

q or Neq classifications for any of the analyzed cases.

The Journal of Systems & Software 213 (2024) 112037J. Glock et al.

t
w

a
c
l
i
p
n
c
t

p
(
a
A
w
t
e
r

c
p
(
b
o
e
f
(
w
t
l
t
e

o
p
i
n

External validity. Our findings might not generalize to cases beyond
hose that we investigated in our evaluation. To mitigate this threat,
e conducted our evaluation based on the existing ARDiff bench-

mark (Badihi et al., 2020), which was itself constructed by combining
and extending multiple smaller benchmarks for symbolic execution-
based equivalence checking. Still, certain program constructs such as
recursion, strings, and arrays, which are difficult for symbolic execu-
tion and automated decision procedures to reason about, are missing
from the benchmark, which limits the generalizability of our results.
In particular, our results are unlikely to generalize to (larger) real-
world cases due to the inherent limitations of the underlying decision
procedures (see Section 2.1), though we share this limitation with all
existing equivalence checking approaches.

6. Related work

As described throughout this paper, we reuse several ideas that
were originally proposed by the authors of DSE (Person et al., 2008),
ARDiff (Badihi et al., 2020), and PRV (Böhme et al., 2013) in our
approach. For example, like DSE, we also replace unchanged parts of
the source code with UIFs. Furthermore, like ARDiff, we iteratively
refine the set of introduced UIFs to improve overall equivalence check-
ing accuracy. Finally, like PRV, we conduct a partition-based analysis
of the two target programs. Additionally, PASDA provides best effort
equivalence classifications for cases that it cannot prove to be either
equivalent or non-equivalent, whereas existing approaches such as UC-
KLEE (Ramos and Engler, 2011), PEQcheck (Jakobs, 2021), and many
more that have been developed throughout the years (e.g., Godlin and
Strichman (2009), Backes et al. (2013), Beyer et al. (2013), Felsing
et al. (2014) and Fedyukovich et al. (2016)) classify such cases as
Unknown and do not provide any further information beyond this.

To further improve the utility of its outputs, PASDA provides sup-
porting information alongside its (best effort) equivalence classification
results. This information includes partition-level equivalence checking
results as well as execution traces and concrete and symbolic inputs and
outputs. Similar information is provided by some existing equivalence
checking approaches. For example, PRV (Böhme et al., 2013) also pro-
vides partition-level equivalence checking results. DSE (Person et al.,
2008) and DiSE (Person et al., 2011; Yang et al., 2014) both provide
behavioral deltas for non-equivalent partitions. Furthermore, Mercer
et al. (2012) present an extension for Java PathFinder (Havelund
and Pressburger, 2000; The Java PathFinder Contributors, 2005) that
visualizes program statements that DiSE identifies to be impacted by
identified changes via highlighting of source code and control flow
graphs. Symdiff (Lahiri et al., 2012) provides a set of concrete inputs
that demonstrates non-equivalence, and highlights the corresponding
execution paths in the source code. Partush and Yahav (2014) use ab-
stract interpretation (Cousot and Cousot, 1977) to characterize changed
as well as unchanged program behavior.

Various other approaches exist that offer different representations
of software changes but do not provide functional non-/equivalence
proofs. For example, Le and Pattison (2014) propose multiversion
interprocedural control flow graphs to represent changes in control
flow across any number of program versions. LSdiff offers mechanisms
that can group related changes and describe identified inconsisten-
cies within these groups (Kim and Notkin, 2009). Dex applies graph
differencing to semantic graphs of programs and calculates summary
statistics from the differencing results (Raghavan et al., 2004). Further-
more, software evolution management tools such as Diffbase (Wu et al.,
2021b) and EvoMe (Wu et al., 2021a) provide platforms for processing,
storage, and exchange of change information about software programs
across different analyses, and offer search features to make access to
this data more convenient and less time consuming (Di Grazia et al.,
2022). Integrating PASDA’s change information into such a tool might
13

be a fruitful direction for future work.
Additional improvements of PASDA’s accuracy and runtime per-
formance could potentially be achieved through the integration of
optimizations proposed by other equivalence checking, regression veri-
fication, and symbolic execution approaches. For example, improved
path selection techniques such as the ones proposed by directed in-
cremental symbolic execution (Yang et al., 2014) and shadow sym-
bolic execution (Kuchta et al., 2018) could be used to prioritize paths
that exercise changed parts of the source code. Summarization tech-
niques for loops (Godefroid and Luchaup, 2011) and other program
regions (Sharma et al., 2020) could be added to alleviate the path
explosion problem. Furthermore, PASDA’s analysis algorithm could be
adapted to rely not only on symbolic execution, but to also include
other analysis techniques such as fuzzing, a combination with which
HyDiff (Noller et al., 2020) achieved promising results. However, such
optimizations are largely orthogonal to PASDA’s best effort equiva-
lence classifications. After all, equivalence checking is undecidable
in general (Godlin and Strichman, 2009). Thus, there will always be
programs and partitions for which no overall non-/equivalence proof
can be provided and which, therefore, might benefit from best effort
equivalence classifications and corresponding partial non-/equivalence
proofs as reported by PASDA.

7. Conclusions

We presented PASDA, our partition-based semantic differencing
pproach with best effort classification of undecided cases. PASDA
onducts multiple analysis iterations in which it aggregates partition-
evel equivalence checking results obtained by symbolically execut-
ng a product program created from two target programs to produce
rogram-level equivalence classifications. If neither equivalence nor
on-equivalence can be formally proven, PASDA employs a set of
lassification heuristics to produce a best effort equivalence classifica-
ion instead. To further improve the utility of its results, PASDA aims

to provide additional supporting information consisting of execution
traces and concrete and symbolic inputs and outputs along with its
equivalence classification results.

To evaluate PASDA’s equivalence checking accuracy and runtime
erformance, we used an existing equivalence checking benchmark
Badihi et al., 2020) and compared the results to three state-of-the-
rt equivalence checking approaches (i.e., DSE (Person et al., 2008),
RDiff (Badihi et al., 2020), and PRV (Böhme et al., 2013)). PASDA
as able to provide non-/equivalence proofs for 61%–74% of cases in

he benchmark at timeout settings from 10 s to 3600 s, thus achieving
quivalence checking accuracies that are 3%–7% higher than the best
esults achieved by the three existing tools. Furthermore, PASDA’s

best effort classifications were correct for 70%–75% of equivalent and
55%–85% of non-equivalent cases across the different timeouts.

Our evaluation results demonstrate that PASDA can provide more
omplete descriptions of analyzed program pairs than existing ap-
roaches through (i) its increased equivalence checking accuracy and
ii) the best effort equivalence classifications that are newly introduced
y it. Increases in equivalence checking accuracy, i.e., in the percentage
f cases that can be proven to be non-/equivalent, directly benefit
xisting use cases that rely on equivalence checking such as test ampli-
ication (Danglot et al., 2019) and refactoring assurance for developers
Person et al., 2008). Since best effort equivalence classifications al-
ays arise as the result of partial non-/equivalence proofs, we envision

hat they will benefit use cases such as test case prioritization, fault
ocalization, and general support for manual debugging tasks. All these
asks benefit from more complete descriptions of program behaviors
ven in the absence of full non-/equivalence proofs.

In our future work, we plan to conduct more detailed investigations
f the benefits that can be derived from the information that PASDA
rovides in the context of the aforementioned use cases. Especially
n the manual debugging context, further studies with developers are
eeded to identify (i) which parts of PASDA’s information are useful for

developers during different steps of the debugging process and (ii) how

to appropriately present this information to them.

The Journal of Systems & Software 213 (2024) 112037J. Glock et al.
CRediT authorship contribution statement

Johann Glock: Conceptualization, Data curation, Formal analysis,
Investigation, Methodology, Project administration, Software, Valida-
tion, Visualization, Writing – original draft, Writing – review & edit-
ing. Josef Pichler: Conceptualization, Supervision, Writing – review
& editing. Martin Pinzger: Conceptualization, Funding acquisition,
Supervision, Writing – review & editing, Resources.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

A replication package that contains our implementation, the used
benchmark cases, our evaluation scripts, and all evaluation results is
available on Zenodo (https://doi.org/10.5281/zenodo.7595851).

Acknowledgments

This research was funded in whole or in part by the Austrian Science
Fund (FWF) 10.55776/P36698. For open access purposes, the author
has applied a CC BY public copyright license to any author accepted
manuscript version arising from this submission.

References

Backes, J., Person, S., Rungta, N., Tkachuk, O., 2013. Regression verification using
impact summaries. In: Proceedings of the 20th International SPIN Workshop on
Model Checking Software. Springer, pp. 99–116. http://dx.doi.org/10.1007/978-3-
642-39176-7_7.

Badihi, S., Akinotcho, F., Li, Y., Rubin, J., 2020. ARDiff: Scaling program equivalence
checking via iterative abstraction and refinement of common code. In: Proceedings
of the 28th Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. ACM, pp. 13–24. http:
//dx.doi.org/10.1145/3368089.3409757.

Badihi, S., Akinotcho, F., Li, Y., Rubin, J., 2022. GitHub - resess/ARDiff. URL https:
//github.com/resess/ARDiff.

Baldoni, R., Coppa, E., D’elia, D., Demetrescu, C., Finocchi, I., 2018. A survey of
symbolic execution techniques. ACM Comput. Surv. 51 (3), 1–39. http://dx.doi.
org/10.1145/3182657.

Barthe, G., Crespo, J.M., Kunz, C., 2011. Relational verification using product programs.
In: Proceedings of the 17th International Symposium on Formal Methods. Springer,
pp. 200–214. http://dx.doi.org/10.1007/978-3-642-21437-0_17.

Beckert, B., Ulbrich, M., 2018. Trends in relational program verification. In: Principled
Software Development. Springer, pp. 41–58. http://dx.doi.org/10.1007/978-3-319-
98047-8_3.

Beyer, D., Löwe, S., Novikov, E., Stahlbauer, A., Wendler, P., 2013. Precision reuse
for efficient regression verification. In: Proceedings of the 9th Joint Meeting on
Foundations of Software Engineering. ACM, pp. 389–399. http://dx.doi.org/10.
1145/2491411.2491429.

Böhme, M., Oliveira, B.C., Roychoudhury, A., 2013. Partition-based regression verifica-
tion. In: Proceedings of the 35th International Conference on Software Engineering.
IEEE, pp. 302–311. http://dx.doi.org/10.1109/ICSE.2013.6606576.

Cadar, C., Godefroid, P., Khurshid, S., Păsăreanu, C., Sen, K., Tillmann, N., Visser, W.,
2011. Symbolic execution for software testing in practice: Preliminary assessment.
In: Proceedings of the 33rd International Conference on Software Engineering. IEEE,
pp. 1066–1071. http://dx.doi.org/10.1145/1985793.1985995.

Cadar, C., Sen, K., 2013. Symbolic execution for software testing: Three decades later.
Commun. ACM 56 (2), 82–90. http://dx.doi.org/10.1145/2408776.2408795.

Cousot, P., Cousot, R., 1977. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of the 4th Symposium on Principles of Programming Languages. ACM, pp. 238–252.
http://dx.doi.org/10.1145/512950.512973.

Dahiya, M., Bansal, S., 2017. Black-box equivalence checking across compiler optimiza-
tions. In: Proceedings of the 15th Asian Symposium on Programming Languages and
Systems. Springer, pp. 127–147. http://dx.doi.org/10.1007/978-3-319-71237-6_7.

Danglot, B., Vera-Perez, O., Yu, Z., Zaidman, A., Monperrus, M., Baudry, B., 2019.
A snowballing literature study on test amplification. J. Syst. Softw. 157, http:
//dx.doi.org/10.1016/j.jss.2019.110398.
14
De Moura, L., Bjørner, N., 2008. Z3: An efficient SMT solver. In: Proceeding of the
14th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems. Springer, pp. 337–340. http://dx.doi.org/10.1007/978-3-540-
78800-3_24.

Di Grazia, L., Bredl, P., Pradel, M., 2022. DiffSearch: A scalable and precise search
engine for code changes. IEEE Trans. Softw. Eng. http://dx.doi.org/10.1109/TSE.
2022.3218859.

Falleri, J.-R., Morandat, F., Blanc, X., Martinez, M., Monperrus, M., 2014. Fine-grained
and accurate source code differencing. In: Proceedings of the 29th International
Conference on Automated Software Engineering. ACM, pp. 313–324. http://dx.doi.
org/10.1145/2642937.2642982.

Fedyukovich, G., Gurfinkel, A., Sharygina, N., 2016. Property directed equivalence
via abstract simulation. In: Proceedings of the 28th International Conference on
Computer Aided Verification. Springer, pp. 433–453. http://dx.doi.org/10.1007/
978-3-319-41540-6_24.

Felsing, D., Grebing, S., Klebanov, V., Rümmer, P., Ulbrich, M., 2014. Automating
regression verification. In: Proceedings of the 29th International Conference on
Automated Software Engineering. ACM, pp. 349–360. http://dx.doi.org/10.1145/
2642937.2642987.

Glock, J., Pichler, J., Pinzger, M., 2023. Replication package for: ‘‘PASDA: A partition-
based semantic differencing approach with best effort classification of undecided
cases’’. http://dx.doi.org/10.5281/zenodo.7595851.

Godefroid, P., Luchaup, D., 2011. Automatic partial loop summarization in dynamic
test generation. In: Proceedings of the 2011 International Symposium on Soft-
ware Testing and Analysis. ACM, pp. 23–33. http://dx.doi.org/10.1145/2001420.
2001424.

Godlin, B., Strichman, O., 2009. Regression verification. In: Proceedings of the 46th
Annual Design Automation Conference. ACM, pp. 466–471. http://dx.doi.org/10.
1145/1629911.1630034.

Havelund, K., Pressburger, T., 2000. Model checking Java programs using Java
PathFinder. Int. J. Softw. Tools Technol. Transfer 2, 366–381. http://dx.doi.org/
10.1007/s100090050043.

Idrees, S.Q., Beszédes, Á., 2022. A survey of challenges in spectrum-based software fault
localization. IEEE Access 10, 10618–10639. http://dx.doi.org/10.1109/ACCESS.
2022.3144079.

Jakobs, M.-C., 2021. PEQcheck: Localized and context-aware checking of functional
equivalence. In: Proceedings of the 9th International Conference on Formal
Methods in Software Engineering. IEEE, pp. 130–140. http://dx.doi.org/10.1109/
FormaliSE52586.2021.00019.

Jakobs, M.-C., Wiesner, M., 2022. PEQtest: Testing functional equivalence. In: Proceed-
ings of the 25th International Conference on Fundamental Approaches to Software
Engineering. Springer, pp. 184–204. http://dx.doi.org/10.1007/978-3-030-99429-
7_11.

Khatibsyarbini, M., Isa, M.A., Jawawi, D.N.A., Tumeng, R., 2018. Test case prioritization
approaches in regression testing: A systematic literature review. Inf. Softw. Technol.
93, 74–93. http://dx.doi.org/10.1016/J.INFSOF.2017.08.014.

Kim, M., Notkin, D., 2009. Discovering and representing systematic code changes. In:
Proceedings of the 31st International Conference on Software Engineering. IEEE,
pp. 309–319. http://dx.doi.org/10.1109/ICSE.2009.5070531.

King, J., 1976. Symbolic execution and program testing. Commun. ACM 19 (7),
385–394. http://dx.doi.org/10.1145/360248.360252.

Kuchta, T., Palikareva, H., Cadar, C., 2018. Shadow symbolic execution for testing
software patches. ACM Trans. Softw. Eng. Methodol. 27 (3), 1–32. http://dx.doi.
org/10.1145/3208952.

Lahiri, S., Hawblitzel, C., Kawaguchi, M., Rebêlo, H., 2012. Symdiff: A language-
agnostic semantic diff tool for imperative programs. In: Proceedings of the 24th
International Conference on Computer Aided Verification. Springer, pp. 712–717.
http://dx.doi.org/10.1007/978-3-642-31424-7_54.

LaToza, T.D., Myers, B.A., 2010. Hard-to-answer questions about code. In: Proceedings
of the 2nd ACM SIGPLAN Workshop on Evaluation and Usability of Program-
ming Languages and Tools. ACM, pp. 8:1–8:6. http://dx.doi.org/10.1145/1937117.
1937125.

Le, W., Pattison, S., 2014. Patch verification via multiversion interprocedural control
flow graphs. In: Proceedings of the 36th International Conference on Software
Engineering. ACM, pp. 1047–1058. http://dx.doi.org/10.1145/2568225.2568304.

Mercaldo, F., Santone, A., 2021. Formal equivalence checking for mobile malware
detection and family classification. IEEE Trans. Softw. Eng. 48 (7), 2643–2657.
http://dx.doi.org/10.1109/TSE.2021.3067061.

Mercer, E., Person, S., Rungta, N., 2012. Computing and visualizing the impact of
change with Java PathFinder extensions. ACM SIGSOFT Softw. Eng. Not. 37 (6),
1–5. http://dx.doi.org/10.1145/2382756.2382801.

Mora, F., Li, Y., Rubin, J., Chechik, M., 2018. Client-specific equivalence checking.
In: Proceedings of the 33rd International Conference on Automated Software
Engineering. ACM, pp. 441–451. http://dx.doi.org/10.1145/3238147.3238178.

Noller, Y., Păsăreanu, C., Böhme, M., Sun, Y., Nguyen, H.L., Grunske, L., 2020. HyDiff:
Hybrid differential software analysis. In: Proceedings of the 42nd International
Conference on Software Engineering. ACM, pp. 1273–1285. http://dx.doi.org/10.
1145/3377811.3380363.

https://doi.org/10.5281/zenodo.7595851
http://dx.doi.org/10.1007/978-3-642-39176-7_7
http://dx.doi.org/10.1007/978-3-642-39176-7_7
http://dx.doi.org/10.1007/978-3-642-39176-7_7
http://dx.doi.org/10.1145/3368089.3409757
http://dx.doi.org/10.1145/3368089.3409757
http://dx.doi.org/10.1145/3368089.3409757
https://github.com/resess/ARDiff
https://github.com/resess/ARDiff
https://github.com/resess/ARDiff
http://dx.doi.org/10.1145/3182657
http://dx.doi.org/10.1145/3182657
http://dx.doi.org/10.1145/3182657
http://dx.doi.org/10.1007/978-3-642-21437-0_17
http://dx.doi.org/10.1007/978-3-319-98047-8_3
http://dx.doi.org/10.1007/978-3-319-98047-8_3
http://dx.doi.org/10.1007/978-3-319-98047-8_3
http://dx.doi.org/10.1145/2491411.2491429
http://dx.doi.org/10.1145/2491411.2491429
http://dx.doi.org/10.1145/2491411.2491429
http://dx.doi.org/10.1109/ICSE.2013.6606576
http://dx.doi.org/10.1145/1985793.1985995
http://dx.doi.org/10.1145/2408776.2408795
http://dx.doi.org/10.1145/512950.512973
http://dx.doi.org/10.1007/978-3-319-71237-6_7
http://dx.doi.org/10.1016/j.jss.2019.110398
http://dx.doi.org/10.1016/j.jss.2019.110398
http://dx.doi.org/10.1016/j.jss.2019.110398
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1109/TSE.2022.3218859
http://dx.doi.org/10.1109/TSE.2022.3218859
http://dx.doi.org/10.1109/TSE.2022.3218859
http://dx.doi.org/10.1145/2642937.2642982
http://dx.doi.org/10.1145/2642937.2642982
http://dx.doi.org/10.1145/2642937.2642982
http://dx.doi.org/10.1007/978-3-319-41540-6_24
http://dx.doi.org/10.1007/978-3-319-41540-6_24
http://dx.doi.org/10.1007/978-3-319-41540-6_24
http://dx.doi.org/10.1145/2642937.2642987
http://dx.doi.org/10.1145/2642937.2642987
http://dx.doi.org/10.1145/2642937.2642987
http://dx.doi.org/10.5281/zenodo.7595851
http://dx.doi.org/10.1145/2001420.2001424
http://dx.doi.org/10.1145/2001420.2001424
http://dx.doi.org/10.1145/2001420.2001424
http://dx.doi.org/10.1145/1629911.1630034
http://dx.doi.org/10.1145/1629911.1630034
http://dx.doi.org/10.1145/1629911.1630034
http://dx.doi.org/10.1007/s100090050043
http://dx.doi.org/10.1007/s100090050043
http://dx.doi.org/10.1007/s100090050043
http://dx.doi.org/10.1109/ACCESS.2022.3144079
http://dx.doi.org/10.1109/ACCESS.2022.3144079
http://dx.doi.org/10.1109/ACCESS.2022.3144079
http://dx.doi.org/10.1109/FormaliSE52586.2021.00019
http://dx.doi.org/10.1109/FormaliSE52586.2021.00019
http://dx.doi.org/10.1109/FormaliSE52586.2021.00019
http://dx.doi.org/10.1007/978-3-030-99429-7_11
http://dx.doi.org/10.1007/978-3-030-99429-7_11
http://dx.doi.org/10.1007/978-3-030-99429-7_11
http://dx.doi.org/10.1016/J.INFSOF.2017.08.014
http://dx.doi.org/10.1109/ICSE.2009.5070531
http://dx.doi.org/10.1145/360248.360252
http://dx.doi.org/10.1145/3208952
http://dx.doi.org/10.1145/3208952
http://dx.doi.org/10.1145/3208952
http://dx.doi.org/10.1007/978-3-642-31424-7_54
http://dx.doi.org/10.1145/1937117.1937125
http://dx.doi.org/10.1145/1937117.1937125
http://dx.doi.org/10.1145/1937117.1937125
http://dx.doi.org/10.1145/2568225.2568304
http://dx.doi.org/10.1109/TSE.2021.3067061
http://dx.doi.org/10.1145/2382756.2382801
http://dx.doi.org/10.1145/3238147.3238178
http://dx.doi.org/10.1145/3377811.3380363
http://dx.doi.org/10.1145/3377811.3380363
http://dx.doi.org/10.1145/3377811.3380363

The Journal of Systems & Software 213 (2024) 112037J. Glock et al.
Parnin, C., Orso, A., 2011. Are automated debugging techniques actually helping
programmers? In: Proceedings of the 20th International Symposium on Software
Testing and Analysis. ACM, pp. 199–209. http://dx.doi.org/10.1145/2001420.
2001445.

Partush, N., Yahav, E., 2014. Abstract semantic differencing via speculative correlation.
In: Proceedings of the 2014 International Conference on Object Oriented Program-
ming Systems Languages & Applications. ACM, pp. 811–828. http://dx.doi.org/10.
1145/2660193.2660245.

Păsăreanu, C., Rungta, N., 2010. Symbolic PathFinder: Symbolic execution of Java byte-
code. In: Proceedings of the 25th International Conference on Automated Software
Engineering. ACM, pp. 179–180. http://dx.doi.org/10.1145/1858996.1859035.

Păsăreanu, C., Visser, W., 2009. A survey of new trends in symbolic execution for
software testing and analysis. Int. J. Softw. Tools Technol. Transfer 11 (4), http:
//dx.doi.org/10.1007/s10009-009-0118-1.

Person, S., Dwyer, M., Elbaum, S., Păsăreanu, C., 2008. Differential symbolic execution.
In: Proceedings of the 16th International Symposium on Foundations of Software
Engineering. ACM, pp. 226–237. http://dx.doi.org/10.1145/1453101.1453131.

Person, S., Yang, G., Rungta, N., Khurshid, S., 2011. Directed incremental symbolic ex-
ecution. ACM SIGPLAN Not. 46 (6), 504–515. http://dx.doi.org/10.1145/1993316.
1993558.

Raghavan, S., Rohana, R., Leon, D., Podgurski, A., Augustine, V., 2004. Dex: A semantic-
graph differencing tool for studying changes in large code bases. In: Proceedings
of the 20th International Conference on Software Maintenance. IEEE, pp. 188–197.
http://dx.doi.org/10.1109/ICSM.2004.1357803.

Ramos, D., Engler, D., 2011. Practical, low-effort equivalence verification of real
code. In: Proceedings of the 23rd International Conference on Computer Aided
Verification. Springer, pp. 669–685. http://dx.doi.org/10.1007/978-3-642-22110-
1_55.

Sharma, V., Hussein, S., Whalen, M.W., McCamant, S., Visser, W., 2020. Java Ranger:
Statically summarizing regions for efficient symbolic execution of Java. In: Pro-
ceedings of the 28th Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. ACM, pp. 123—-134.
http://dx.doi.org/10.1145/3368089.3409734.

Sun, H., Zhang, X., Zheng, Y., Zeng, Q., 2016. IntEQ: Recognizing benign integer
overflows via equivalence checking across multiple precisions. In: Proceedings of
the 38th International Conference on Software Engineering. IEEE, pp. 1051–1062.
http://dx.doi.org/10.1145/2884781.2884820.

The Apache Software Foundation, 2007. StopWatch (Apache Commons Lang 2.4
API). URL https://commons.apache.org/proper/commons-lang/javadocs/api-2.4/
org/apache/commons/lang/time/StopWatch.html.

The Java PathFinder Contributors, 2005. GitHub: Java PathFinder (JPF). URL https:
//github.com/javapathfinder/jpf-core.
15
Winter, E., Bowes, D., Counsell, S., Hall, T., Haraldsson, S.O., Nowack, V., Wood-
ward, J.R., 2022. How do developers really feel about bug fixing? Directions
for automatic program repair. IEEE Trans. Softw. Eng. 49 (4), 1823–1841. http:
//dx.doi.org/10.1109/TSE.2022.3194188.

Wong, E., Gao, R., Li, Y., Abreu, R., Wotawa, F., 2016. A survey on software fault
localization. IEEE Trans. Softw. Eng. 42 (8), 707–740. http://dx.doi.org/10.1109/
TSE.2016.2521368.

Wu, X., Li, M., Li, Y., 2021a. EvoMe: A software evolution management engine based
on differential factbase. In: Proceedings of the 36th International Conference on
Automated Software Engineering. ACM, pp. 1252–1256. http://dx.doi.org/10.1109/
ASE51524.2021.9678795.

Wu, X., Zhu, C., Li, Y., 2021b. Diffbase: A differential factbase for effective software
evolution management. In: Proceedings of the 29th Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. ACM, pp. 503–515. http://dx.doi.org/10.1145/3468264.3468605.

Yang, G., Person, S., Rungta, N., Khurshid, S., 2014. Directed incremental symbolic
execution. ACM Trans. Softw. Eng. Methodol. 24 (1), http://dx.doi.org/10.1145/
1993316.1993558.

Johann Glock is a Ph.D. student in the Software Engineering Research Group (SERG) at
the University of Klagenfurt, Austria. He received his M.Sc. in software engineering at
the University of Applied Sciences Upper Austria, Campus Hagenberg, Austria in 2020.
His research interests are in program analysis, program comprehension, and formal
methods.

Josef Pichler is a professor of programming and project development at the University
of Applied Sciences Upper Austria, Campus Hagenberg, Austria. His research interests
include static code analysis, reverse engineering, software quality, and software mainte-
nance. He has 20 years of experience in software engineering research. Pichler teaches
courses on algorithms, programming, software verification, software maintenance and
evolution, and requirements engineering. He earned his Ph.D. in computer science from
Johannes Kepler University Linz, Austria.

Martin Pinzger is a full professor at the University of Klagenfurt, Austria where he
is heading the Software Engineering Research Group (SERG). His research interests
are in software evolution, mining software repositories, program analysis, software
visualization, and automating software engineering tasks. He is a member of ACM
and a senior member of IEEE.

http://dx.doi.org/10.1145/2001420.2001445
http://dx.doi.org/10.1145/2001420.2001445
http://dx.doi.org/10.1145/2001420.2001445
http://dx.doi.org/10.1145/2660193.2660245
http://dx.doi.org/10.1145/2660193.2660245
http://dx.doi.org/10.1145/2660193.2660245
http://dx.doi.org/10.1145/1858996.1859035
http://dx.doi.org/10.1007/s10009-009-0118-1
http://dx.doi.org/10.1007/s10009-009-0118-1
http://dx.doi.org/10.1007/s10009-009-0118-1
http://dx.doi.org/10.1145/1453101.1453131
http://dx.doi.org/10.1145/1993316.1993558
http://dx.doi.org/10.1145/1993316.1993558
http://dx.doi.org/10.1145/1993316.1993558
http://dx.doi.org/10.1109/ICSM.2004.1357803
http://dx.doi.org/10.1007/978-3-642-22110-1_55
http://dx.doi.org/10.1007/978-3-642-22110-1_55
http://dx.doi.org/10.1007/978-3-642-22110-1_55
http://dx.doi.org/10.1145/3368089.3409734
http://dx.doi.org/10.1145/2884781.2884820
https://commons.apache.org/proper/commons-lang/javadocs/api-2.4/org/apache/commons/lang/time/StopWatch.html
https://commons.apache.org/proper/commons-lang/javadocs/api-2.4/org/apache/commons/lang/time/StopWatch.html
https://commons.apache.org/proper/commons-lang/javadocs/api-2.4/org/apache/commons/lang/time/StopWatch.html
https://github.com/javapathfinder/jpf-core
https://github.com/javapathfinder/jpf-core
https://github.com/javapathfinder/jpf-core
http://dx.doi.org/10.1109/TSE.2022.3194188
http://dx.doi.org/10.1109/TSE.2022.3194188
http://dx.doi.org/10.1109/TSE.2022.3194188
http://dx.doi.org/10.1109/TSE.2016.2521368
http://dx.doi.org/10.1109/TSE.2016.2521368
http://dx.doi.org/10.1109/TSE.2016.2521368
http://dx.doi.org/10.1109/ASE51524.2021.9678795
http://dx.doi.org/10.1109/ASE51524.2021.9678795
http://dx.doi.org/10.1109/ASE51524.2021.9678795
http://dx.doi.org/10.1145/3468264.3468605
http://dx.doi.org/10.1145/1993316.1993558
http://dx.doi.org/10.1145/1993316.1993558
http://dx.doi.org/10.1145/1993316.1993558

	PASDA: A partition-based semantic differencing approach with best effort classification of undecided cases
	Introduction
	Background
	Symbolic Execution
	Differential Symbolic Execution
	Iterative Abstraction and Refinement
	Partition-based Regression Verification

	The PASDA Approach
	Step 1: Source Code Instrumentation
	Step 2: Symbolic Execution
	Step 3: Partition Equivalence Classification
	Step 4: Program Equivalence Classification
	Step 5: Abstraction Refinement
	Program Output

	Evaluation
	Evaluated Tools/Approaches
	Benchmark Programs
	RQ1: Equivalence Classification Accuracy
	RQ2: Best Effort Classification Accuracy
	RQ3: Partition-Level Non-/Equivalence Proofs
	RQ4: Runtime Performance

	Discussion
	Benefits of PASDA
	 Potential Use Cases for Best Effort Classifications
	Threats to Validity

	Related Work
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

