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Conventional unit tests validate single input-output pairs, leaving most inputs of an execution path untested. Property-based testing

addresses this shortcoming by generating multiple inputs satisfying properties but requires significant manual effort to define properties

and their constraints. We propose a semantics-based approach that automatically transforms unit tests into property-based tests by

extracting specifications from implementations via single-path symbolic analysis. We demonstrate this approach through Teralizer, a

prototype for Java that transforms JUnit tests into property-based jqwik tests. Unlike prior work that generalizes from input-output

examples, Teralizer derives specifications from program semantics.

We evaluated Teralizer on three progressively challenging datasets. On EvoSuite-generated tests for EqBench and Apache Commons

utilities, Teralizer improved mutation scores by 1–4 percentage points. Generalization of mature developer-written tests from Apache

Commons utilities showed only 0.05–0.07 percentage points improvement. Analysis of 632 real-world Java projects from RepoReapers

highlights applicability barriers: only 1.7% of projects completed the generalization pipeline, with failures primarily due to type support

limitations in symbolic analysis and static analysis limitations in our prototype. Based on the results, we provide a roadmap for future

work, identifying research and engineering challenges that need to be tackled to advance the field of test generalization.

Artifacts available at: https://doi.org/10.5281/zenodo.17950381

CCS Concepts: • Software and its engineering→ Software testing and debugging; Empirical software validation; • Theory of

computation→ Program analysis.
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1 Introduction

Conventional unit tests validate software behavior by checking specific input-output pairs [2, 56, 68], but leave most

inputs along the same execution path untested. Property-based testing [15, 37] instead generates many inputs and checks

whether specified properties hold across executions. For example, given the 𝑎𝑏𝑠 method in Figure 1, a unit test which

asserts that 𝑎𝑏𝑠 (0) returns 0 would still pass after changing x >= 0 to x == 0, whereas a property-based test which

asserts 𝑎𝑏𝑠 (𝑥) = 𝑥 for 𝑥 ≥ 0 would expose this regression. Industrial experience reports suggest that property-based

testing often uncovers edge cases and boundary conditions missed by unit tests [33, 38]. Adoption, however, remains

limited because writing property-based tests requires manual effort to define both input constraints and suitable

properties, a task practitioners find challenging [33]. This motivates research into transformation approaches that

automatically generalize existing unit tests by deriving properties from program semantics.
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  int abs(int x) { 
-   if (x >= 0) { 
+   if (x == 0) { 
      return x; 
    } else { 
      return -x; 
    } 
  }

@Property 
void testAbs(@Int(min=0) int x) { 
  assertEquals(x, abs(x)); 
}

Before:

1 Test(s) run 
1 Failure(s): expected <1> but was <-1>

After:

1 Test(s) run 
0 Failure(s)

@Test 
void testAbs() { 
  assertEquals(0, abs(0)); 
}

Before:

1 Test(s) run 
0 Failure(s)

After:

1 Test(s) run 
0 Failure(s)

Fig. 1. The conventional unit test misses a regression that the property-based test detects.

@Property 
void testAbs(@Int(min=0) int x) { 
  assertEquals(x, abs(x)); 
}

replaced 
annotation

added 
constraint(s)

added 
parameter(s)

replaced 
expected

replaced 
argument(s)

int abs(int x) { 
  return x >= 0 ? x : -x; 
} 

@Test 
void testAbs() { 
  assertEquals(0, abs(0)); 
}

TERALIZER

Fig. 2. Teralizer takes implementation and test code as input, and produces property-based tests as output.

We propose a semantics-based approach for automated test generalization that analyzes both test and implementation

code to derive path-exact specifications through single-path symbolic analysis [64]. Our method determines which inputs

follow the same execution path as existing tests and transforms unit tests into property-based tests that validate the

same assertions across entire input partitions. Because specifications are extracted directly from program semantics, the

resulting properties are exact for each execution path and preserve the developer-provided oracles encoded in assertions.

To our knowledge, JARVIS [66] is the only prior work that automatically generalizes unit tests into property-based

tests. However, JARVIS infers properties from input-output examples based solely on test code, relying on predefined

abstraction templates that yield overapproximations. In contrast, our white-box approach leverages both static and

dynamic program analysis to extract exact specifications for the execution paths exercised by the original tests.

We implemented this approach in Teralizer, a prototype tool for Java that transforms JUnit tests into property-based

jqwik [41] tests. Teralizer employs a five-stage pipeline: (1) analyzing tests and their assertions regarding suitability

for generalization, (2) identifying tested methods through data flow analysis, (3) extracting specifications through

single-path symbolic analysis [64], (4) creating generalized property-based tests, and (5) filtering generalized tests to

retain only those that improve fault detection capability. Figure 2 illustrates the effects of this transformation, showing

how a simple equality assertion 𝑎𝑏𝑠 (0) = 0 becomes the property 𝑎𝑏𝑠 (𝑥) = 𝑥 , valid for all non-negative values of 𝑥 .

To evaluate our approach, we applied Teralizer to three complementary datasets. The EqBench benchmark [4]

provides controlled settings with numeric-focused programs well-suited for symbolic analysis. Because EqBench lacks

test suites, we generated tests using EvoSuite [29]. Utility methods extracted from Apache Commons projects offer

a middle ground between controlled and real-world scenarios. Here, we directly compared EvoSuite-generated and

developer-written tests on the same codebase, partially isolating the influence of test architecture on generalization



Teralizer: A Semantics-Based Test Generalization Approach 3

outcomes. Finally, we applied Teralizer to 632 real-world Java projects with developer-written tests from the RepoRe-

apers dataset [55] to expose the full complexity of practical application scenarios. This progression from controlled to

real-world conditions highlights both the potential and limitations of semantics-based test generalization.

Our evaluation shows modest yet consistent improvements under controlled conditions. On EvoSuite-generated

tests, mutation scores increased by 1–4 percentage points: from 48–52% to 52–55% on EqBench, and from 57–58% to

58–59% on Apache Commons utilities. In contrast, generalization of developer-written tests for Apache Commons

utilities showed only 0.05–0.07 percentage points improvement from a baseline of 80.35%. Results from the RepoReapers

projects reveal practical applicability barriers: only 1.7% of projects successfully completed the generalization pipeline.

Failures primarily occurred due to type support limitations of symbolic analysis as well as static analysis limitations of

our prototype. To provide a roadmap for future work, we classified these failures into those that can be resolved through

engineering effort and those that represent deeper research challenges in specification extraction and encoding.

This paper makes the following contributions:

(1) A semantics-based test generalization approach that extracts specifications via symbolic analysis to

transform conventional unit tests into property-based tests.

(2) A comprehensive empirical evaluation across three complementary datasets, demonstrating 1–4 percentage

point mutation score improvements under controlled conditions.

(3) A systematic analysis of applicability barriers, distinguishing addressable engineering limitations from

fundamental research challenges in specification extraction and encoding.

(4) An open implementation and replication package [32], enabling reproduction and extension of our results.

The paper is organized as follows. Section 2 introduces the technical foundations of test generalization. Section 3

presents Teralizer’s five-stage pipeline. Section 4 evaluates our approach through six research questions, covering

mutation score improvements, impact on test suite size and execution time, runtime requirements, and causes of

unsuccessful generalizations. Section 5 discusses the results, directions for future work, and threats to validity. Section 6

positions our work within the broader testing literature, and Section 7 concludes the paper.

2 Background

This section provides the technical foundations for semantics-based test generalization. Section 2.1 situates our work

within the test amplification landscape. Section 2.2 introduces property-based testing as our target representation.

Section 2.3 describes single-path symbolic analysis, the technique we use for specifications extraction. Finally, Section 2.4

presents mutation testing as our evaluation methodology for assessing the effectiveness of generalized tests.

2.1 Test Amplification and Generalization

Test amplification uses knowledge embedded in implementations and tests of software projects to automatically enhance

the projects’ test suites. Danglot et al.’s taxonomy [21] distinguishes four categories of amplification: AMPadd creates

new tests from existing ones, AMPchange targets specific program modifications, AMPexec varies execution conditions,

and AMPmod modifies test structure or assertions to generalize behavior. Test generalization belongs to the AMPmod

category. It transforms tests from validating individual input-output pairs to validating properties across entire input

partitions. For example, a test which asserts that 𝑎𝑏𝑠 (0) returns 0 validates 𝑎𝑏𝑠 for only a single input-output pair,

missing regressions that preserve the behavior at that point but violate the general property 𝑎𝑏𝑠 (𝑥) = 𝑥 which should

hold when 𝑥 ≥ 0 (Figure 1). Since this property is implicitly encoded in the original test, we can automatically transform
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the test into a corresponding property-based test (Figure 2). A central challenge in test amplification approaches is the

oracle problem: determining expected outputs for new test inputs [6]. Existing tests provide validated oracles for their

specific execution paths, encoding developer knowledge about expected behavior. Other execution paths lack equally

trustworthy oracles, making it difficult to distinguish intentional behavior from incidental state changes or outputs.

2.2 Property-Based Testing as Target Representation

Property-based testing (PBT) — pioneered by QuickCheck for Haskell [15] and now available via, e.g., ScalaCheck for

Scala [58], Hypothesis for Python [48], and jqwik for Java [41] — validates specifications over input partitions rather

than single inputs. PBT frameworks comprise three key components. Generators produce inputs according to specified

constraints, such as 𝑥 ≥ 0. Properties express invariants that must hold for all generated inputs, such as 𝑎𝑏𝑠 (𝑥) = 𝑥 for

non-negative 𝑥 . Shrinking minimizes failing inputs to simplify debugging, such as reducing the input 776,837 to 1. This

generative approach distinguishes PBT from parameterized testing, which commonly relies on predefined inputs.

For example, the property-based test in Figure 1 uses @Property to indicate property-based testing and @Int(min=0)

to constrain input generation to non-negative integers. It then validates that assertEquals(x, abs(x)) holds for all

generated values. When this test executes, jqwik generates hundreds of non-negative integers, including edge cases

like 0, 1, and Integer.MAX_VALUE, and checks that the property holds for each one. If a failure occurs, the framework’s

shrinking algorithm automatically reduces the failing input to its minimal form, simplifying debugging.

The combination of constrained generation and property checking enables thorough exploration of input spaces,

revealing edge cases that developers might not explicitly consider [38, 48]. However, adoption of property-based

testing remains limited [33]. Creating property-based tests requires identifying appropriate properties, defining input

generators with suitable constraints, and translating example-based assertions into general specifications: a conceptual

shift that can be difficult for developers [6, 79] even though conventional unit tests already encode behavioral properties

implicitly: an assertion 𝑎𝑏𝑠 (0) = 0 reflects the property 𝑎𝑏𝑠 (𝑥) = 𝑥 for 𝑥 ≥ 0 but validates it only for a single input.

2.3 Symbolic Analysis for Specification Extraction

Automating the transformation from conventional tests into property-based specifications requires extracting two

elements: the path condition that characterizes inputs following the same execution path, and the symbolic output

expression that computes expected results for those inputs. For example, the 𝑎𝑏𝑠 (0) test in Figure 2 yields the path

condition 𝑥 ≥ 0 and the symbolic output 𝑥 . These path-exact specifications enable property-based tests that validate

behavior across entire input partitions while preserving the original test’s semantics.

Single-path symbolic analysis achieves this extraction by following the concrete execution path of an existing test

while maintaining symbolic representations of variables [64]. Unlike full symbolic execution, which faces path explosion

when exploring all possible paths [5, 12], single-path analysis omits backtracking and constraint solving, recording

conditions only along the executed path. This focused approach is well suited to test generalization: existing tests

identify the behaviors of interest and provide validated oracles for those behaviors.

The precision of extracted specifications depends strongly on the data types of the involved variables. Linear integer

constraints (e.g., 𝑥 > 0, 𝑦 ≤ 2 · 𝑥) are well supported by symbolic execution tools such as Symbolic PathFinder (SPF)

for Java [64] and KLEE for C [11]. Non-linear arithmetic and floating-point operations are more problematic: while

tools can still represent them precisely, constraint solving quickly becomes computationally intractable, leading to

timeouts [23]. Strings, arrays, and complex objects pose the greatest practical barrier: symbolic representations typically

lose precision or become overly abstract, limiting their usefulness for specification extraction [1, 5].
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These limitations affect test generalization at two distinct stages. First, imprecise specifications (as with complex

types) prevent generalization entirely since we cannot create meaningful property-based tests without accurate models.

Second, even with precise specifications (as with non-linear numeric constraints), test generalization succeeds but the

resulting tests may fail during execution when PBT frameworks cannot produce inputs satisfying complex constraints.

This input generation difficulty represents a fundamental computational challenge that frameworks cannot overcome

through filtering or constraint encoding [15, 41]. Thus, while test generalization can theoretically handle any accurately

modeled behavior, practical success requires both precise specifications and tractable constraints.

2.4 Mutation Testing for Evaluation

Having established how to extract specifications from existing tests, we require a systematic way to assess whether

transforming tests based on these specifications improves fault detection capability. Because original and generalized

tests execute the same paths, traditional coverage metrics cannot reveal improvements [39]. Statement, branch, and

path coverage [87] remain identical whether a test validates one input or hundreds from the same partition. Mutation

testing, in contrast, reflects the ability of a test suite to expose behavioral differences within those paths, making it a

suitable metric for evaluating which generalized tests provide additional fault detection capability [40].

Mutation testing systematically introduces small faults into program code and measures whether test suites detect

them. The approach rests on two hypotheses: the competent programmer hypothesis (real faults are small deviations

from correct programs) and the coupling effect (tests that detect simple faults also detect more complex ones) [60].

These hypotheses justify using small syntactic changes as proxies for real programming errors. Mutation operators

alter program statements to create mutants. Common operators include arithmetic replacements (e.g., + to -), relational

boundary shifts (e.g., > to >=), logical connector changes (e.g., && to ||), constant modifications, and replacements of

return values with defaults such as 0, true, or null [40]. A test suite’s mutation score, i.e., the proportion of mutants it

detects (“kills”), has been shown to correlate with real fault detection capability [42, 62].

The limitations of single-input tests become clear through mutation analysis. A unit test verifying 𝑎𝑏𝑠 (0) = 0 cannot

kill a mutant changing x >= 0 to x == 0, because the test’s single input still satisfies the mutated condition. A property-

based test that exercises the same execution path with multiple inputs will detect this mutant when positive values

produce negative results. This difference reveals both the improvement potential of test generalization and provides a

concrete criterion for selecting which generalized tests to retain. Only those generalizations that detect mutants not

caught by existing tests contribute unique fault detection capability to the test suite, whereas generalizations that do

not kill any new mutants only increase test suite size and runtime without any tangible benefits.

3 Approach

This section presents our semantics-based approach for automated test generalization. We implemented this approach

in Teralizer, a prototype tool for Java. As shown in Figure 3, our approach follows a five-stage pipeline that takes

the implementation and test code of a software project as input and produces generalized property-based tests as

output: (1) test and assertion analysis identifies potentially generalizable tests and their assertions, (2) tested method

identification maps assertions to the methods that they validate through data flow analysis, (3) specification extraction

recovers input/output specifications from the tested methods through single-path symbolic analysis, (4) generalized test

creation produces property-based tests with three input generation strategies (Baseline, Naive, and Improved), and

(5) test suite reduction filters tests to retain only those that measurably improve the mutation score of the test suite.
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Specification
Extraction

Generalized
Test Creation

Test Suite
Reduction

Intermediate Outputs:
Processing Logs, Test / Assertion / Generalization Data,

Input / Output Specifications, External Tool Reports

3 4 5

Teralizer

Test and Assertion
Analysis

Tested Method
Identification

1 2

JUnit JaCoCo PIT jqwik Spoon JPF / SPF

Generalized Tests

BASELINE

IMPROVED

NAIVE

Java Project

Implementation

Test Suite

Fig. 3. Overview of Teralizer’s test generalization process.

We illustrate our approach with a running example. Listing 1 shows a bonus calculation method with three execution

paths for exceptional, good, and bad performance. Listing 2 shows a typical unit test that tests one input for each

performance level. While the test detects regressions that affect these three inputs, it misses regressions that affect other

inputs in the same partitions. Consider a mutation that changes sales / 2 >= target to sales / 2 > target. Despite

the change, the test still passes, but boundary cases where sales = 2 * target now return the good performance

bonus instead of the exceptional performance bonus. To detect such subtle regressions, Teralizer transforms existing

unit tests into property-based tests that encode the intended behavior for all inputs in the covered input partitions.

While the underlying generalization approach is independent of specific programming languages or project environ-

ments, our current implementation of Teralizer targets Java 5–8 projects (imposed by our dependency on Symbolic

PathFinder) that use Maven or Gradle for dependency management and JUnit 4 or JUnit 5 for testing. Before starting

the main processing stages, Teralizer automatically detects the build system used by the target project and injects

necessary dependencies including jqwik [41] for property-based testing, PIT [18] for mutation testing, and JaCoCo [54]

for coverage tracking, thus ensuring full automation without the need for manual preprocessing steps.

The following subsections detail each stage of the generalization process as implemented in Teralizer. Section 3.1

explains test and assertion analysis. Section 3.2 describes tested method identification. Section 3.3 presents input/output

Listing 1. Implementation of the calculate method.

class BonusCalculator {

int calculate(int sales , int target) {

if (sales / 2 >= target) {

// exceptional performance

return sales / 10;

} else if (sales >= target) {

// good performance

return sales / 20;

}

// bad performance

return 0;

}

}

Listing 2. Original test for the calculate method.

@Test

void testCalculate () {

BonusCalculator c = new BonusCalculator ();

// exceptional performance:

int b1 = c.calculate (2500, 1000);

// good performance:

int b2 = c.calculate (1500, 1000);

// bad performance:

int b3 = c.calculate (500, 1000);

assertEquals (250, b1);

assertEquals (75, b2);

assertEquals (0, b3);

}
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specification extraction, and Section 3.4 covers generalized test creation. Finally, Section 3.5 describes mutation-based

test suite reduction. The full implementation of Teralizer is available in our replication package [32].

3.1 Test and Assertion Analysis

To identify generalization candidates, Teralizer collects descriptions of all tests and assertions in the codebase. First, it

executes the original test suite to generate JUnit XML reports. Next, it parses these reports to identify executed tests

and their execution results. For every test in the reports, Teralizer conducts static analysis via Spoon [65] to extract

source code locations, test annotations, used assertions, involved data types, and various other structural information

relevant for the generalization (full data available in our replication package [32]). Based on the collected information,

Teralizer applies filtering heuristics to exclude unsuitable tests and assertions from further processing.

Tests need to pass three filters: TestType, NonPassingTest, and NoAssertions. The TestType filter rejects tests

that are not standard @Test methods, such as @ParameterizedTests that would require special handling not currently

implemented in Teralizer, or @RepeatedTests that indicate non-deterministic behavior incompatible with symbolic

analysis-based specification extraction (as described in Section 2.3). The NonPassingTest and NoAssertions filters

both address the absence of validated oracles. Failing tests do not reflect intended behavior, so no specification can be

inferred from them. Similarly, tests without assertions lack explicit oracles. Assertions might be missing for two reasons:

(i) the test validates only that execution completes without crashing or (ii) assertions are present but are contained

in helper methods that are not captured by Teralizer’s intraprocedural assertion detection. While interprocedural

analysis could detect delegated assertions and test refactoring could make implicit validation explicit, we leave such

enhancements for future work. Sections 4.6 and 4.7 quantify how frequently each filter excludes tests in practice.

Individual assertions within suitable tests require further analysis to determine generalizability. Teralizer currently

supports four assertion types: assertEquals, assertTrue, assertFalse, and assertThrows from both JUnit 4 and

JUnit 5. These assertions capture computational relationships that symbolic analysis can model. The AssertionType

filter excludes unsupported assertions such as reference equality checks (assertSame, assertNull) and structural

comparisons (assertArrayEquals, assertInstanceOf) that operate on data types current symbolic execution cannot

accurately model. The ExcludedTest filter excludes assertions from tests already filtered at the test level.

3.2 Tested Method Identification

After identifying generalizable tests and assertions, the next step is to identify which implementation methods are

validated by the tests. These methods under test (MUT) serve as targets for subsequent specification extraction. First,

we must distinguish test setup code from code that exercises and validates the MUT to be able to restrict specification

extraction to relevant parts of the implementation. Second, when a test validates multiple MUTs, we must determine

which MUT call corresponds to each assertion so we can replace the expected value used in the assertion with the right

output specification when creating the corresponding generalized test. Teralizer achieves this through static analysis

based on Spoon [65] that traces output values validated by assertions back to the method calls that produced them.

Consider the testCalculate method in Listing 2. To identify MUT calls in this method, Teralizer uses Spoon to

first get the actual arguments that are passed into each assertion. In our example, all three assertions are static void

assertEquals(int expected, int actual) calls. Teralizer thus identifies b1, b2, and b3 as the actual arguments

of the three assertions. Since all three arguments are local variables, Teralizer uses Spoon to identify where they

were defined. For example, for b1, Spoon identifies int b1 = c.calculate(2500, 1000) as the definition. Since the

right side of the assignment is a method call, Teralizer marks it as a MUT call, storing a description of the method



8 Glock et al.

as well as a mapping to the corresponding assertEquals(250, b1) call. Processing b2 and b3 similarly identifies

c.calculate(1500, 1000) and c.calculate(500, 1000) as the MUT calls for the second and third assertions.

Processing for other assertion types and code structures follows similar patterns. Teralizer first identifies the

assertion argument that represents the (output of the) MUT call. If the argument is a method call, Teralizer directly

marks it as a MUT call. Otherwise, Teralizer aims to identify a MUT call from the argument. For local variables, it

traces them back to their definition using the simple data flow analysis based on Spoon we described in the previous

paragraph. For lambda expressions, which are commonly used as the executable argument of assertThrows(Class

expectedType, Executable executable) assertions, Teralizer instead marks the last method call within the lambda

expression as the MUT call, following the heuristic that the last call typically triggers the expected exception.

Teralizer applies three filters to exclude unsuitable MUTs: MissingValue, ParameterType, and ReturnType.

The MissingValue filter rejects cases where Teralizer cannot identify a MUT for an assertion or cannot extract

a method signature for an identified MUT. Common causes for this include reversed expected and actual argu-

ments (e.g., assertEquals(abs(0), 0)), validation of object fields set as side effects rather than return values (e.g.,

assertEquals(3, a.length)), and MUTs in inheritance hierarchies that Spoon cannot resolve. The ParameterType

and ReturnType filters reject MUTs that use unsupported types for all of the MUT’s parameters or return values. While

methods with mixed parameter types can be partially generalized (numeric and boolean parameters become test inputs;

others remain unchanged), SPF cannot extract complete constraints for strings, arrays, and objects. This is due to

symbolic analysis limitations discussed in Section 2.3. Sections 4.6 and 4.7 evaluate the exclusion rates of all filters.

3.3 Specification Extraction

The specification extraction stage takes the MUT-to-assertion mappings from tested method identification and produces

input/output specifications for every MUT. Each specification captures two elements: the path condition that describes

which inputs follow the same execution path through the MUT as the test, and the symbolic output expression that

describes expected results for any input satisfying the path condition. Teralizer extracts specifications through a

two-step process: first instrumenting tests to create entry points for symbolic analysis, then executing them with

Symbolic PathFinder (SPF) in constraint collection mode. In this mode, SPF follows the test’s execution path while

maintaining symbolic representations, extracting path-exact specifications without exploring alternative paths.

The first step, test instrumentation, generates three artifacts for each identified MUT: an instrumented version of the

test class, a driver class, and a configuration file for SPF. In our running example, the Instrumented test class for the

good performance MUT call (Listing 3) wraps the c.calculate(1500, 1000) call in a wrapper method that marks the

starting point for symbolic analysis. The Driver class (Listing 3) provides the entry point for SPF. It instantiates the

instrumented test class, runs setup code in methods annotated with @Before, and executes the targeted test method

testCalculate. The SPF configuration (Listing 4) sets up symbolic analysis of the wrapper method, registers a custom

TestGeneralizationListener for specification extraction, and configures relevant resource limits.

The second step, symbolic analysis, executes these artifacts with SPF. For the good performance case with concrete

inputs (1500, 1000), the first if condition sales / 2 >= target in the calculate method (see Listing 1) evaluates to

false, so SPF records the negated constraint sales / 2 < target. The second if condition sales >= target evaluates

to true, adding sales >= target to the accumulated path condition. When the wrapper method returns, our custom

TestGeneralizationListener captures the complete path condition (sales / 2 < target && sales >= target)

and the symbolic output expression (sales / 20), writes both concrete input/output values and symbolic input/output
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specifications to JSON files, and then immediately terminates SPF without exploring alternative paths. Listing 5 shows

the input/output specifications that are collected for the three identified MUT calls of our running example.

Single-path symbolic analysis requires tested methods to be pure functions, i.e., deterministic, side-effect-free, and

dependent only on their input parameters [5, 12]. Furthermore, SPF can only provide precise specifications for numeric

and boolean values. Because of this, Teralizer only targets generalization of numeric and boolean inputs, leaving

string, array, and object inputs unchanged. If no input/output specification can be extracted for a given MUT, Teralizer

excludes this MUT from further processing. The primary causes of such exclusions are SPF errors, NullPointerExceptions

for certain edge cases in our current implementation of Teralizer, and exceeded resource limits. By default, Teralizer

uses a 60 second timeout per MUT, a 100,000-character limit per path condition, and a function call depth limit of 100

(Listing 4). We empirically determined these settings to provide a reasonable trade-off between resource consumption

and result quality. Sections 4.6 and 4.7 show how often the mentioned causes lead to exclusions in our evaluation.

3.4 Generalized Test Creation

The generalized test creation stage transforms original JUnit tests into property-based jqwik tests. Figure 2 provides a

high-level overview of this transformation: the original test with hardcoded values (left) becomes a property-based test

(right) where inputs are automatically generated to satisfy constraints and expected values are encoded as expressions

that hold for all inputs from the input partition. This preserves the developer-provided oracles encoded in assertions

while generalizing from concrete values to symbolic specifications. To be able to systematically evaluate the costs and

benefits of test generalization, Teralizer creates three variants of each property-based test. The Baseline variant tests

only the original inputs to measure framework overhead. The Naive variant adds random input generation to explore

the input space, and the Improved variant incorporates constraint-aware generation to favor values at the boundaries

Listing 3. Driver and instrumented test class used for specifica-

tion extraction of the good performance case.

public class Driver {

// Driver.main provides entry point for SPF:

public static void main(String [] args) {

Instrumented i = new Instrumented ();

i.testCalculate ();

}

}

public class Instrumented {

@Test

void testCalculate () {

BonusCalculator c = new BonusCalculator ();

...

// Instrumented.wrapper marks the

// starting point for symbolic analysis:

int b2 = this.wrapper(c, 1500, 1000);

...

}

int wrapper(

BonusCalculator c, int sales , int target

) {

return c.calculate(sales , target);

}

}

Listing 4. Symbolic PathFinder configuration used for specifica-

tion extraction of the good performance case.

target=Driver

symbolic.method=Instrumented.wrapper(con#sym#sym)

symbolic.collect_constraints=true

listener=teralizer.jpf.TestGeneralizationListener

teralizer.max_execution_time =60.0

teralizer.max_path_condition_size =100000

search.depth_limit =100

...

Listing 5. Input/Output specifications extracted for the MUT

calls in the testCalculate method.

exceptional performance:

- input: sales / 2 >= target

- output: sales / 10

good performance:

- input: sales / 2 < target && sales >= target

- output: sales / 20

bad performance:

- input: sales / 2 < target && sales < target

- output: 0
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of input partitions. Section 3.4.1 describes the main transformation process, Section 3.4.2 explains differences between

the three variants, and Section 3.4.3 provides further details on the constraint encoding strategy used by Improved.

3.4.1 Transformation Process. For each generalizable assertion with a successfully extracted input/output specification,

Teralizer creates a new test class containing a single property-based test. Listing 6 shows the result of this trans-

formation for our running example’s good performance case. Compared to the original test shown in Listing 2, the

new property-based test (i) replaces the @Test annotation with @Property to specify an input supplier and execution

count, (ii) adds a TestParams parameter to receive generated inputs, (iii) substitutes hardcoded MUT arguments in

calculate(1500, 1000) to produce the new MUT call calculate(_p_.sales, _p_.target), and (iv) replaces the

concrete expected value 75 with the oracle call calculateExpected(_p_) which calculates expected outputs from the

extracted specification (see Listing 7). The TestParams class shown in Listing 9 encapsulates the generated sales and

target values, while the BaselineSupplier in Listing 8 demonstrates how the Baseline variant provides input values

for these parameters by wrapping the concrete values extracted during SPF execution of the original test.

Several factors influence the design of the created classes. Instead of modifying existing classes, Teralizer creates

one new test class per assertion to isolate generalization effects. This is relevant for mutation testing: PIT requires

a green test suite and only supports class-level exclusion, so a single failing generalized assertion could otherwise

prevent all tests in the same class from being evaluated. Furthermore, the isolation prevents unintended side-effects

on developer-written code. Input parameters are provided by supplier classes rather than parameter annotations to

enable encoding of constraints that reference multiple parameters. Only the generalized assertion is preserved — other

assertions are removed because they might validate methods that consume outputs from the generalized MUT and fail

when those outputs differ from the original test’s values. Non-generalizable parameters (strings, arrays, objects) retain

their concrete input values. This enables partial generalization when some parameters cannot be generalized.

3.4.2 Three-Variant Design. Teralizer creates three variants of each property-based test that differ only in their input

generation strategies. This design allows us to isolate and measure distinct aspects of test generalization: pure framework

overhead (Baseline), benefits from testing additional inputs (Naive), and improvements from constraint-aware input

Listing 6. Generalized test for the good performance case.

@Property(

supplier = BaseLineSupplier.class ,
tries = 200

)

void testCalculate(TestParams _p_) {

BonusCalculator c = new BonusCalculator ();

// exceptional performance:

int b1 = c.calculate (2500, 1000);

// good performance:

int b2 = c.calculate(_p_.sales , _p_.target);

// bad performance:

int b3 = c.calculate (500, 1000);

assertEquals(calculateExpected(_p_), b2);

}

Listing 7. Output oracle for the good performance case.

int calculateExpected(TestParams _p_) {

return _p_.sales / 20;

}

Listing 8. Baseline supplier for good performance inputs. The

supplier uses the same inputs as the original test.

class BaselineSupplier {

Arbitrary get() {

return Arbitraries.just(

new TestParams (1500, 1000));

}

}

Listing 9. Container class for generated input values.

class TestParams {

int sales;

int target;

TestParams(int sales , int target) {

this.sales = sales;

this.target = target;

}

}



Teralizer: A Semantics-Based Test Generalization Approach 11

Listing 10. Naive supplier for good performance inputs. The sup-

plier generates random inputs and then filters them to only test

values that match the input specification.

class NaiveSupplier {

Arbitrary get() {

return Arbitraries.integers ().flatMap(

sales -> Arbitraries.integers ().map(

target -> new TestParams(sales , target)))

.filter(this:: satisfiesInputSpec);
}

}

Listing 11. Input filter for the good performance case.

boolean satisfiesInputSpec(TestParams _p_) {

return _p_.sales / 2 < _p_.target

&& _p_.sales >= _p_.target;

}

Listing 12. Improved supplier for good performance inputs. The

supplier partially encodes the input specification during genera-

tion, reducing filtering failures compared to Naive.

class ImprovedSupplier {

Arbitrary get() {

return Arbitraries.integers ().flatMap(

target -> Arbitraries.integers ()

// sales >= target is encoded

// sales / 2 < target is not encoded

.between(target , Integer.MAX_VALUE)

.map(sales ->

new TestParams(sales , target)))

.filter(this:: satisfiesInputSpec);
}

}

generation (Improved). To reduce evaluation costs, Teralizer shares common analysis stages across all three variants.

Test and assertion analysis, tested method identification, and specification extraction execute only once per test, with

their results reused for each generalization strategy. This architecture ensures fair comparison while avoiding redundant

computation — all three generalization strategies work from identical specifications and analysis results, eliminating

confounding factors such as variation in analysis time or non-deterministic failures from OutOfMemoryErrors.

The Baseline variant uses only the original test’s input values to isolate the overhead of the property-based

testing framework. As shown in Listing 8 for the good performance case, the supplier returns Arbitraries.just(new

TestParams(1500, 1000)), providing exactly the same inputs as the original test. This enables us to quantify the

infrastructure cost of property-based testing, i.e., test orchestration, parameter injection, and jqwik’s execution machin-

ery, without the cost of additional input generation and repeated test execution. By establishing this baseline overhead,

we can isolate the cost of input generation in Naive and Improved. Any runtime beyond Baseline is attributable to

generation and filtering strategies rather than basic property-based testing infrastructure.

TheNaive variant adds random input generation combined with post-generation filtering to demonstrate the benefits

of testing additional inputs beyond the original ones. As shown in Listing 10, Teralizer uses jqwik’s Arbitraries

classes to generate random integer values for sales and target, then applies the satisfiesInputSpec filter shown

in Listing 11 to retain only values that match the constraints encoded in the extracted input specification sales / 2 <

target && sales >= target which we previously showed in Listing 5. To ensure that created property-based tests

always cover at least the same mutants as the corresponding original tests, all Naive and Improved suppliers contain

additional code that always selects the original inputs as the first set of inputs exercised by the property-based tests.

The implementation of this logic is straightforward, but is excluded from the listings for brevity.

The Improved variant implements a constraint-aware input generation strategy to address the limitations of purely

random input selection in the presence of restrictive input constraints. For example, a == b && b == c is unlikely to be

satisfied by randomly assigned a, b, and c, causing jqwik to throw a TooManyFilterMissesException after too many

failed input generation attempts. This, in turn, prompts Teralizer to exclude the property-based test from the test suite.

To address this limitation, the Improved variant encodes some constraints directly in the input supplier. For example,

as Listing 12 shows for the good performance case, the generated supplier enforces the constraint sales >= target via
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the call between(target, Integer.MAX_VALUE). This partial encoding of constraints increases the likelihood that a

valid input is selected before filtering by reducing the size of the input space from which values are chosen.

3.4.3 Constraint-Aware Generation. The constraint-aware input generation strategy used by the Improved variant

encodes simple equality and inequality constraints such as x == y, x < 10, or y >= xwhere both sides of the (in-)equality

are either variables or constants. More complex constraints are not encoded in the initial input value generation but

are enforced during filtering. For example, the input constraint sales / 2 < target is not represented in the input

generation code of the ImprovedSupplier shown in Listing 12. However, generated inputs that violate this constraint

are still rejected by the filter(this::satisfiesInputSpec) call. This ensures that even if input constraints can only

be partially encoded, all exercised input values are guaranteed to satisfy the complete input specification.

Algorithm 1 shows the input generation logic. It first assigns indices based on parameter order (line 1), then processes

each encodable constraint (lines 2-10) to handle circular dependencies: constraints are only added to the parameter

with the higher index, with constraint directions rewritten as needed. This ensures each parameter depends only on

previously generated ones. For example, given a >= b && b >= a with a at index 0 and b at index 1, we add b <= a

(rewritten from a >= b) and b >= a to parameter b, while a remains unconstrained. During generation (lines 11-24), the

Algorithm 1 Constraint-Aware Input Generation (Improved)

Require: Input specification 𝑆 , Parameters 𝑃 = {𝑝1, . . . , 𝑝𝑛}
Ensure: Generated test inputs satisfying 𝑆

1: Assign indices: 𝑖𝑑𝑥 (𝑝𝑖 ) = 𝑖 for 𝑖 ∈ {1, . . . , 𝑛}
2: for all constraints 𝑐 ∈ 𝑆 of form 𝑝𝑖 ⊙ 𝑝 𝑗 where ⊙ ∈ {=, <,≤, >,≥} do
3: if 𝑖𝑑𝑥 (𝑝𝑖 ) > 𝑖𝑑𝑥 (𝑝 𝑗 ) then
4: Add constraint to 𝑝𝑖 based on 𝑝 𝑗

5: end if

6: if 𝑖𝑑𝑥 (𝑝 𝑗 ) > 𝑖𝑑𝑥 (𝑝𝑖 ) then
7: Rewrite constraint and add to 𝑝 𝑗 based on 𝑝𝑖
8: E.g., 𝑝𝑖 < 𝑝 𝑗 becomes 𝑝 𝑗 > 𝑝𝑖
9: end if

10: end for

11: for each parameter 𝑝𝑖 in index order do

12: 𝐸𝑖 ← equality constraints for 𝑝𝑖
13: 𝐿𝑖 ← lower bound constraints for 𝑝𝑖
14: 𝑈𝑖 ← upper bound constraints for 𝑝𝑖
15: if 𝐸𝑖 ≠ ∅ then
16: Generate 𝑝𝑖 = value from first equality constraint

17: else if 𝐿𝑖 ≠ ∅ or𝑈𝑖 ≠ ∅ then
18: 𝑙𝑜𝑤𝑒𝑟 ← max(𝐿𝑖 ) if exists, else type minimum

19: 𝑢𝑝𝑝𝑒𝑟 ← min(𝑈𝑖 ) if exists, else type maximum

20: Generate 𝑝𝑖 ∈ [𝑙𝑜𝑤𝑒𝑟,𝑢𝑝𝑝𝑒𝑟 ]
21: else

22: Generate 𝑝𝑖 randomly within type bounds

23: end if

24: end for

25: Apply filter for non-encodable constraints

26:

27: return generated inputs if filter passes
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algorithm selects the strictest applicable bounds: equality constraints take precedence, followed by the highest lower

bound and lowest upper bound. Thus, a generates freely, while b generates from interval [a, a], effectively encoding

a == b. Line 25 applies filtering for non-encodable constraints, ensuring all inputs satisfy the full specification.

While this partial constraint encoding cannot eliminate all TooManyFilterMissesExceptions, it reduces their

prevalence by constraining the space from which inputs can be selected. Additionally, constraint-aware input generation

enables jqwik’s Arbitraries to more reliably produce inputs at the boundaries of input partitions. For example, consider

x >= 0 && x <= 1000. In the Naive variant, jqwik has no knowledge of the true partition boundaries. Thus, the used

Arbitraries produce assumed boundary values such as Integer.MIN_VALUE, Integer.MAX_VALUE - 1, etc. While

these are quickly excluded by filtering, coverage of the true boundary values such as 0, 1, 999, and 1000 is then left up to

chance. In contrast, both boundaries of this example are exactly encoded in Arbitraries calls of the Improved variant,

enabling them to reliably produce the true boundary values. We deliberately avoid full constraint solving for input

generation because it would introduce significant runtime overhead and would still require fallbacks for cases that

cannot be solved, either because they are not tractable for current solvers or because they are inherently undecidable.

3.5 Test Suite Reduction

Despite covering many more inputs than the original tests, some property-based tests do not detect any additional

faults. Thus, these tests increase test suite size and runtime but do not provide any tangible benefits in exchange for

this. Similarly, successful generalization may render some original tests redundant. This is because tests created by

all three of Teralizer’s generalization variants are designed to use the original input values as the first set of inputs

exercised during property-based test execution. To address these inefficiencies, Teralizer performs test suite reduction

as the final stage of the generalization pipeline, using mutation testing to measure each test’s contribution to fault

detection and retaining only those original and generalized tests that strengthen the test suite’s effectiveness.

Teralizer evaluates fault detection capability using the DEFAULTS group of mutation operators provided by PIT [18].

This group provides a stable set of operators that minimize equivalent mutants and avoid subsumption [16, 17]. The full

set of operators is listed in Table 1. Each row shows the name of the mutator, a short description of its behavior, and a

source code representation of the mutator’s effects. The operators can be roughly categorized by the type of mutation

they produce. The first subgroup modifies arithmetic operations. The second one replaces return values. The third one

modifies conditionals, and the fourth one removes calls to methods that have void as their return type.

To perform test suite reduction, Teralizer first executes mutation testing on the original test suite as well as the non-

reduced test suites created by the three test generalization variants. By comparing which mutants each configuration

detects, Teralizer identifies generalized tests that catch mutants not detected by the original test suite. The selection

criterion is straightforward: retain only generalized tests that detect at least one mutant not caught by the original test

suite. This ensures that every generalized test in the final test suite contributes unique fault detection capability, while

those that only detect already-caught mutants are excluded as redundant.

Beyond filtering generalized tests, Teralizer identifies original tests that can be removed without loss of test suite

effectiveness. An original test is removable if property-based tests were successfully created for all of its assertions. For

tests containing a single assertion, generalization ensures that the property-based test validates that assertion across the

entire input partition, making the original single-input validation redundant. For tests containing multiple assertions,

removal requires that every assertion has been successfully transformed. If any assertion cannot be generalized (due to

type limitations, failed MUT identification, or other filtering criteria) the original test must be retained to preserve that

validation. The final test suite of each variant combines the retained generalized tests with the retained original tests.
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Table 1. Mutation operators included in PIT’s DEFAULTS group.

Example

Mutator Description Before After

Math Replaces arithmetic operations x + y x - y
Increments Replaces increment/decrement i++ i--
InvertNegs Inverts negation of variables return -x return x

BooleanTrueReturnVals Returns true for booleans return b return true
BooleanFalseReturnVals Returns false for booleans return b return false
PrimitiveReturns Returns 0 for numeric primitives return a return 0
EmptyObjectReturnVals Returns empty for strings return s return ""
NullReturnVals Returns null for objects return o return null

RemoveConditionalEqualElse Forces else for equality checks if (a == b) if (false)
RemoveConditionalOrderElse Forces else for inequality checks if (a < b) if (false)
ConditionalsBoundary Changes boundary of inequalities if (a < b) if (a <= b)

VoidMethodCall Removes void method calls foo(...) /* removed */

4 Evaluation

We evaluate the benefits, costs, and limitations of semantics-based test generalization through six research questions:

• RQ1: How much does test generalization improve the mutation score of existing unit test suites?

• RQ2: How does constraint complexity affect constraint-aware versus random input generation?

• RQ3: To which degree does generalization affect the size and runtime of the target test suites?

• RQ4: How efficient is test generalization compared to test generation?

• RQ5:What are the causes of unsuccessful generalization attempts under controlled conditions?

• RQ6:What are the causes of unsuccessful generalization attempts under real-world conditions?

Section 4.1 describes our experimental setup and methodology. Sections 4.2–4.7 present results. All experiments were

run on a MacBook Air (M2, 24 GB RAM) with default JVM settings. All data is available in our replication package [32].

4.1 Experimental Setup

To identify current capabilities and limitations of semantics-based test generalization, we systematically evaluate our

implementation of Teralizer across a multitude of projects which range from controlled benchmark cases that are

well-suited for test generalization to real-world projects that demonstrate which future advances are needed to improve

practical applicability of test generalization tools. In this section, we describe key components of our experimental setup

and establish a shared vocabulary that we use throughout the evaluation to refer to different stages of the processing

pipeline, different test suite variants, and different groups of projects that are part of our evaluation dataset.

4.1.1 Processing Stages and Test Suite Variants. As shown in Figure 3, Teralizer’s processing pipeline consists of five

stages. The first three (test and assertion analysis, tested method identification, and specification extraction) are Shared

stages that are only executed once per pipeline run because their results can be reused across generalization strategies

(Baseline, Naive, and Improved). Processing starts with all Original tests. However, each stage can exclude tests that

are unsuitable for further processing. We refer to the subset of Original tests that remain after the Shared processing

stages as the Initial test suite. The last two processing stages (generalized test creation and test suite reduction) are
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executed once for the Baseline generalization strategy and three times each for the Naive and Improved strategies

using different values for jqwik’s tries setting. Thus, we distinguish the following nine test suite variants:

• Original: before any processing has taken place,

• Initial: after exclusions by Shared processing stages,

• Baseline: after Baseline generalization and reduction,

• Naive10, Naive50, Naive200: after Naive generalization and reduction (10/50/200 tries),

• Improved10, Improved50, Improved200: after Improved generalization and reduction (10/50/200 tries).

As described in Section 3.4.2, using Initial as a shared starting point not only reduces the runtime costs of the

evaluation but also enables a fair comparison across strategies by avoiding non-deterministic Stage 1–3 failures such as

OutOfMemoryErrors from affecting one strategy more strongly than another. The used tries settings of 10, 50, and

200 were selected to demonstrate the scaling behavior of higher tries while keeping runtime costs manageable.

4.1.2 Evaluated Projects. Our evaluation employs three complementary datasets that progressively reveal the gap

between controlled and real-world conditions for test generalization. The EqBench benchmark [4] provides numeric-

focused programs that are well-suited for symbolic analysis. Utility methods extracted from Apache Commons projects

bridge toward real-world complexity while maintaining the focus on numeric constraints. Projects from the RepoReapers

dataset [55] expose real-world applicability challenges. Table 2 provides descriptive statistics of the datasets. For the

implementation, we show the number of files, classes, and source lines of code (SLOC). For tests, we additionally provide

the number of test methods, i.e., methods that are annotated with @Test, @RepeatedTest, or @ParameterizedTest.

EqBench. The EqBench benchmark [4] (rows eqbench-es-∗ in Table 2) provides controlled conditions for automated

test generalization. Originally designed for equivalence checking research, its 652 Java classes implement equivalent and

non-equivalent program pairs focusing on numeric computations while deliberately avoiding features that complicate

automated reasoning (e.g., recursion, reflection, and complex object graphs). Since EqBench provides only implementa-

tion code without tests, we generated test suites using EvoSuite [29] with three different search budgets (1s, 10s, and

60s per implementation class), creating the dataset variants eqbench-es-1s, eqbench-es-10s, and eqbench-es-60s. This

design explores how initial test suite quality affects generalization effectiveness: stronger initial suites offer better test

diversity but less improvement potential due to their higher initial mutation scores.

Apache Commons. To bridge toward real-world complexity, we extracted numeric utility methods from Apache

Commons projects (rows commons-utils-∗ in Table 2). Using Sourcegraph’s code search [74], we identified public static

methods with numeric or boolean parameters and return values — the types currently supported by Teralizer (search

queries are available in our replication package [32]). This yielded 247 classes from 17 Apache Commons projects

(commons-math, commons-numbers, commons-lang, etc.), including all transitively called methods and dependencies

to ensure compilation (19,709 LOC total). From this, we created four dataset variants: commons-utils-es-1s, commons-

utils-es-10s, and commons-utils-es-60s use EvoSuite-generated tests with 1s, 10s, and 60s per-class search budgets.

In contrast, commons-utils-dev preserves the 725 original developer-written tests (14,389 LOC). This enables direct

comparison of generalization effectiveness between developer-written tests and tests generated by EvoSuite.

RepoReapers. To understand current limitations in practical settings, we selected 632 projects from RepoReapers [55],

a curated collection of 1.9 million GitHub repositories specifically filtered for their use of sound software engineering

practices (e.g., extensive development history, use of software testing and issue tracking, availability of documentation).

Our selection criteria balanced technical constraints with evaluation goals. All selected projects target Java 5–8 (for

SPF compatibility), use JUnit 4 or 5 through Maven (for Teralizer compatibility), have standard directory structures
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Table 2. Number of files, classes, source lines of code (SLOC), and test methods per project.

Implementation Test

Project Files Classes SLOC Files Classes SLOC Methods

eqbench-es-1s 544 652 27,871 544 544 35,666 4,718

eqbench-es-10s 544 652 27,871 543 543 36,937 4,875

eqbench-es-60s 544 652 27,871 544 544 37,836 4,974

commons-utils-es-1s 106 247 19,709 103 103 17,524 2,481

commons-utils-es-10s 106 247 19,709 103 103 19,082 2,738

commons-utils-es-60s 106 247 19,709 102 102 18,839 2,735

commons-utils-dev 106 247 19,709 80 119 14,389 725

repo-reapers (total) 41,292 50,474 2,735,127 22,281 30,894 2,012,601 81,810

repo-reapers (mean) 65 79 4,320 35 48 3,179 162

repo-reapers (median) 49 56 3,253 23 26 2,107 86

(for automated processing), medium-sized codebases (5,000–50,000 LOC), and substantial test suites (20–80% of total

code). The selected projects collectively comprise 50,474 implementation classes and 30,894 test classes across diverse

domains and coding styles. While Teralizer succeeds on EqBench and partially on Apache Commons (RQ1–RQ5,

Sections 4.2–4.6), the RepoReapers projects expose current barriers to practical applicability (RQ6, Section 4.7).

4.2 RQ1: How much does test generalization improve the mutation score of existing unit test suites?

Mutation testing provides a rigorous effectiveness measure by evaluating a test suite’s ability to detect deliberately

introduced faults (Section 2.4). For Teralizer, it reveals whether testing additional inputs for existing execution paths

achieves the intended improvement in fault detection capabilities. We use mutation score rather than parameter value

coverage [71] — the metric employed by JARVIS [66] — because mutation testing is a stronger proxy for fault detection

capability. Direct comparison with JARVIS is not possible as its implementation is not publicly available. Section 4.2.1

quantifies detection improvements across projects, and Section 4.2.2 analyzes improvements by mutation operator.

4.2.1 Overall Mutation Detection Rates. Generalization improves mutation detection across all eqbench-es-∗ and
commons-utils-∗ projects, though the degree of improvement varies by project type (Figure 4). eqbench-es-∗ projects
(rows 1–3 in the figure) show the largest improvements: detection rates increase from 48.1–51.6% to 49.5–55.0% across

different tries and generalization strategies, representing absolute improvements of 1.2–3.9 percentage points (2.4–8.2%

relative increase). commons-utils-es-∗ projects (rows 4–6) improve by 0.82–1.33 percentage points (1.4–2.3% relative

increase), while commons-utils-dev (row 7) improves by only 0.05–0.07 percentage points from its 80.4% baseline.

Two factors strongly affect generalization improvements: initial test suite strength and input constraint complexity.

eqbench-es-∗ projects offer the most suitable conditions for generalization. This is because EvoSuite-generated tests

leave more room for enhancement (starting from 48.1–51.6% detection rates) than the thorough commons-utils-dev test

suite, and the EqBench benchmark’s input constraints are simpler than the input constraints of commons-utils-∗, thus
making valid input generation easier (as discussed in more detail in Section 4.3). commons-utils-es-∗ projects face one
additional challenge: while they also start from EvoSuite-generated tests, the commons-utils-∗ methods involve more

complex input specifications, making it harder to generate inputs that satisfy these input constraints. commons-utils-dev
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Fig. 4. Percentage of detected mutants (left side) and improvement over INITIAL (right side) per project and generalization strategy.

Improvements show both the absolute improvement (top value) as well as the relative improvement (bottom value).
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faces both challenges: the mature developer-written tests already achieve 80.4% detection and share the same complex

constraints as other commons-utils-∗ variants. This leaves little opportunity for automated improvement.

Comparing the effectiveness of Naive and Improved shows opposite results across eqbench-es-∗ and commons-utils-

es-∗ projects. On eqbench-es-∗ projects (rows 1–3), Naive (orange bars) outperforms Improved (green bars) for all tries

settings, with gaps ranging from 0.17–1.21 percentage points. This is most pronounced with limited tries: Naive10

achieves 50.67–53.97% detection rate while Improved10 reaches only 49.46–52.86%. In contrast, commons-utils-es-∗
(rows 4–6) shows Improved outperforming Naive in 7 of 9 comparisons. These results reflect the following patterns:

Naive performs better on Math mutations (59.1% of all mutants) while Improved better detects most other mutations

and more effectively handles more complex constraints. In eqbench-es-∗, the high prevalence of Math mutations and

low constraint complexity favor Naive, while in commons-utils-es-∗, Improved’s benefits overcome its Math detection

disadvantage. We investigate the mechanisms behind these results in further detail in Sections 4.2.2 and 4.3.

Higher tries settings improve detection rates, albeit with diminishing returns. One notable exception to this pattern

appears in Improved variants with only 10 tries: on eqbench-es-∗ projects (rows 1–3), Improved10 achieves only
2.4–2.8% relative improvement versus 5.6–6.9% for Improved50 and 6.0–7.8% for Improved200. This comparatively

low increase in detection rates stems from boundary-focused generation consuming most of the limited tries of this

variant, leaving insufficient attempts for testing intermediate values. With more tries, Improved variants perform

comparably to or better than Naive variants as enough attempts remain for both boundary and non-boundary testing.

commons-utils-es-∗ projects (rows 4–6) show less pronounced degradation at low tries, because their more complex

constraints (Section 4.3) cause more boundary inputs to fail filtering, forcing earlier exploration of non-boundary values.

Combining short test generation with subsequent generalization can outperform longer test generation alone. On

eqbench-es-∗ projects, 1-second EvoSuite generation followed by Naive200 generalization achieves 52.0% mutation

detection rate (last orange bar in row 1), surpassing 60-second generation alone (51.6%, blue bar in row 3). Similarly, on

commons-utils-es-∗, 10-second generation plus Naive200 generalization reaches 58.5% (last orange bar in row 5) versus

58.1% for 60-second generation (blue bar in row 6). Section 4.5.2 investigates the efficiency trade-offs between different

combinations of EvoSuite timeouts and Teralizer tries in further detail through Pareto front analysis.

4.2.2 Mutation Detection Rates per Mutator. Generalization effectiveness varies significantly across mutation operators

(Table 3). The Mathmutation operator dominates the mutation landscape in eqbench-es-∗ and commons-utils-∗ projects,
making up 59.1% of total mutants. This strong representation of Math mutations is primarily due to the focus on

numeric computations in these datasets. The next most commonly occurring mutations are ConditionalsBoundary

and RemoveConditionalOrderElse mutations, each of which accounts for 10.99% of total mutants (both operators are

applied at the same source code locations). In contrast, the least common operators, i.e., Increments (0.52%), Boolean-

FalseReturnVals (0.24%), and EmptyObjectReturnVals (0.13%), together account for less than 1% of all mutants. This

large difference in mutant prevalence means that improvements to Math detection rates have proportionally larger

impact on overall mutation scores than improvements to less commonly occurring mutation types.

Initial detection rates show a clear pattern: return value mutants (i.e., PrimitiveReturns, BooleanTrueReturn-

Vals, BooleanFalseReturnVals, and EmptyObjectReturnVals) are killed in a large majority of cases (87.87–98.77%

detection), while behavioral mutants are more elusive. For example, VoidMethodCall mutations achieve a detection

rate of only 24.96% because removing void method calls typically affects only internal state or produces side effects

that are rarely verified by existing assertions. Because these cases often require new assertions to be added to achieve

detection rate improvements, they are largely beyond the intended capabilities of Teralizer. In contrast, Initial
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Table 3. Number of mutants and percentage of detections per mutator in eqbench-es-∗ and commons-utils-∗ projects.

Detected %

Mutator Total Total % Min % Max % Initial Naive200 Improved200

Math 61,841 59.10 52.34 62.16 50.99 54.98 (+3.99) 54.36 (+3.37)

ConditionalsBoundary 11,501 10.99 8.50 11.94 27.68 28.89 (+1.21) 30.23 (+2.55)

RemoveConditionalOrderElse 11,501 10.99 8.50 11.94 61.08 62.29 (+1.21) 62.47 (+1.39)

PrimitiveReturns 7,731 7.39 6.15 10.09 89.42 89.63 (+0.20) 89.90 (+0.47)

RemoveConditionalEqualElse 5,536 5.29 3.21 10.40 58.80 60.87 (+2.07) 61.00 (+2.20)

InvertNegs 3,122 2.98 2.94 3.12 58.91 60.61 (+1.70) 60.99 (+2.08)

VoidMethodCall 973 0.93 0.58 1.35 24.96 24.96 – 25.49 (+0.53)

NullReturnVals 933 0.89 2.13 3.38 98.77 98.77 – 98.77 –

BooleanTrueReturnVals 569 0.54 0.17 1.44 98.55 98.55 – 98.55 –

Increments 546 0.52 0.50 0.54 72.81 73.38 (+0.57) 73.50 (+0.69)

BooleanFalseReturnVals 250 0.24 0.09 0.63 87.87 87.87 – 87.87 –

EmptyObjectReturnVals 141 0.13 0.41 0.43 90.30 90.30 – 90.30 –

detection rates of 27.68% for ConditionalsBoundarymutations, 61.08% for RemoveConditionalOrderElse, and 58.80%

for RemoveConditionalEqualElse highlight opportunities for automated improvement. After all, all three mutations

affect partition boundaries, which is where Improved generalization aims to generate additional test inputs.

Naive200 achieves the largest improvements on Math (+3.99%), RemoveConditionalEqualElse (+2.07%), and Invert-

Negs (+1.70%). RemoveConditionalEqualElse detection improves because the created property-based tests cover

diverse inputs that trigger both branches of equality checks. Math detection similarly benefits from diverse inputs because

arithmetic operations often produce different results across input ranges. In contrast, 4 of 5 return valuemutators show no

improvement: NullReturnVals, BooleanTrueReturnVals, BooleanFalseReturnVals, and EmptyObjectReturnVals.

These already achieve high Initial detection rates (87.87–98.77%) because return value mutations often directly violate

test assertions, leaving little room for improvement. Increasing detection rates beyond this high starting point would

likely require additional assertions to be introduced, rather than test inputs to be varied.

Improved200 demonstrates different strengths than Naive through constraint-aware input generation. Comparing

the two variants across all 12 mutation operators: Improved200 outperforms Naive200 for 7 operators, achieves the

same detection rate for 4 operators (the zero-improvement return value mutations), and underperforms for only 1

operator (Math). The largest advantage is observed for ConditionalsBoundary detection. Here, Improved200 achieves a

2.55% detection rate improvement compared to Naive200’s 1.21%, which confirms that constraint-aware input generation

achieves its intended purpose. Furthermore, the slightly higher detection rates for several other mutators suggest that

testing at partition boundaries may also benefit some mutators that do not directly modify boundary constraints.

The Math mutation results highlight the trade-off in boundary versus non-boundary testing: Improved200 achieves

a 3.37% detection rate improvement compared to Naive200’s 3.99%. The Improved200 variant achieves smaller im-

provements here because constraint-aware input generation produces less diverse arithmetic inputs, concentrating on

boundary values rather than exploring the full input range where arithmetic mutations might create more varied outputs.

Given that Math mutations comprise 59.1% of all mutants, this difference significantly impacts overall mutation scores.

To counteract these effects, Improved variants could use higher tries settings to maintain the same non-boundary

coverage as Naive. Alternatively, more sophisticated input selection strategies could be used to better balance boundary

and non-boundary testing even at lower tries settings, thus avoiding the runtime cost of higher tries.
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Results for the 10 and 50 tries variants of Naive and Improved generally follow the same trends as those for the

listed variants with 200 tries, albeit with smaller detection rate improvements over Initial. The exception is Math

mutation detection, where Improved10 achieves only 1.1% improvement compared to 2.8% for Naive10. Since Math

mutations comprise 59.1% of all mutants, this explains the low overall detection rate of Improved10 on eqbench-es-∗
projects observed in rows 1–3 of Figure 4. With 50 tries, the Math detection gap is noticeably smaller (Improved50

achieves 3.1% versus Naive50’s 3.6%), confirming that limited tries constrain arithmetic diversity only when boundary

testing consumes most attempts. Full results for all variants are available in our replication package [32].

Answer to RQ1: Test generalization improves mutation detection across all evaluated projects, achieving absolute

improvements of 1–4 percentage points depending on project type and generalization strategy. eqbench-es-∗
projects show the largest improvements (1.2–3.9pp, or 2.4–8.2% relative increase). commons-utils-es-∗ improves by

0.82–1.33pp (1.4–2.3% relative increase) and commons-utils-dev shows minimal improvement (0.05–0.07pp) due to

its high baseline detection rate of 80.4%. Effectiveness varies by mutation operator: constraint-aware generation

(Improved) excels at detecting boundary-related mutations like ConditionalsBoundary (+2.55pp), while random

generation (Naive) performs better on Math mutations (+3.99pp vs +3.37pp) due to greater arithmetic diversity.

4.3 RQ2: How does constraint complexity affect random versus constraint-aware input generation?

As discussed in Section 4.2.1, Naive outperforms Improved on eqbench-es-∗ projects. However, commons-utils-es-∗
projects show Improved outperforming Naive in 7 of 9 cases. To better understand these contrasting results, RQ2

examines how constraint complexity differs across projects and how it affects Naive versus Improved. As described in

Section 3.4.3, Improved tests encode simple in-/equalities on numeric and boolean variables or constants during input

value generation. More complex constraints are not encoded during Improved input generation — and no constraints

are encoded by Naive — but are still enforced during input filtering which takes place after input generation.

Table 4 shows the model properties of mutants that are (not) detected by Teralizer’s Improved200 generalization

variant. Models represent the constraints that inputs must satisfy to reach each mutant along a specific execution path.

We measure model complexity through operation count (total operators) and constraint count (individual boolean

conditions), while tracking which percentage of constraints Improved can encode during input generation versus

enforce through post-generation filtering. For instance, consider (((a < 0) && (a == (b + 1))) && c). This model

contains three constraints: a < 0, a == (b + 1), and c. Improved encodes the simple comparison a < 0 and the

boolean variable c in the created input value generation code, but encodes a == (b + 1) only in the input value

filtering code because it contains the compound term b + 1. Thus, Improved uses 2 of 3 total constraints for input

value generation (66.7% utilization), and the model contains 5 operators: <, &&, ==, +, and another &&.

Undetected mutants have more complex models than detected ones across all evaluated projects. Operation counts for

undetected mutants are 1.2–3× higher: eqbench-es-∗ projects show mean counts of 218–231 operations for undetected

mutants versus 138–147 operations for detected mutants, while commons-utils-es-∗ show even larger gaps with

389–507 versus 290–468 operations. Constraint counts follow similar patterns, with undetected mutants having 1.0–

2.5× more constraints. Even though both Naive and Improved achieve better generalization outcomes for simpler

constraints, more complex constraints have a stronger detrimental effect on Naive, which produces 2-2.5× as many

TooManyFilterMissesExceptions as Improved, as discussed in more detail in Section 4.6.



Teralizer: A Semantics-Based Test Generalization Approach 21

Table 4. Model properties of mutants that are (not) detected by the Improved200 variant.

Operations Constraints Constraints Used

Project Detected Mutants Mean Median Mean Median Mean Median

eqbench-es-1s yes 11,145 147 9 6 2 47% 80%

eqbench-es-1s no 10,347 224 16 11 5 23% 50%

eqbench-es-10s yes 11,658 139 9 6 2 62% 100%

eqbench-es-10s no 9,999 231 15 8 2 57% 100%

eqbench-es-60s yes 12,052 137 9 5 2 69% 100%

eqbench-es-60s no 9,958 218 11 6 2 67% 100%

commons-utils-es-1s yes 4,390 290 15 7 5 43% 84%

commons-utils-es-1s no 3,183 389 45 12 6 11% 50%

commons-utils-es-10s yes 4,660 467 23 6 5 46% 85%

commons-utils-es-10s no 3,309 507 46 8 6 10% 56%

commons-utils-es-60s yes 4,821 374 20 6 5 47% 85%

commons-utils-es-60s no 3,288 423 41 10 6 11% 54%

commons-utils-dev yes 4,193 107 11 4 4 25% 75%

commons-utils-dev no 1,022 173 10 4 4 19% 75%

Constraint utilization rates show large differences across project types. eqbench-es-∗ achieve 47–70% mean constraint

utilization for detected mutants, while commons-utils-es-∗ achieve only 25–47% mean utilization. The higher utilization

in eqbench-es-∗ reflects their simpler constraint structures: these projects primarily use basic numeric comparisons that

match Improved’s encoding capabilities. commons-utils-es-∗ projects contain more compound terms and mathematical

functions that are not modeled by Teralizer, reducing the percentage of constraints that can guide input generation.

These utilization differences explain the contrasting detection results. In eqbench-es-∗, simple constraints enable

effective boundary targeting for Improved, yet these same simple constraints make Naive’s random generation viable.

The higher constraint utilization even has detrimental effects on Improved detection rates because the focus on boundary

testing detracts from testing of intermediate values. As a result, detection rates for the very common Math mutations

decrease, causing overall detection rates to go down despite detection rates for most other mutants increasing.

commons-utils-es-∗ projects present a different scenario. Complex constraints reduce Improved’s constraint uti-

lization to 25–47%, causing generalized tests to generate inputs from broader ranges that overapproximate the true

partition boundaries. As a result, fewer partition boundaries are accurately identified, and the number of generated

inputs that need to be excluded during filtering increases. Nevertheless, constraint utilization still reduces TooMany-

FilterMissesException failures relative to Naive (Section 4.6), which enables Improved variants to achieve higher

mutation detection rates than Naive in 7 of 9 cases despite its Math mutation detection disadvantage.

Three paths emerge to further enhance Improved’s effectiveness. First, the Math mutation trade-off can be addressed

through higher tries settings or balanced generation strategies that maintain boundary detection advantages while

improving arithmetic coverage. Second, extending Teralizer’s constraint encoding support to handle more complex

constraints would further increase utilization rates, thus enabling more effective constraint-aware input generation.

However, encoding of non-boundary constraints would require custom input generators that are more capable than

those provided by jqwik. Third, adaptive strategies could select generation approaches based on measured constraint

complexity and mutation distribution, applying constraint-aware generation where it provides the largest benefit.
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Answer to RQ2: Both input generation strategies perform better on simpler constraints, but Naive’s effectiveness

degrades more strongly as constraint complexity increases. On eqbench-es-∗ projects with simpler constraints,

Naive outperforms Improved because random generation satisfies many constraints by chance, while Improved’s

boundary focus limits arithmetic diversity within the available tries, thus reducing Math mutation detection

rates. On commons-utils-es-∗ projects with more complex constraints, Naive generates substantially more inputs

that violate constraints, causing more TooManyFilterMissesException failures. Improved’s constraint-aware

generation reduces these failures, enabling it to outperform Naive in 7 of 9 cases despite its Math mutation

disadvantage. Balancing boundary and non-boundary testing could combine the advantages of both strategies.

4.4 RQ3: To which degree does generalization affect the size and runtime of the target test suites?

Teralizer transforms conventional JUnit tests into property-based jqwik tests. While this transformation improves

mutation detection (Section 4.2), it also affects test suite characteristics in several ways:

(1) the number of tests in the test suite (Section 4.4.1),

(2) the number of lines of code in the test suite (Section 4.4.2),

(3) the execution time of the test suite (Section 4.4.3).

Section 4.4.1 reveals how test architecture determines whether added generalized tests can be compensated by

original test removals. Section 4.4.2 documents how Teralizer’s constraint encoding and test isolation increase lines of

code in the test suite. Section 4.4.3 analyzes runtime patterns, showing that costs stem primarily from property-based

testing overhead and tries repetition. We focus on the results of Naive200 and Improved200 as they best represent the

current capabilities of Teralizer. The results for variants with fewer tries follow similar trends, albeit with overall

smaller effects on the measured metrics. Full results for all variants are available in our replication package [32].

4.4.1 Number of Tests in the Test Suite. As described in Section 3.5, Teralizer aims to remove any original and

generalized tests that do not contribute unique fault detection capability during its test suite reduction stage. In an ideal

scenario, all added property-based tests are compensated by removed original tests. However, the effectiveness of test

suite reduction depends strongly on overall test architecture and mutation detection capabilities of the Original test

suite. Table 5 quantifies the observed changes for the Naive200 and Improved200 generalization variants. The number

of added tests is between 174–211 (3.5–4.4% of Original test suite size) for the eqbench-es-∗ projects, between 60–75

(2.2–2.8%) for the commons-utils-es-∗ projects, and 3 (0.4%) for the commons-utils-dev project.

Improved200 generally adds a larger number of tests than Naive200. This is because more of the tests that are

created by Naive200 are excluded due to TooManyFilterMissesExceptions and, therefore, not retained in the final

test suite (as evaluated in Section 4.6). Furthermore, the number of added tests is much smaller than the total number of

generalized tests that are created and evaluated by Teralizer for both Naive200 as well as Improved200 because only

tests that measurably increase the mutation score of the test suite are retained. In total, Teralizer generates 21,478

candidate generalizations across the listed project and generalization variants. However, test suite reduction retains

only 1,555 (7.2%) generalized tests that demonstrably improve mutation detection results.

Even though Teralizer adds hundreds of tests to the generalized test suites, net test count changes remain minimal.

Added tests are largely compensated by removed tests in the eqbench-es-∗ and commons-utils-es-∗ projects which use

EvoSuite-generated test suites. As a result, total test suite size only increases by 0–1 test cases (0–0.04% of Original

test suite size) for these projects. The commons-utils-dev project sees less compensation success: none of the tests for
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Table 5. Number of tests before and after generalization, with changes, per project.

Tests

Project Variant Before Added Removed After Delta Delta %

eqbench-es-1s Naive200 4,718 177 177 4,718 +0 +0.0%

eqbench-es-1s Improved200 4,718 206 206 4,718 +0 +0.0%

eqbench-es-10s Naive200 4,875 174 173 4,876 +1 +0.0%

eqbench-es-10s Improved200 4,875 211 210 4,876 +1 +0.0%

eqbench-es-60s Naive200 4,974 174 174 4,974 +0 +0.0%

eqbench-es-60s Improved200 4,974 210 210 4,974 +0 +0.0%

commons-utils-es-1s Naive200 2,481 60 59 2,482 +1 +0.0%

commons-utils-es-1s Improved200 2,481 69 68 2,482 +1 +0.0%

commons-utils-es-10s Naive200 2,738 63 62 2,739 +1 +0.0%

commons-utils-es-10s Improved200 2,738 70 69 2,739 +1 +0.0%

commons-utils-es-60s Naive200 2,735 60 59 2,736 +1 +0.0%

commons-utils-es-60s Improved200 2,735 75 74 2,736 +1 +0.0%

commons-utils-dev Naive200 725 3 0 728 +3 +0.4%

commons-utils-dev Improved200 725 3 0 728 +3 +0.4%

which generalizations are added can be removed. This is because an Original test can only be removed if generalized

tests are created for all assertions in the test (Section 3.5). In projects with EvoSuite-generated tests, this requirement

is generally satisfied because most tests only contain a single assertion. However, this requirement is more difficult to

satisfy for commons-utils-dev because the developer-written tests often contain multiple assertions.

4.4.2 Lines of Code in the Test Suite. While test counts remain relatively stable due to test suite reduction, lines of code

(LOC) increase across all projects and generalization variants. Table 6 shows increases of 31.5–58.7% for eqbench-es-∗,
18.8–29.9% for commons-utils-es-∗, and 4.9–5.3% for commons-utils-dev. These increases correlate with the number of

added tests rather than net test count changes. For example, Naive200 adds 177 generalized tests to eqbench-es-1s and

removes all 177 corresponding original tests. However, the added tests increase test suite size by 11,780 LOC while

the removed tests reduce LOC by only 1,127. This asymmetry stems from two characteristics of Teralizer’s current

implementation. First, Teralizer encodes constraints explicitly in the source code of the created property-based tests

(Section 3.4.2). As a result, the LOC impact scales with parameter count and constraint complexity. Improved variants

also show higher per-test LOC because of their more sophisticated input generation logic. For example, commons-

utils-dev’s three generalized tests require 36 additional LOC with Improved200 compared to Naive200 (9,018 vs. 8,982

total LOC). Second, test isolation creates duplication. Teralizer creates new test classes for each generalized method,

copying imports, setup/teardown methods, helper functions, class fields, etc. from original tests (Section 3.4.1). This

prioritizes safety over LOC efficiency, avoiding unintended interactions between generalized and original tests.

The duplication overhead differs significantly between EvoSuite-generated and developer-written tests. eqbench-es-

∗ and commons-utils-es-∗ projects show similar overhead (66–67 vs 62–63 LOC per added test, respectively), reflecting

the uniformity of EvoSuite-generated tests. In contrast, commons-utils-dev shows substantially higher overhead

(140 LOC per added test). This is because developer-written tests contain more shared setup code as well as multi-

assertion architectures that hinder compensation through test removals. The higher increases observed in eqbench-es-∗
projects (31–59%) compared to commons-utils-es-∗ projects (19–30%) stem primarily from the retained generalized
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Table 6. Number of test lines before and after generalization, with changes, per project.

Lines

Project Variant Before Added Removed After Delta Delta %

eqbench-es-1s Naive200 30,989 11,780 1,127 41,642 +10,653 +34.4%

eqbench-es-1s Improved200 30,989 19,019 1,302 48,706 +17,717 +57.2%

eqbench-es-10s Naive200 32,503 11,520 1,061 42,962 +10,459 +32.2%

eqbench-es-10s Improved200 32,503 20,353 1,284 51,572 +19,069 +58.7%

eqbench-es-60s Naive200 33,510 11,623 1,069 44,064 +10,554 +31.5%

eqbench-es-60s Improved200 33,510 20,288 1,285 52,513 +19,003 +56.7%

commons-utils-es-1s Naive200 16,563 3,733 359 19,937 +3,374 +20.4%

commons-utils-es-1s Improved200 16,563 5,261 413 21,411 +4,848 +29.3%

commons-utils-es-10s Naive200 18,124 3,942 379 21,687 +3,563 +19.7%

commons-utils-es-10s Improved200 18,124 5,423 421 23,126 +5,002 +27.6%

commons-utils-es-60s Naive200 17,886 3,723 361 21,248 +3,362 +18.8%

commons-utils-es-60s Improved200 17,886 5,801 452 23,235 +5,349 +29.9%

commons-utils-dev Naive200 8,561 421 0 8,982 +421 +4.9%

commons-utils-dev Improved200 8,561 457 0 9,018 +457 +5.3%

tests representing a larger fraction of the original test suite in eqbench-es-∗ (3.5–4.4%) compared to commons-utils-es-∗
(2.2–2.8%). The smaller difference between Naive and Improved in commons-utils-es-∗ compared to eqbench-es-∗
likely reflects Improved’s lower constraint utilization (28.5% for commons-utils-es-∗ vs. 54.7% for eqbench-es-∗).

Both overhead sources represent implementation choices rather than inherent limitations. The primary reason

Teralizer avoids in-place transformation of tests is to keep changes isolated, preventing adverse effects on developer-

written code and mutation testing (Section 3.4.1). Similarly, constraint encoding logic could be extracted to a library that

abstracts implementation details. Only minor changes would remain then in the generalized test code: modified test

annotations, parameterized inputs, and generalized assertions. The overall impact on test suite LOC would, therefore,

be reduced while preserving the mutation detection benefits. We leave these improvements for future work.

4.4.3 Execution Time of the Test Suite. As shown in Table 7, generalization with Naive200 and Improved200 increases

overall test suite runtimes for all eqbench-es-∗ and commons-utils-es-∗ projects. More specifically, test suite runtimes

show increases of 574.5–1210.0% for the eqbench-es-∗ projects, 444.1–2651.5% for the commons-utils-es-∗ projects, and
9.4–57.1% for the commons-utils-dev project. Runtime increases are primarily affected by the following factors:

(1) the number of tests added by the generalization,

(2) the number of tests removed by the test suite reduction,

(3) the number of tries used during property-based testing,

(4) the used generalization approach, i.e., Naive vs. Improved generalization,

(5) the complexity of input partition constraints.

Added and Removed Tests. Execution of conventional JUnit tests has a lower runtime cost than execution of corre-

sponding jqwik tests. More specifically, property-based tests created with the Baseline generalization strategy take,

on average, 149.56 milliseconds (ms) longer to execute than the corresponding Original tests (as shown in Figure 5)

which have a mean execution time of only 3.6 ms. Therefore, overall test suite execution time increases, on average, by
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Table 7. Test suite runtime before and after generalization, with changes, per project.

Runtime (in seconds)

Project Variant Before Added Removed After Delta Delta %

eqbench-es-1s Naive200 17.44 100.94 0.74 117.65 +100.20 +574.5%

eqbench-es-1s Improved200 17.44 101.62 0.68 118.38 +100.94 +578.7%

eqbench-es-10s Naive200 16.70 106.19 0.66 122.23 +105.53 +632.0%

eqbench-es-10s Improved200 16.70 139.64 0.56 155.77 +139.08 +832.9%

eqbench-es-60s Naive200 18.21 221.07 0.76 238.52 +220.31 +1210.0%

eqbench-es-60s Improved200 18.21 124.68 0.69 142.20 +123.99 +681.0%

commons-utils-es-1s Naive200 4.31 114.42 0.09 118.64 +114.33 +2651.5%

commons-utils-es-1s Improved200 4.31 29.49 0.14 33.66 +29.35 +680.5%

commons-utils-es-10s Naive200 7.40 148.54 0.14 155.80 +148.40 +2005.2%

commons-utils-es-10s Improved200 7.40 71.50 0.21 78.70 +71.30 +963.3%

commons-utils-es-60s Naive200 6.30 122.11 0.07 128.34 +122.04 +1936.2%

commons-utils-es-60s Improved200 6.30 28.07 0.08 34.29 +27.99 +444.1%

commons-utils-dev Naive200 7.95 4.54 0.00 12.48 +4.54 +57.1%

commons-utils-dev Improved200 7.95 0.74 0.00 8.69 +0.74 +9.4%

at least 149.56 ms per jqwik test that is added during generalization, even if no new test inputs are exercised and the

added generalized tests are compensated by removed original tests. Since these runtime increases are inherent to the

use of jqwik, they are orthogonal to our specific generalization approach. Any manual or automated transformation of

JUnit tests to jqwik tests incurs the same runtime overhead, and this overhead can only be reduced if fewer jqwik tests

are created (e.g., through test suite reduction, as discussed in Section 3.5) or if the performance of jqwik is improved.

Number of tries. Increasing the number of tries directly increases the number of test inputs that need to be

generated and exercised during property-based test execution. For example, as shown in Figure 5, execution time of

Naive tests is, on average, 286.13 milliseconds (ms) longer per test than for Original tests when using 10 tries (a

+91.3% increase compared to the Baseline overhead of 149.56 ms), 348.56 ms (+133.0%) longer with 50 tries, and

1136.21 ms (+659.7%) longer with 200 tries. Similarly, execution time of Improved tests is 189.17 ms (+26.5%) longer

with 10 tries, 246.85 ms (+65.1%) longer with 50 tries, and 395.26 ms (+164.3%) longer with 200 tries. While overall

runtime increases as tries increase, the runtime cost per try decreases as tries increase. More specifically, Naive

variants show per-try increases of 28.61 ms / 6.97 ms / 5.68 ms at 10 / 50 / 200 tries. Improved variants show per-try

increases of 18.92 ms / 4.94 ms / 1.98 ms at 10 / 50 / 200 tries. However, to attribute these observed improvements

in per-try efficiency to any specific causes would require a more thorough microbenchmarking setup that properly

accounts for confounding factors such as JVM warmup, which is beyond the scope of this evaluation.

Naive vs. Improved Generalization. Runtime increases are generally larger for Naive than for Improved. For example,

Naive200 and Improved200 both generalize the same three tests of commons-utils-dev (see Table 5). Nevertheless, as

shown in Table 7, Naive200 increases test suite runtime by 4.54 seconds (+57.1% compared to Original) whereas

Improved200 only increases runtime by 0.74 seconds (+9.4%). As described in Section 3.4.2, Naive selects inputs by first

randomly generating values that match the parameter types of the MUT, and then filtering any values that do not

satisfy the input specification. Especially for cases with restrictive constraints (e.g., a == b && b == c), this causes a
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Fig. 5. Runtime comparison between original and generalized tests. The runtime differences measure how much longer generalized

tests take to execute, on average, compared to corresponding original tests. We show the difference per test (left) and per try (right).

large runtime overhead because many filter-and-regenerate cycles are required until valid inputs are identified (or jqwik

throws a TooManyFilterMissesException). Improved variants are less affected by this because they encode (some)

input constraints during input generation (Section 3.4.2). As a result, fewer inputs need to be filtered and regenerated,

which lessens the runtime impact of Improved generalization despite its more involved input generation process.

Complexity of Constraints. As complexity of input specifications increases, required runtime also increases. This is

because more complex constraints cause more filter-and-regenerate cycles to occur during execution of property-based

tests. While Naive is more strongly affected by this than Improved because it does not consider any constraints

during value generation (as discussed in the previous paragraph), the issue also affects Improved generalization in

cases where less than 100% of constraints can be used (for further details on constraint use, see Sections 3.4.2 and 4.3).

For example, as shown in Table 5, Improved200 adds 3 times as many tests (206 vs. 69) to eqbench-es-1s as it adds to

commons-utils-es-1s, yet runtime increases are similar: +578.7% vs. +680.5%. This is because input specifications in

eqbench-es-1s have fewer operations (mean: 159.1 vs. 208.0, median: 10 vs. 15) and constraints (mean: 6.5 vs. 7.5, median:

2 vs. 5) than in commons-utils-es-1s, and fewer of these constraints can be used during input value generation (mean:

42.9% vs. 61.5%, median: 80% vs. 100%). This suggests that improving support for complex input constraints would not

only increase detection rates (as suggested in Section 4.3) but could also reduce the runtime cost of generalized tests.

Answer to RQ3: Test generalization consistently increases test suite LOC and runtime, whereas test count

changes are highly dependent on test architecture. EvoSuite-generated test suites see near-complete compensation

via test suite reduction (1,549 tests added, 1,541 removed). Developer-written tests resist compensation due to

multi-assertion architectures (6 added, 0 removed). LOC increases by 4.9–58.7% due to explicit constraint encoding

and test isolation. Improved shows larger increases than Naive because of its more sophisticated input generation

logic. Runtime increases by 9.4–2,651.5% across projects and tries settings, reflecting property-based testing

overhead, i.e., jqwik framework cost plus increased number of tested inputs. Naive shows larger runtime increases

than Improved because random generation requires more filter-and-regenerate cycles to satisfy constraints.
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4.5 RQ4: How efficient is test generalization compared to test generation?

We measured Teralizer’s runtime across the seven generalization strategies to assess viability compared to existing

automated testing tools. Since no existing, publicly available tools perform automated test generalization, we compared

efficiency against EvoSuite [29]. Shared processing stages (Stages 1–3) were executed only once per project, with

specifications reused across generalization strategies. Processing took 3.4 hours for commons-utils-dev, 8.2 / 9.1 / 9.8

hours for the commons-utils-es-∗ variants, and 24.8 / 28.3 / 30.9 hours for the eqbench-es-∗ variants (Section 4.5.1). Pareto
analysis (Section 4.5.2) shows that combining low search budget EvoSuite generation with Teralizer generalization

can achieve better detection-to-runtime ratios than simply running EvoSuite with higher search budgets.

4.5.1 Execution Time of Teralizer. Our runtime evaluation results reveal that test suite reduction via mutation testing

dominates the overall runtime cost of Teralizer. More specifically, Figure 6 shows that Stage 5 (test suite reduction)

consumes 1,110–35,538 seconds (59.1–95.7% of total processing time) across projects and generalization strategies.

In contrast, Stages 1 + 2 (project analysis) require only 82–453 seconds (1.2–6.5%), Stage 3 (specification extraction)

requires 60–2,776 seconds (1.5–36.4%), and Stage 4 (generalized test creation) requires 5–178 seconds (0.1–2.3%).

Stage 1–4 Runtimes. The first four processing stages complete efficiently despite containing the core generalization

logic. Project analysis (Stage 1 + 2) executes the Original test suite and performs simple analyses on the JUnit reports

and test code, both of which create only minimal overhead beyond the test suite execution. Specification extraction

(Stage 3) uses SPF to concretely execute tests using single-path symbolic analysis (Section 3.3). While this introduces

some overhead because JPF/ SPF is less optimized than production-ready JVMs (JPF itself runs inside a host JVM [64]),

the cost is comparatively small at, on average, ca. 5× the runtime of an Original test suite execution (mean: 1020s vs.

221s). Generalized test creation cost (Stage 4) is even smaller at a one-time cost of 5–177 seconds per variant. This is

because test creation only performs syntactic replacements, e.g., converting JUnit annotations to jqwik ones, wrapping

input constraint encodings in TestParameters classes, and replacing expected values in assertions (Section 3.4).

Stage 5 Runtimes. Test suite reduction costs are substantially larger than the costs of the preceding stages due to

the high runtime cost of mutation testing. Mutation testing of the Original test suite takes, on average, 8× as long as

Original test suite execution without mutation testing (mean: 1,833s vs. 221s). Mutation testing of the generalized

test suites has even higher runtime requirements (mean: 4,351s), which is for largely the same reasons that jqwik tests

take longer to execute than JUnit tests: jqwik overhead, larger number of tested inputs, as well as filter-and-regenerate

cycles which occur more often for Naive variants and in the presence of more complex input constraints (Section 4.4.3).

Thus, mutation testing consumes more than 99% of Stage 5 runtimes across projects and generalization variants, and an

average of 82.9% of the full generalization pipeline. The small remainder of Stage 5 runtimes falls to the collection of

coverage reports as well as processing of coverage and mutation reports to exclude non-contributing tests.

While test suite reduction could be skipped to reduce the one-time cost of generalization, this would significantly

increase the execution times of the generalized test suites. After all, the primary purpose of test suite reduction is

to remove generalized tests that do not improve fault detection, thus avoiding the high runtime cost associated with

property-based test execution (Section 4.4.3). In our evaluation, this filtering reduces the number of retained generalized

tests from 21,478 to 1,555 across all projects and test suite variants (Section 4.4.1), thus demonstrating the impact that

filtering has on the size and runtime of the generalized test suites. Even though there is a non-negligible one-time cost

associated with this, that cost amortizes over time compared to a longer-running test suite that incurs further costs
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with every test suite execution. Future optimization efforts could target filter efficiency through faster mutation testing

approaches or lightweight pre-filtering heuristics that identify likely-beneficial candidates without full mutation testing.

4.5.2 Efficiency of Teralizer vs. EvoSuite. Our evaluation results show that combining EvoSuite’s test generation

with Teralizer’s test generalization can achieve better detection-to-runtime ratios than simply increasing EvoSuite

search budgets. Figure 7 identifies which tool configurations provide the best detection-to-runtime trade-offs through

Pareto analysis. Configurations on the frontier represent optimal choices: for any given runtime budget, they achieve

the highest detection rate. Configurations outside the frontier are dominated by the Pareto-optimal points.

For the eqbench-es-∗ projects, 2 of 3 EvoSuite search budget settings are Pareto optimal (Pareto points #1 and #2 in

Table 8) due to their comparatively low runtime cost. EvoSuite generation with a 60 seconds per-class search budget

falls outside the Pareto frontier with a detection rate of 51.6% and a runtime cost of 55,075 seconds. In the runtime

dimension, it is dominated by 1-second EvoSuite generation combined with Naive50 generalization (Pareto point #5 in

Table 8), which achieves 51.7% detection in 37,532 seconds, i.e., 0.1 percentage points higher detection with 31.9% lower

runtime. In the mutation detection dimension, it is dominated by 10-second EvoSuite generation with Improved200

generalization (Pareto point #9), which reaches a 53.8% detection rate in 48,269 seconds, i.e., a detection improvement

of 2.2 percentage points achieved in 12.4% less runtime. Increasing the runtime beyond this comparison point achieves

higher detection rates in the generalized test suites that further extend the Pareto frontier (Pareto points #10–#14).

Efficiency improvements of EvoSuite + Teralizer combinations over EvoSuite search budget increases are less

pronounced for the commons-utils-es-∗ projects. Here, all three EvoSuite search budget settings are Pareto optimal

(Pareto points #1, #2, and #4 in Table 9). Nevertheless, generalization via Teralizer contributes 8 additional points

to the Pareto frontier. Specifically, the combination of 1-second EvoSuite generation and Improved10 generalization

(Pareto point #3) produces a Pareto optimal result that has higher detection rate and runtime cost than #2 but lower

detection rate and runtime cost than #4. The 7 remaining Pareto points #5–#11 again extend the Pareto frontier toward

higher detection rates at higher runtime cost, reflecting the increased detection rates achievable via generalization

before reaching a plateau at around 1.0–1.3 percentage points above the corresponding EvoSuite results (Section 4.2.)

30000 40000 50000 60000 70000 80000 90000
Runtime (s)

48

49

50

51

52

53

54

55

56

D
et

ec
te

d 
(%

)

1

2 3
45
6

7 8 9
10

1112 13 14

Project: eqbench

5000 7500 10000 12500 15000 17500 20000
Runtime (s)

57.0

57.5

58.0

58.5

59.0

59.5

D
et

ec
te

d 
(%

)

1

2

3
45
6 7

8

9 10
11

Project: commons-utils

EvoSuite only EvoSuite + NAIVE EvoSuite + IMPROVED Pareto front

Fig. 7. Pareto fronts for EvoSuite and Teralizer variants across projects.



30 Glock et al.

Table 8. Pareto points for project: eqbench.

Pt. EvoSuite Teralizer Det. % Runtime (s)

1 1s - 48.1 26,479

2 10s - 50.6 29,861

3 1s NAIVE10 50.7 36,728

4 1s IMPROVED50 51.4 37,457

5 1s NAIVE50 51.7 37,532

6 10s IMPROVED10 51.9 41,525

7 10s IMPROVED50 53.6 42,256

8 10s NAIVE50 53.8 45,398

9 10s IMPROVED200 53.8 48,269

10 10s NAIVE200 54.1 62,938

11 60s IMPROVED50 54.5 68,093

12 60s NAIVE50 54.7 68,782

13 60s IMPROVED200 54.8 75,081

14 60s NAIVE200 55.0 93,017

Table 9. Pareto points for project: commons-utils.

Pt. EvoSuite Teralizer Det. % Runtime (s)

1 1s - 56.8 4,649

2 10s - 57.3 5,597

3 1s IMPROVED10 57.9 7,294

4 60s - 58.1 10,240

5 10s NAIVE10 58.1 10,445

6 10s IMPROVED50 58.4 10,603

7 10s IMPROVED10 58.4 11,082

8 10s IMPROVED200 58.5 13,270

9 60s IMPROVED10 59.3 13,939

10 60s IMPROVED50 59.4 14,728

11 60s IMPROVED200 59.5 15,736

Naive and Improved both produce 6 Pareto points from their 9 evaluated configurations for the eqbench-es-∗ project
(3 EvoSuite search budgets, each combined with 3 tries settings). For commons-utils-es-∗, Improved has 7 of 9 of

results on the Pareto frontier, compared to 1 of 9 results of Naive. The underlying causes were previously discussed in

RQ2 and RQ3 (Section 4.3 and Section 4.4): less complex constraints in eqbench-es-∗ favor Naive, enabling it to be

competitive with Improved despite its simpler input generation approach. In contrast, constraints are more complex

for the commons-utils-es-∗ projects. This increases the mutation detection rate and runtime advantage that Improved

has over Naive because the more sophisticated input value generation avoids TooManyFilterMissesExceptions.

Answer to RQ4: Test generalization requires a substantial one-time investment (3.4–30.9 hours per project) which

is primarily due to Stage 5 mutation testing for test suite reduction (59.1–95.7% of total time). Reduction is necessary

to filter 21,478 candidate generalizations down to 1,555 retained tests, thus avoiding ongoing test suite execution

overhead. Despite the high processing costs, Pareto analysis shows that combining short EvoSuite generation

with Teralizer generalization achieves better detection-to-runtime ratios than longer EvoSuite generation alone

for multiple evaluated configurations. This stems from complementary optimization targets: EvoSuite optimizes

for breadth (coverage), while Teralizer optimizes for depth (thorough testing of discovered paths).

4.6 RQ5: What are the causes of unsuccessful generalization attempts under controlled conditions?

While RQ1–4 demonstrate that Teralizer can improve mutation detection rates and operate within practical time

constraints, our evaluation also revealed that many generalization attempts do not succeed. In RQ5, we first present

the results for the primary evaluation dataset, i.e., for the eqbench-es-∗ and commons-utils-∗ projects, to establish a

baseline under controlled conditions that align with current tool capabilities (as explained in Section 4.1). In RQ6, we

then investigate the results for the RepoReapers projects to better understand real-world applicability challenges.

As explained in Section 3, there are two different types of causes based on which Teralizer may exclude individual

tests, assertions, or generalizations from further processing: filtering and failures. Filtering preemptively excludes cases
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that are beyond the current capabilities of Teralizer to focus on suitable generalization candidates. Even though

a single filter rejection is enough to exclude a given test, assertion, or generalization, Teralizer generally collects

responses from all applicable filters to enable a more robust analysis of filtering causes. Despite preemptive filtering,

some processing attempts fail due to exceptions that are thrown at runtime, prompting Teralizer to exclude the

corresponding test, assertion or generalization from further processing once such an exception occurs.

Table 10 quantifies inclusion and exclusion rates of tests, assertions, and generalizations while distinguishing between

filtering-based and failure-based exclusions. A more fine-grained overview of filtering results is shown in Table 11.

Filters that defer do not cast a vote because they have insufficient information to make an accept or reject decision.

Test-level Exclusions. Overall, 19,306 of 23,246 Original tests (83.1%) across all variants of the primary evaluation

dataset remain included. Filtering excludes 3,933 tests (16.9%) due to filter rejections. The largest number of tests is

rejected by the NoAssertions filter (10.3% of tests rejected), followed by the NonPassingTest filter (6.6%) and the

TestType filter (0.8%). Null pointer dereferences that occur during project analysis exclude 7 additional tests (0.0%).

Of the 1,527 NonPassingTest rejections, 132 are tests that fail after disabling EvoSuite’s isolation and reproducibility

features. These features had to be disabled due to incompatibilities which caused PIT crashes during mutation testing.

However, removal of these features causes EvoSuite-generated tests that rely on system time or specific environmental

conditions to fail. Because PIT only supports class-level exclusion, 1,395 additional passing tests in the same classes are

also excluded as a side effect, amplifying the impact of individual test failures by over 10×.
All 180 TestType rejections are caused by the presence of @ParameterizedTest annotations in the commons-utils-dev

project. As described in Section 3.1, Teralizer currently supports only standard @Test annotations, forcing it to exclude

@ParameterizedTest, @RepeatedTest, and other specialized test types from processing.

The NoAssertions filter operates on 21,532 tests that remain after exclusions due to test-level failures (7 tests) and

rejections by the preceding filters (1527 + 180 tests). From this subset, 2,226 tests are rejected because they do not directly

contain any assertions in the test method. In EvoSuite-generated test suites, all NoAssertions exclusions are genuinely

assertion-free tests that pass if no exception occurs during test execution. In contrast, 69 of 80 NoAssertions exclusions

(86.3%) in the developer-written commons-utils-dev test suite are false positives: these tests contain assertions in helper

methods called from the test method. However, Teralizer’s current static analysis only examines the top-level test

method, which causes it to miss these delegated assertion calls (as described in Section 3.1).

Assertion-level Exclusions. Across the 28,923 identified assertions within the primary evaluation dataset, a total

of 13,836 (47.8%) are included and 15,087 (52.2%) are excluded. Of these exclusions, 12,092 are the result of filtering

rejections whereas 2,995 stem from failures during specification extraction via SPF.

Causes for the 2,995 assertion-level failures include SPF errors, Teralizer errors, and exceeded analysis limits. SPF

exceptions constitute 51.4% of failures (1,540 assertions). They occur primarily due to missing models for native methods

in the current implementation of SPF and, to a lesser extent, due to implementation bugs in SPF/JPF. Exceeded analysis

limits account for 45.3% of failures (1,358 assertions): 790 (26.4%) SPF runs are interrupted after exceeding the maximum

specification size, and 524 (17.5%) runs exceed the maximum depth limit (Listing 4). Both of these aim to avoid timeouts

and memory exhaustion in the presence of complex control flows or complex constraints. Further failures are due to

timeouts (0.9%, 28 assertions) and out-of-memory errors (0.5%, 16 assertions) which evade preemptive detection via the

two preceding measures. NullPointerExceptions represent the remaining 3.2% of failures (97 assertions).

A total of 5.5% of identified assertions (1,597) are rejected by the ExcludedTest filter because they belong to tests

that are already excluded at the test level. This cascading effect ensures consistency across processing stages.
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Table 10. Exclusion results for tests, assertions, and generalizations in the commons-utils-∗ and eqbench-es-∗ projects.

Excluded

Strategy Level Total Included Filtering Failures

All Test 23,246 19,306 (83.1%) 3,933 (16.9%) 7 ( 0.0%)

All Assertion 28,923 13,836 (47.8%) 12,092 (41.8%) 2,995 (10.4%)

Baseline Generalization 13,836 13,814 (99.8%) 22 ( 0.2%) 0 ( 0.0%)

Naive10 Generalization 13,836 10,743 (77.6%) 3,061 (22.1%) 32 ( 0.2%)

Naive50 Generalization 13,836 9,964 (72.0%) 3,840 (27.8%) 32 ( 0.2%)

Naive200 Generalization 13,836 9,881 (71.4%) 3,923 (28.4%) 32 ( 0.2%)

Improved10 Generalization 13,836 11,788 (85.2%) 2,016 (14.6%) 32 ( 0.2%)

Improved50 Generalization 13,836 11,660 (84.3%) 2,144 (15.5%) 32 ( 0.2%)

Improved200 Generalization 13,836 11,597 (83.8%) 2,207 (16.0%) 32 ( 0.2%)

Table 11. Filtering results for tests and assertions in the commons-utils-∗ and eqbench-es-∗ projects.

Level Filter Name Total Accept Defer Reject

Test NonPassingTest 23,246 21,719 (93.4%) - 1,527 ( 6.6%)

Test TestType 23,246 23,066 (99.2%) - 180 ( 0.8%)

Test NoAssertions 21,532 19,306 (89.7%) - 2,226 (10.3%)

Assertion AssertionType 28,923 28,180 (97.4%) - 743 ( 2.6%)

Assertion ExcludedTest 28,923 27,326 (94.5%) - 1,597 ( 5.5%)

Assertion MissingValue 28,923 21,766 (75.3%) - 7,157 (24.7%)

Assertion ParameterType 28,923 17,835 (61.7%) 6,630 (22.9%) 4,458 (15.4%)

Assertion VoidReturnType 28,923 21,763 (75.2%) 7,157 (24.7%) 3 ( 0.0%)

Another 2.6% of assertions (743) are rejected by the AssertionType filter. Excluded assertions comprise reference

equality checks (assertSame: 142, assertNotSame: 79), null checks (assertNull: 124, assertNotNull: 86), array comparisons

(assertArrayEquals: 207), inequality assertions (assertNotEquals: 54), type checks (assertInstanceOf: 18), and explicit

failures (fail: 33). These assertions largely involve data types that are not supported by current symbolic analysis.

The MissingValue filter excludes 24.7% of assertions. A rejection occurs when Teralizer’s static analysis cannot

identify which method call represents the method under test (MUT) or when the declaration of the MUT cannot be

resolved by Spoon (Section 3.2). Missing values also cause ParameterType and VoidReturnType filters to defer.

The ParameterType filter rejects 15.4% of assertions where none of the tested method’s parameters have generalizable

types (numeric or boolean). Deferral numbers are lower than MissingValue rejections because, in some cases, Teralizer

can infer parameter types from the call site of the MUT even if the full method declaration cannot be resolved.

Finally, the VoidReturnType filter rejects 3 assertions for tested methods with void return types. The current

implementation of Teralizer does not support such methods because no output specification can be inferred for them.

Generalization-level Exclusions. All filtering-based generalization exclusions in Table 10 are due to NonPassingTest

rejections. Baseline generalizations are affected by such rejections in 0.2% of cases (22 of 13,836 generalized tests). This

low rejection rate indicates that the transformation to jqwik tests is largely successful. The 22 test failures that force

NonPassingTest to reject occur for tests in the commons-utils-dev project that call MUTs or assertions within a loop.
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This is problematic because Teralizer’s current implementation does not properly account for loops. As a result, the

Baseline generalization strategy replaces the expected value of assertions within loops with the concrete input value

of the first loop iteration, which commonly causes later loop iterations to fail with an AssertionError.

Naive shows 3,061–3,923 (22.1–28.4%) filtering-based exclusions. The primary cause is TooManyFilterMisses-

Exceptions, which occur 2,233 times (16.1%) for Naive10, 2,938 (21.2%) for Naive50, and 3,005 (21.7%) for Naive200.

Prevalence increases with higher tries as Naive struggles to produce enough valid inputs, especially for more complex

constraints (Section 4.3). The remaining filtering-based exclusions are due to inaccurate input/output specifications

which cause exceptions during assertion checking (AssertionFailedError, 729 / 803 / 819 exclusions by Naive10/50/200)

or general test execution (ArithmeticException, 99 / 99 / 99 exclusions). Underlying causes include (i) assertions

in loops, (ii) assertions in transitively called methods, (iii) MUT calls within loops, and (iv) implicit preconditions.

While (i)–(iii) are limitations of Teralizer, (iv) can indicate unintended behavior such as potential divisions by 0 or

under-/overflows that evade detection by the Original tests but are identified by the generalized tests.

Improved generalization strategies reduce overall exclusion rates from filtering-based rejections to 2,016–2,207 (14.6–

16.0%) through constraint-aware input value generation (Section 4.3). Specifically, TooManyFilterMissesExceptions

decrease from 2,223 to 1,189 (−46.5%) for Naive10 vs. Improved10, from 2,938 to 1,223 (−58.4%) for Naive50 vs. Improved50,
and from 3,005 to 1,265 (−57.9%) for Naive200 vs. Improved200. This clearly demonstrates that Improved input generation

is more effective at producing inputs that satisfy identified input constraints. Because more generalizations pass early

input filtering, the number of test failures due to later AssertionFailedErrors and ArithmeticExceptions often

increases, albeit to a lesser degree. For Naive10 vs. Improved10, the number changes from 828 to 827 (−0.1%), for
Naive50 vs. Improved50 from 902 to 921 (+2.1%), and for Naive200 vs. Improved200 from 918 to 942 (+2.6%).

Project-specific patterns show how test characteristics and constraint complexity affect generalization success.

Developer-written tests in commons-utils-dev exhibit 11.5–14.2% TooManyFilterMissesExceptions and 24.7–25.7%

from inaccurate specifications. EvoSuite-generated tests in commons-utils-es-∗ show 14.9–15.7% and 12.7–15.3%,

respectively, while EvoSuite-generated tests in eqbench-es-∗ show 5.7–6.0% and 1.3%. The 2× higher inaccurate

specification rate in commons-utils-dev compared to commons-utils-es-∗ reflects test construction differences: EvoSuite-
generated tests avoid loops and do not invoke assertions through helper methods, while the developer-written tests

commonly use both patterns. The higher rates in commons-utils-es-∗ tests compared to eqbench-es-∗ tests — despite

identical test construction patterns — reflects the impact of constraint complexity (Section 4.3).

Beyond filter rejections, Naive and Improved fail 32 generalizations to avoid “code too large” errors. This error

occurs when a method’s bytecode exceeds 64KB, Java’s hard limit for method size. Generalized tests can exceed this limit

when specifications contain many complex constraints, necessitating preemptive exclusion of the largest specifications.

Answer to RQ5: Of 28,923 identified assertions, 9,881–13,836 (34.2–47.8%) are successfully generalized across

the three strategies. Most exclusions occur at the assertion level, primarily due to static analysis limitations in

identifying testedmethods (24.7%) and the presence of parameter types that cannot be accurately modeled by current

symbolic analysis (15.4%). SPF errors and exceeded analysis limits exclude 5.3% and 4.7% of assertions, respectively.

Test-level filtering excludes 5.5% of assertions due to non-passing Original tests. Naive generalized tests pass in

71.4–77.6% of cases, with failures primarily due to TooManyFilterMissesExceptions (16.1–21.7%) and inaccurate

specifications in the presence of loops and interprocedural control flow in tests (6.0–6.6%). Improved increases

pass rates to 83.8–85.2% by reducing filter misses by 46.5–58.4% through constraint-aware input generation.
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4.7 RQ6: What are the causes of unsuccessful generalization attempts under real-world conditions?

RQ5 established exclusion causes under controlled conditions. RQ6 now examines how Teralizer performs on 632 Java

projects from the RepoReapers dataset (Section 4.1) to identify generalization barriers in real-world projects. Section 4.7.1

covers project-level exclusions. Section 4.7.2 examines test, assertion, and generalization exclusions, comparing exclusion

rates to controlled settings. Full project-level exclusions and partial test, assertion, and generalization exclusions are

interconnected: when filtering or failures exclude all tests, assertions, or generalizations in a project, the project is

excluded. Understanding exclusion patterns guides future work toward addressing the most impactful limitations.

4.7.1 Project-Level Exclusions. Only 11 of 632 projects (1.7%) successfully complete all five processing stages (Table 12),

revealing substantial barriers to real-world applicability. To understand where and why processing fails, we examine

exclusions stage by stage, distinguishing between internal causes (caused by configured resource limits or limitations of

Teralizer), external causes (caused by Teralizer’s dependencies: JUnit, Spoon, JPF/SPF, JaCoCo, and PIT), and mixed

causes (influenced by both internal and external factors). This reveals which barriers are addressable through future

improvements of Teralizer and which ones reflect less actionable limitations in Teralizer’s dependencies.

Table 12. Project-level exclusions by stage and cause for the Improved200 generalization strategy in RepoReapers projects. Internal

causes are due to configured resource limits or current limitations of Teralizer. External causes are due to Teralizer’s dependencies

(i.e., JUnit, Spoon, JPF / SPF, JaCoCo, and PIT). Mixed causes are influenced by both internal as well as external factors.

# Type Cause of Project-level Exclusion Count

Stage 1 + 2 - Project Analysis: 632 projects 130 inclusions 502 exclusions 20.6% inclusion rate

1 Mixed all assertions excluded due to filter rejections 255

2 Mixed all tests excluded due to filter rejections and failures 129

3 Internal timeout exceeded (60 seconds per Original test suite) 48

4 Internal JUnit reports not found 31

5 Internal compilation outputs not found 18

6 External JUnit execution error during test execution 13

7 External Spoon execution error during test analysis 8

Stage 3 - Specification Extraction: 130 projects 117 inclusions 13 exclusions 90.0% inclusion rate

8 Mixed all assertions excluded due to earlier filter rejections and new failures 11

9 External Spoon execution error during test instrumentation 1

10 Internal timeout exceeded (60 seconds per Initial test suite) 1

Stage 4 - Generalized Test Creation: 117 projects 114 inclusions 3 exclusions 97.4% inclusion rate

11 Internal all generalizations excluded due to filter rejections and failures 3

Stage 5 - Test Suite Reduction: 114 projects 11 inclusions 103 exclusions 9.6% inclusion rate

12 Internal JaCoCo outputs not found 40

13 Internal timeout exceeded (300 seconds per test suite variant) 40

14 External PIT execution error during mutation testing 16

15 Internal PIT reports not found 4

16 Internal failed to process PIT reports 2

17 External JaCoCo execution error during coverage collection 1

Overall: 632 projects 11 inclusions 621 exclusions 1.7% inclusion rate
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The pipeline shows a distinct funnel pattern with two major barriers at the early and late processing stages, separated

by high-success middle stages. Stage 1+2 (project analysis) excludes 79.4% of projects (502 of 632), forming the first

major barrier. Projects that pass this initial filter progress largely successfully through Stage 3 (specification extraction,

90.0% pass rate: 117 of 130 projects) and Stage 4 (generalized test creation, 97.4% pass rate: 114 of 117 projects). The

second major barrier emerges at Stage 5 (test suite reduction via mutation testing), where 90.4% of remaining projects

are excluded (103 of 114 projects), leaving only 11 projects (1.7% of the original 632) to complete all stages. This pattern

suggests that the core generalization mechanisms (Stages 3–4) operate reliably when projects match current tool

capabilities, but both early filtering and final mutation testing highlight substantial practical challenges.

Stage 1 + 2 Exclusions: Project analysis excludes 502 of 632 projects (79.4%), with the primary failure mode being

complete absence of suitable generalization candidates. Cases where all assertions are excluded affect 255 projects

(40.3% of stage input), while all tests being excluded affects 129 projects (20.4%). For assertion exclusions, all 255 result

from filter rejections, indicating that these projects contain only assertion patterns that are currently unsupported

by Teralizer or beyond the current capabilities of the underlying symbolic analysis performed by SPF (detailed in

Section 4.7.2). For test exclusions, 116 projects (89.9% of the 129) stem from filter rejections, 6 projects (4.7%) from

failures during test analysis (e.g., missing test report files), and 7 projects (5.4%) from a combination of both.

Further internal exclusions caused by configured timeouts (60 seconds per project) and output detection failures affect

97 projects (15.3%). Timeout-based exclusions can be observed in 48 projects (7.6%) that have particularly long-running

Original test suites. Output detection failures affect 49 projects (7.8%), split between failed JUnit report detection

(31 projects, 4.9%) and failed compilation output detection (18 projects, 2.8%). Both types of output detection failures are

caused by projects that store these outputs in non-standard output directories. Thus, these exclusions indicate that

current search heuristics used by Teralizer cannot accommodate the full diversity of real-world project structures.

External execution errors affect 21 projects (3.3%): 13 projects (2.1%) encounter JUnit execution errors during test

execution, and 8 projects (1.3%) encounter Spoon execution errors during test analysis. These failures stem from

Teralizer’s dependencies and, therefore, lie outside the direct control of Teralizer.

Stage 3 + 4 Exclusions: The 130 projects that complete project analysis face substantially lower exclusion rates in the

two subsequent stages. This confirms that early filtering successfully identifies viable generalization candidates. Stage 3

(specification extraction) excludes 13 projects (10.0%) due to SPF execution errors, Teralizer errors, or exceeded resource

limits (detailed in Section 4.7.2). One external failure represents a Spoon execution error during test instrumentation, and

one internal failure occurs due to a test suite execution timeout (60 seconds per Initial test suite). Stage 4 (generalized

test creation) shows the lowest failure rate in the pipeline: only 3 of 117 projects (2.6%) are excluded, all due to filter

rejections that exclude all generalizations. The high inclusion rates at both stages (90.0% and 97.4% respectively)

demonstrate that projects containing suitable assertions generally proceed successfully through specification extraction

and test generation, supporting the pipeline’s core generalization mechanisms.

Stage 5 Exclusions: Test suite reduction via mutation testing represents the second major exclusion barrier, excluding

103 of 114 projects that reach this stage (90.4%). Unlike Stage 1 + 2 failures that are primarily caused by proactive

filtering of unsuitable tests and assertions, Stage 5 failures stem mainly from failures to detect required coverage and

mutation testing reports, exceeded timeouts (300 seconds per test suite variant), and external tool failures.

In total, output detection failures affect 44 projects (38.6% of stage input). JaCoCo reports in non-standard locations

cause 40 of these exclusions, while the remaining 4 projects are due to PIT reports in non-standard locations. These
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failures mirror the output detection issues seen in Stage 1 + 2, further supporting the observation that real-world

projects organize build artifacts more diversely than Teralizer’s current output detection heuristics accommodate.

All 40 projects that are excluded due to exceeded runtime limits already reach the configured timeout (300 seconds

per test suite variant) when performing mutation testing for the Original test suite. No additional exclusions occur

during mutation testing of the test suite created by the Improved200 generalization strategy.

External execution errors affect 17 projects (14.9%): 16 projects encounter PIT errors during mutation testing and

1 project encounters a JaCoCo error during coverage collection. Two additional projects (1.8%) fail during PIT report

parsing, where Teralizer fails to successfully process the generated mutation reports.

4.7.2 Test, Assertion, and Generalization Exclusions. Beyond project-level exclusions, individual tests, assertions, and

generalizations are excluded throughout pipeline processing via filtering and due to processing failures. Table 13

quantifies exclusion rates across all 632 projects, distinguishing between filtering-based and failure-based exclusions.

Table 14 provides further details about the causes of filter rejections across the three levels. For brevity, we only include

the results for the Improved200 generalization strategy. Since most exclusions occur in the Shared processing stages,

differences across generalization strategies are minor. Full results are available in our replication package [32].

Test-level Exclusions. Only 40.8% of real-world tests are included (33,385 of 81,810), compared to 83.1% under controlled

conditions (Table 13 vs. Table 10). Of the 48,425 excluded tests, 49.6% are rejected through filtering while 9.6% are

excluded due to processing failures. The high prevalence of filtering-based exclusions indicates that generalization of

real-world tests commonly requires capabilities that are beyond what Teralizer currently supports.

The NoAssertions filter shows the highest exclusion rate, rejecting 41.3% of real-world tests versus 10.3% under

controlled conditions. However, RQ5 identified 86.3% of NoAssertions rejections in developer-written tests to be false

positives: tests that are rejected by the NoAssertions filter but actually contain assertions in helper methods which

Teralizer’s interprocedural static analysis does not detect. Given that RepoReapers exclusively contains developer-

written tests, these rejections are likely to contain a high rate of false positives as well.

The NonPassingTest filter rejects 11.8% of real-world tests compared to the 6.6% rejection rate under controlled

conditions. As explained in Section 4.6, this filter operates at the test class level because PIT requires a green test suite

but only supports class-level exclusions. As a result, the filter rejects all 8,741 test methods from 974 classes containing

at least one failing test. Of these, 4,709 (54%) actually failed during execution, while 4,032 (46%) passed but were rejected

due to class-level filtering. Analysis of the 4,709 failing tests reveals that failures stem primarily from infrastructure and

environment issues rather than broken tests: 18.8% encounter missing dependencies (NoClassDefFoundError), 14.1%

fail due to unavailable external services (Redis, MongoDB, MySQL), 10.0% encounter null pointer exceptions, etc. Only

18.3% of failures are genuine assertion failures where tests execute to completion but produce incorrect results.

The TestType filter rejections increase from 0.8% under controlled conditions to 12.5% in real-world projects. Under

controlled conditions, all rejections are @ParameterizedTest annotations in commons-utils-dev. In contrast, all 9,277

RepoReapers rejections are legacy JUnit 3 test methods that use the JUnit 3 naming convention (method names starting

with “test”) instead of @Test annotations, occurring across 70 different RepoReapers projects.

Assertion-level Exclusions. Assertion exclusions differ substantially between controlled and real-world conditions.

Only 0.6% of assertions in RepoReapers projects are included (711 of 122,153) versus 47.8% under controlled conditions.

Filtering accounts for 99.1% of exclusions while failures represent 0.3%, confirming that the primary barriers are known

limitations of Teralizer rather than unexpected failures during processing.
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Table 13. Exclusion results for Improved200 in the RepoReapers projects.

Excluded

Level Total Included Filtering Failures

Test 81,810 33,385 (40.8%) 40,583 (49.6%) 7,842 ( 9.6%)

Assertion 122,153 711 ( 0.6%) 121,060 (99.1%) 382 ( 0.3%)

Generalization 239 206 (86.2%) 23 ( 9.6%) 10 ( 4.2%)

Table 14. Filtering results for Improved200 in the RepoReapers projects.

Level Filter Name Total Accept Defer Reject

Test NonPassingTest 74,308 65,567 (88.2%) - 8,741 (11.8%)

Test TestType 74,308 65,031 (87.5%) - 9,277 (12.5%)

Test NoAssertions 56,844 33,385 (58.7%) - 23,459 (41.3%)

Assertion AssertionType 122,153 92,986 (76.1%) - 29,167 (23.9%)

Assertion ExcludedTest 122,153 101,513 (83.1%) - 20,640 (16.9%)

Assertion MissingValue 122,153 51,425 (42.1%) - 70,728 (57.9%)

Assertion ParameterType 122,153 5,393 ( 4.4%) 56,477 (46.2%) 60,283 (49.4%)

Assertion ReturnType 122,153 11,645 ( 9.5%) 70,728 (57.9%) 39,780 (32.6%)

The MissingValue filter shows the largest assertion-level rejection rate of 57.9%, compared to 24.7% under controlled

conditions. Rejections have three underlying causes. First, 41% involve unsupported assertion types (assertThat,

assertNull, fail, etc.) where method identification is not attempted. Second, 26% involve assertions where the actual

value is not a method invocation or cannot be traced back to a method declaration, including field accesses, comparison

expressions, and literal values. Third, 33% identify a method call but Spoon cannot resolve its declaration.

The ParameterType filter rejects 49.4% of assertions versus 15.4% under controlled conditions. This difference reflects

dataset characteristics: the controlled dataset used methods with primarily numeric and boolean parameters. In contrast,

real-world projects show 52.6% no-parameter methods, 26.9% object and array parameters, and only 19.8% numeric and

boolean parameters. No-parameter methods cannot benefit from input generalization, while methods with object and

array parameters require capabilities beyond Teralizer’s current support for numeric and boolean types.

The ReturnType filter defers on 57.9% of assertions where the method is unknown (matching the MissingValue

rejection rate) and rejects 32.6% of all assertions. Among methods with known return types (42.1% of all assertions),

52.7% return objects, 46.6% return numeric or boolean types, and 0.7% return other types (char, arrays, void). This

contrasts with controlled conditions where 98.3% of methods returned numeric and boolean types.

The AssertionType filter rejects 23.9% of real-world assertions versus 2.6% under controlled conditions. This

increase stems from more diverse assertion usage in real-world test code. For example, assertEquals accounts for

83.6% of assertions in controlled conditions, primarily due to the large number of EvoSuite-generated tests which

use assertEquals in 84.7% of cases. In contrast, assertEquals accounts for only 54.5% of assertions in the RepoReapers

projects. The most common unsupported assertion types are assertThat (8.3%), assertNotNull (6.1%), fail (3.3%), and

assertNull (3.1%). In controlled conditions, these four types collectively account for only 0.8% of assertions.

The ExcludedTest filter shows a 3× increase from 5.5% under controlled conditions to 16.9% in real-world projects,

reflecting the corresponding increase in test-level exclusions from 16.9% to 59.2%.
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Generalization-level Exclusions. Of 239 generalization attempts in the RepoReapers projects, 206 (86.2%) succeed.

The 33 exclusions result from NonPassingTest filter rejections (23 cases, 9.6%) and test report detection failures (10

cases, 4.2%). The 86.2% inclusion rate is comparable to the 83.8% rate under controlled conditions. However, only 0.2%

of all assertions result in an included generalization (206 of 122,153), compared to 40.1% under controlled conditions

(11,597 of 28,923). These results demonstrate that the core generalization mechanism operates reliably when applicable,

but real-world applicability is limited by three primary barriers: limited type and assertion pattern support (99.4% of

assertions excluded by filters at earlier stages), non-standard project structures (output detection failures exclude 14.7%

of projects at Stages 1+2 and 5), and resource constraints (timeout exclusions affect 14.1% of projects across all stages).

Answer to RQ6: Fully automated generalization of real-world test suites encounters significant challenges. Only

206 of 122,153 assertions (0.2%) are successfully generalized (compared to 40.1% under controlled conditions) and

only 11 of 632 projects (1.7%) complete all processing stages. The core generalization mechanism operates reliably

when applicable: generalization-level success rates are comparable (86.2% real-world vs 83.8% controlled), and

projects that pass early filtering also complete specification extraction (90.0%) and generalized test creation (97.4%).

However, three barriers prevent higher overall success rates: limited type and assertion support causes 99.4%

of assertions to be filtered (e.g., MissingValue: 57.9%, ParameterType: 49.4%, ReturnType: 32.6%), non-standard

project structures prevent output detection in 14.7% of projects, and execution timeouts exclude 14.1% of projects.

5 Discussion

Our evaluation shows that semantics-based test generalization via symbolic analysis is viable but currently constrained

to specific application environments and test architectures. Under controlled conditions that match current capabilities,

Teralizer successfully generalized 40.1% of assertions (RQ5) and improved mutation detection by 1–4 percentage

points (RQ1). As post-processing for generated tests, generalization offers competitive efficiency: combining 1-second

EvoSuite generation with Teralizer’s generalization achieved comparable mutation detection to 60-second generation

while reducing processing time by 31.9% (RQ4). Generalization of real-world projects faces substantial barriers (RQ6):

only 0.6% of assertions passed analysis and filtering stages (versus 47.8% under controlled conditions), only 0.2% of

assertions successfully generalized, and only 1.7% of real-world projects completed the processing pipeline. This section

discusses when and why generalization succeeds (Section 5.1), when and why it fails (Section 5.2), and how future

research and engineering efforts can improve generalization effectiveness, efficiency, and applicability (Section 5.3).

5.1 When and Why Generalization Succeeds

Generalization succeeds when implementation and test properties of the target projects align with Teralizer’s current

static analysis capabilities as well as the capabilities of SPF’s symbolic analysis. Implementation code that is amenable

to generalization is primarily focused on numeric computations in pure deterministic functions without any side effects

(thus enabling symbolic analysis) and is organized in standard project structures that facilitate detection of required

output artifacts such as compilation outputs as well as (mutation) testing and coverage reports. Tests amenable to

generalization are single-assertion unit tests without complex setup logic, loops, or interprocedural control flow.

When these conditions are satisfied, Teralizer achieves moderate mutation score improvements at reasonable

runtime cost. Mutation scores increased by 1.2–3.9 percentage points in eqbench-es-∗ and by 0.82–1.33 percentage points
in commons-utils-es-∗ compared to EvoSuite-generated baselines (Figure 4). Beyond effectiveness, generalization offers
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competitive efficiency when combined with test generation. For example, 1-second EvoSuite generation combined

with Naive50 generalization achieves 51.7% mutation detection rate in 37,532 seconds, thus outperforming 60-second

generation alone which achieves 51.6% mutation detection rate in 55,075 seconds (Figure 7).

Outcomes vary based on constraint complexity and original test suite effectiveness of the target projects. More

complex constraints hinder mutation score improvements because they increase the number of TooManyFilterMisses-

Exceptions. Similarly, stronger original test suites leave less room for mutation score improvements. For example,

Naive and Improved both show larger mutation score improvements for eqbench-es-∗ than for commons-utils-es-∗
because of the simpler constraints in eqbench-es-∗ (137–231 vs. 290–507 average operation counts, Table 4), and larger

mutation score improvements for commons-utils-es-∗ than for commons-utils-dev because of commons-utils-dev’s

stronger original tests (56.77–58.12% vs. 80.35% Initial mutation detection rate, Figure 4).

Naive is more effective than Improved for simpler constraints (Figure 4, rows 1–3), whereas Improved is more

effective for more complex constraints (Figure 4, rows 4–6). Two factors explain these results (Section 4.3). First, simpler

constraints are easier to satisfy by chance. Consequently, the difference in TooManyFilterMissesExceptions between

Naive and Improved is smaller in such cases than for more complex constraints. Second, simpler constraints enable

Improved to more reliably encode input partition boundaries. As a result, it spends more tries on boundary testing

but neglects non-boundary testing, which limits mutation detection improvements. This effect is more pronounced at

low tries settings where Improved10 underperforms all other generalization strategies (Figure 4, rows 1–3).

5.2 When and Why Generalization Fails

As shown by RQ6, generalization failed for the vast majority of evaluated real-world projects (Section 4.7). We identify

three high-level causes that explain these high exclusion rates. First, Teralizer is a research prototype, which limits its

current capabilities. Second, extracting accurate specifications for generalization of test oracles is a non-trivial problem,

even more so when moving beyond the domain of pure functions and numerical programs. Third, factors such as

execution errors in Teralizer’s dependencies, timeouts enforced for evaluation purposes, and test failures in original test

suites are beyond the direct control of the generalization mechanism itself, but still increase the number of unsuccessful

generalization attempts. The following subsections describe how each of these causes affects generalization outcomes.

This summary of failure causes then serves as the basis for the discussion of future improvements in Section 5.3.

Implementation Limitations. There are four limiting factors in the current implementation of our prototype: (i) it only

supports JUnit 4 and JUnit 5 tests and assertions, (ii) it only supports generalization of tests that contain at least one

assertion, (iii) it only performs intraprocedural static analysis within test methods to detect assertions, and (iv) it only

supports projects that use default output directories for compilation outputs and test reports. Limitation (iv) directly

causes 95 project-level exclusions (15.0% of projects) due to output detection and processing failures (Table 12, rows

#4, #5, #12, #15, and #16). Limitations (i)–(iii) contribute to the exclusion of 129 projects (20.4%) for which all tests are

excluded (Table 12, row #2) and 266 projects (42.1%) for which all assertions are excluded (Table 12, rows #1 and #8).

While the exact impact on the 129 test- and 266 assertion-related exclusions is difficult to quantify precisely (because

both are also affected by the other two high-level factors), filter rejections provide at least an approximate measure.

Limitation (i) causes all 12.5% of TestType rejections (Table 14) because these tests use JUnit 3. Furthermore, limitation

(ii) causes all true positive NoAssertions rejections and (i)+(iii) cause all false positive NoAssertions rejections,

together accounting for the exclusion of 41.3% of tests (Table 14). Thus, limitations (i)–(iii) have comparatively high

impact on the 129 test-related exclusions — the only other test-excluding factor is 11.8% NonPassingTest rejections.
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In contrast, their impact on the 266 assertion-related exclusions is comparatively low, contributing only to 16.9%

ExcludedTest rejections — the lowest rate among all assertion-level filters (Table 14).

Specification Extraction Challenges. Whereas implementation limitations primarily cause direct project-level and test-

related exclusions, specification extraction challenges account for the majority of the 266 assertion-related exclusions

(42.1% of projects) as well as all 3 (0.5%) generalization-related exclusions (Table 12, rows #1, #8, and #11). The largest

portion of these exclusions are due to type limitations of the underlying symbolic analysis performed by SPF (discussed

in Section 2.3), which is used by Teralizer to extract specifications for oracle generalization (Sections 3.3 and 3.4).

A smaller portion is due to the assumption that each assertion can be generalized by extracting the input-output

specification of the last method call that was executed before the assertion (Section 3.2).

To quantify the impact of type limitations, notice that they are responsible for the following assertion filter rejec-

tions listed in Table 14: all ParameterType rejections (49.4% rejection rate), all ReturnType rejections (32.6%), most

AssertionType rejections (23.9%), and many MissingValue rejections (57.9%). AssertionType is type-related because

many unsupported assertions are for non-primitive types (assert(Not)Null, assert(Not)Same, assertArrayEquals,

etc.). MissingValue rejections are type-related because they are a superset of AssertionType rejections. Parameter-

Type and ReturnType rejections are directly enforced due to type limitations. Furthermore, the exclusion rates relative

to the subset of cases for which type information is available are even higher than overall rejection rates suggest. Of

65,676 cases with parameter type information, 60,283 (91.8%) are rejected by the ParameterType filter. Similarly, 39,780

of 51,425 cases (77.4%) with return type information are rejected by the ReturnType filter.

Exclusions due to the 1:1 assertion-to-MUT mapping assumption show a smaller impact on overall exclusion rates.

Specifically, this assumption causes the subset of MissingValue rejections that occur when no MUT can be identified

for a given assertion. As explained in Section 4.7.2, this subset accounts for 26% of MissingValue rejections, which in

turn reject 57.9% of identified assertions — thus contributing rejection votes for approximately 15% of all assertions.

However, this figure likely understates the assumption’s true impact: since assertion-to-MUT mapping is only attempted

for supported assertions, other rejection causes such as type limitations shadow an unknown portion of mapping

failures that would be revealed if type and assertion support were improved.

Dependencies and Environment. Generalization success is also affected by execution errors in Teralizer’s depen-

dencies and environmental factors such as resource limits. These factors are beyond the control of the generalization

approach but account for 128 direct project-level exclusions (20.3% of projects). Furthermore, they contribute to 129

test-related exclusions (20.4%) and 266 assertion-related exclusions (42.1%). The 128 project-level exclusions are caused

by 89 timeouts (Table 12, rows #3, #10, and #13) and 39 dependency errors (Table 12, rows #6, #7, #9, #12, and #14). The 129

test-related exclusions are affected by NonPassingTest rejections (11.8% of tests, Table 14), and the 266 assertion-related

exclusions are affected by ExcludedTest rejections (16.9% of assertions), MissingValue rejections (57.9%, 33% of which

are cases where Spoon is unable to resolve the declaration of an identified MUT, see Section 4.7.2), and SPF execution

failures (0.3%). SPF failures are underrepresented because most assertions are excluded before specification extraction.

Among the 1093 assertions that reach SPF, 382 (34.9%) fail due to SPF errors and enforced resource limits (Table 13).

5.3 Directions for Future Improvements

Based on our findings, three improvement directions emerge for semantics-based test generalization: (i) expanding

applicability to handle more projects, tests, and assertions, (ii) improving effectiveness when generalization does apply,

and (iii) improving efficiency in terms of generalization runtime as well as size and runtime of generalized test suites.
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This section discusses opportunities in each direction, distinguishing between engineering improvements achievable

through additional implementation effort and research challenges requiring advances in underlying techniques.

5.3.1 Improving Applicability. The primary barrier to real-world adoption is limited applicability: 99.4% of real-world

assertions are excluded before reaching generalized test creation (Table 13). Three categories of improvements could

noticeably expand the subset of projects, tests, and assertions that are amenable to generalization.

Type Support. Type limitations cause the largest portion of assertion-level exclusions. Among assertions where

type information is available, type-based rejection rates reach 91.8% for cases with known parameter types and

77.4% for cases with known return types (Section 5.2). Expanding type support remains a fundamental research

challenge [1, 13, 14, 73, 76]: precise constraint modeling for strings, arrays, and objects requires advances in symbolic

analysis that go beyond the capabilities of current tools and approaches. Furthermore, type limitations shadow other

issues. Thus, as type support improves, additional limitations in assertion-to-MUT mapping and general assertion

support would become visible, enabling more in-depth analysis and targeted improvement of these causes.

Static Analysis. The NoAssertions and TestType filters reject 41.3% and 12.5% of tests, respectively (Section 5.2).

Both are addressable through engineering improvements: interprocedural analysis that tracks assertion calls through

the call graph would recover tests where assertions exist in helper methods. Tests that genuinely lack assertions could

be modeled as implicit “does not throw” checks, thus eliminating the current need to exclude tests without assertions

due to a lack of validated oracles. Adding support for JUnit 3, TestNG, and assertion libraries such as AssertJ, Hamcrest,

and Truth would recover further rejections by the TestType and NoAssertions filters.

Project Structure and Environment. Output detection failures exclude 14.7% of projects (Table 12). Configurable output

paths or improved search heuristics would recover these projects without changing the core approach. Timeouts exclude

14.1% of projects across processing stages (Table 12). While increased limits could reduce these exclusions, diminishing

returns are apparent: doubling of all timeouts recovered only 2 of 89 timed-out projects in our internal testing, increasing

the number of successfully processed real-world projects from 11 to 13. SPF execution errors account for 51.4% of

specification extraction failures under controlled settings (Section 4.6), many due to missing models for native methods.

Contributing such models to SPF would reduce these failures without any other changes in the approach.

5.3.2 Improving Effectiveness. When generalization does apply, effectiveness depends on the generation of inputs that

thoroughly cover the valid input space. Two factors influence this: (i) the generation strategy, which determines whether

inputs are sampled randomly (Naive) or specifically target input partition boundaries (Improved), and (ii) constraint

encoding, which determines how much of the extracted specification can be used to guide generation.

Generation Strategies. Constraint-aware input generation used by Improved increases detection rate improvements

of boundary-related mutations such as ConditionalsBoundary compared to Naive (+2.55pp vs. +1.21pp, Section 4.2.2).

However, focusing too much on boundaries limits arithmetic diversity within available tries. This negatively affects

detection rate improvements of Mathmutations, particularly at lower tries settings (Section 4.3). To improve detection

rates without increasing tries, more balanced generation strategies can be developed that use heuristics based on

constraint complexity or other source code properties to better balance boundary vs. non-boundary testing, thus

utilizing the benefits of both random and boundary-focused generation where each provides the largest benefit.

Constraint Encoding. Average constraint utilization per project ranges from 11% to 69% in controlled settings (Table 4).

This is because Teralizer’s Improved generalization strategy only encodes simple in-/equalities on variables and con-

stants, whereas compound terms such as a == (b + 1) are enforced through filtering (Section 3.4.3). Extending constraint

encoding support would enable more precise boundary testing while reducing TooManyFilterMissesExceptions
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that affect 5.7–15.7% of generalizations across datasets (Section 4.6). However, as constraint complexity increases,

generating valid inputs becomes increasingly difficult. Techniques such as SMT-based constraint solving [23, 70],

targeted property-based testing [45], or coverage-guided property-based testing [43] could more effectively generate

inputs satisfying complex constraints than jqwik’s primarily random generation, albeit at increased computational cost.

5.3.3 Improving Efficiency. Efficiency improvements could be implemented along the following three dimensions:

(i) tool runtime, which determines processing cost during generalization, (ii) test suite runtime, which determines

execution cost after generalization, and (iii) test suite size, which primarily affects maintenance overhead.

Tool Runtime. Processing costs are dominated by mutation testing, which consumes 59.1–95.7% of total pipeline

runtime (Figure 6). However, not all mutation operators benefit equally from generalization (Table 3). Focusing on

operators that benefit the most from generalization and using lightweight heuristics based on constraint complexity or

assertion patterns to identify unlikely-beneficial candidates before mutation testing could reduce processing time at the

cost of potentially missing some improvements. Incremental processing that targets only newly-added or modified

tests would avoid repeated analysis of stable code in continuous integration settings. Arcmutate [82], a commercial

extension of PIT, offers an accelerator plugin that could further reduce processing costs.

Test Suite Runtime. Test suite runtime increases caused by generalization stem primarily from jqwik framework

overhead (approximately 150ms per test, Figure 5) and filter-and-regenerate cycles when inputs violate constraints.

Improved reduces filter miss rates by 46.5–58.4% compared to Naive (Section 4.6), which reduces execution cost per

successfully generated test input from 28.61ms to 18.92ms at 10 tries and from 5.68ms to 1.98ms at 200 tries (Figure 5).

Better constraint encoding would further reduce filter-and-regenerate cycles by enabling more inputs to be generated

directly rather than requiring filtering. Additionally, jqwik 2 plans parallelization support [44], which could reduce test

suite execution time by distributing property-based test execution across multiple cores.

Test Suite Size. Observed LOC increases of 4.9–58.7% across projects (Table 6) have two primary causes: explicit

constraint encoding in generalized tests and structural duplication from test isolation (Section 4.4.2). Abstracting

constraint encoding in a library could reduce this overhead, and tighter integration of generalized tests into original test

classes would avoid duplication from copied imports and helper methods. Test suite reduction could also be extended to

replace multiple original tests that cover the same partition with a single property-based test, thus reducing test count

instead of only compensating for added tests. This mirrors the idea of test suite reduction via parameterization [3, 83],

but would use semantics-based analysis rather than syntactic clone detection to identify mergeable tests.

5.3.4 Deployment Strategies. Our results position semantics-based test generalization for targeted deployment during

new unit test development or as a post-processing step for generated tests in numeric-heavy domains. Because

generalization success depends not only on domain characteristics but also on program and test architecture, developers

who are interested in adopting automated test generalization tools such as Teralizer can improve generalization

outcomes through their implementation choices independent of further test generalization advances:

(1) Following a more functional programming style that emphasizes pure functions reduces assertion-to-MUT

mapping failures (57.9% MissingValue rejections, Table 14).

(2) Placing assertions directly in test methods rather than delegating to helper methods reduces assertion detection

failures due to current interprocedural analysis (41.3% NoAssertions rejections, Table 14).

(3) Favoring supported assertions such as assertEquals over unsupported ones such as assertThat where this is

feasible reduces assertion type exclusions (23.9% AssertionType rejections, Table 14).



Teralizer: A Semantics-Based Test Generalization Approach 43

(4) Ensuring a green original test suite by addressing flaky tests and missing dependencies avoids exclusions due

to failing tests (11.8% NonPassingTest rejections, Table 14).

(5) Using standard project structures and build output locations for test reports and coverage data reduces output

detection failures (14.7% project exclusions, Table 12).

Beyond these factors, test smells [31, 51, 84] represent another dimension that affects generalizability. For example,

Eager Test (where tests invoke multiple production methods) complicates assertion-to-MUT mapping (Section 3.2)

and Conditional Test Logic (where tests contain loops or other conditionals) can lead to inaccurate specifications due

to Teralizer’s limited loop handling (Section 4.6). Thus, another direction for future work is developing automated

transformation approaches that refactor test code to improve generalizability before applying tools like Teralizer.

Such transformations could build on testability transformation techniques [35], which modify programs to improve

amenability to test generation, and recent advances in automated test smell detection [67] and refactoring [49, 85].

5.4 Threats to Validity

Construct Validity. We use mutation score as a proxy for fault detection capability. Fundamentally, this use of mutation

testing rests on two hypotheses: the competent programmer hypothesis, which assumes that real faults are often only

small deviations from correct programs, and the coupling effect, which suggests that tests which detect simple faults

will also generally detect more complex faults [24]. Empirical studies validated the coupling effect [59], and subsequent

work demonstrated that mutation scores correlate with real fault detection [42, 63]. Furthermore, surveys confirm the

use of mutation testing as a standard evaluation technique in software testing research [40, 62]. While our use of PIT’s

DEFAULTS set of mutation operators may not represent all fault types, DEFAULTS is explicitly recommended by PIT as a

stable set of operators that minimizes equivalent mutants and avoids subsumption [16, 17].

Internal Validity. Our experiments use single runs per configuration. While additional runs would produce more

robust results, we already observe consistent effectiveness and efficiency trends across projects and configuration

settings with our current setup. Similarly, evaluation of higher tries and longer timeouts could provide further evidence

of scaling behaviors. However, we empirically determined these settings to provide a reasonable trade-off between

resource requirements and result quality. Scaling trends and diminishing returns are already apparent throughout the

evaluation, and doubled timeout settings recovered only 2 of 89 timed-out projects in our internal testing.

External Validity. Our implementation targets Java 5–8 with JUnit 4/5 and Maven or Gradle builds. While the core

approach is programming language-agnostic and could be implemented for other languages and ecosystems (e.g., using

KLEE [11] with RapidCheck [26] for C/C++, or CrossHair [72] with Hypothesis [48] for Python), observed results

might differ due to language differences and maturity of available tools. Our evaluation of benefits emphasizes projects

that match current symbolic analysis capabilities, particularly regarding type support limitations. As type support

improves, applicability of semantics-based test generalization would directly benefit, but results that can be achieved

for non-numeric types might differ from those we observed during generalization of primarily numerical programs.

6 Related Work

Ourwork draws on ideas from test amplification and symbolic analysis to automate the transformation from conventional

unit tests to property-based tests. This section reviews prior approaches to test generalization (Section 6.1), discusses

research approaches and directions that could improve specification inference capabilities of our current prototype

(Section 6.2), and explores synergies with related techniques as well as developer perspectives (Section 6.3).
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6.1 Test Generalization

Property-based testing [15] and parameterized unit testing [79] enable multi-input validation through general properties,

differing primarily in input generation strategy: property-based tests (PBTs) traditionally use random generation to pro-

duce inputs, whereas Tillmann and de Halleux suggest to execute parameterized unit tests (PUTs) symbolically, utilizing

constraint solving to select inputs for test parameters [78]. Both approaches require developers to manually specify

general assertions that hold across ranges of inputs rather than specific input-output examples used in conventional

unit tests (CUTs). Thummalapenta et al. [77] demonstrated manual strategies for retrofitting CUTs to PUTs.

Fraser and Zeller [30] automated generation of PUTs from CUTs, but use tests without existing assertions as a starting

point. This sidesteps the problem of automated oracle generalization. However, it often causes generated PUTs to overfit

the implementation [30] because the lack of validated oracles makes it difficult to distinguish intentional behavior

from incidental state changes or outputs. PROZE [80] uses runtime inputs and outputs to transform CUTs to PUTs but

does not generalize beyond observed values. JARVIS [66] introduced automated CUT-to-PBT transformation using

black-box analysis with predefined abstraction templates, which produces overapproximations that require multiple

related tests to constrain. We instead use white-box symbolic analysis along concrete execution paths, extracting

path-exact specifications that generalize oracles from individual input-output examples.

6.2 Specification Inference

Type support limitations fundamentally constrain specification extraction through single-path symbolic analysis, as

discussed in Sections 3.3, 4.7, and 5.2. These limitations stem from our reliance on SPF [64], a symbolic execution

tool designed for path exploration. Because full symbolic execution requires constraint solving to determine path

feasibility, SPF only encodes constraints for types with adequate solver support. Extending solver capabilities remains

an active research area, with recent work showing improvements for string constraints [13, 34, 46], heap-allocated

structures [8, 19, 20], arrays [57], and floating-point arithmetic [86]. As solver support improves and symbolic execution

tools correspondingly extend their constraint encoding, semantics-based test generalization would also benefit.

Alternative approaches to specification inference largely avoid type support limitations inherent to symbolic analysis,

but infer general specifications that describe overall method behavior rather than path-exact constraints, which

complicates oracle generalization. Houdini [28] pioneered template-based inference, generating candidate annotations

and using verification to filter them. Daikon [27] introduced dynamic invariant detection from execution traces.

More recent tools target specific specification types: EvoSpex [53] uses evolutionary search to infer postconditions,

SpecFuzzer [52] combines grammar-based fuzzing with mutation analysis for class specifications, and PreCA [50]

employs constraint acquisition [7] to infer preconditions from input-output observations. LLM-based techniques

offer yet another path: SpecGen [47] uses conversational prompting with mutation-based refinement to generate

specifications from source code, whereas ClassInvGen [75] co-evolves class invariants with test inputs.

6.3 Test Generation and Developer Perspective

Test generalization builds on existing tests and their assertions, creating natural synergies with techniques that produce

or enrich them. Test generation tools such as EvoSuite [29], Randoop [61], and UTBot [81] produce complete unit tests

through search-based, random, and hybrid approaches, while DSpot [22] amplifies existing tests to cover additional

branches. Oracle inference techniques such as TOGA [25], TOGLL [36], and AsserT5 [69] add assertions to tests that

lack them. All of these expand the pool of available generalization candidates. RQ4 demonstrates this combination:
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pairing EvoSuite’s generation with Teralizer’s generalization achieves higher mutation scores at lower runtimes

than test generation alone. However, generated tests and inferred oracles risk overfitting the implementation rather

than capturing intended specifications [6], and this risk carries through to any subsequent generalization.

For use cases beyond fully automated pipelines, developer interaction with generalized tests becomes relevant.

Studies of test amplification show that developers filter and edit amplified tests extensively before adding them to

their test suites [9, 10]. By making minimal structural changes — parameterizing inputs and expected values while

preserving the original test logic — test generalization may reduce friction compared to approaches that generate

entirely new test code. However, property-based testing introduces its own complexity: moving from example-based

to property-based thinking requires a conceptual shift that can be difficult for developers [33, 38]. Thus, generator

constraints and generalized oracles that replace concrete values must be presented appropriately for developers to

understand and trust them. Improving understandability of generalized tests therefore represents a research direction

that should be tackled in future work to better support use cases outside of fully automated testing scenarios.

7 Conclusions

This paper introduced a semantics-based approach for automated test generalization, using specifications extracted

through single-path symbolic analysis to transform conventional unit tests into property-based tests. We implemented

this approach in a prototype tool called Teralizer. Under controlled conditions matching current symbolic analysis

capabilities, Teralizer achieves mutation score improvements of 1–4 percentage points compared to EvoSuite-

generated baselines. Pareto analysis further showed that combining short test generation with test generalization can

outperform longer generation alone. For example, 1-second generation plus generalization achieves a higher mutation

score on EqBench than 60-second generation (51.7% vs 51.6%) while requiring 32% less total runtime.

However, our evaluation across 632 real-world Java projects from the RepoReapers dataset reveals substantial barriers

to fully automated generalization under real-world conditions: only 1.7% of projects complete the processing pipeline,

and 98.3% of assertions are excluded before reaching generalized test creation. By analyzing these exclusions in detail,

we distinguish implementation limitations of our prototype from fundamental research challenges in specification

extraction, providing concrete guidance for advancing the field. The primary barrier to fully automated generalization

is limited type support in existing symbolic analysis tools and approaches: current tools cannot precisely encode

constraints for strings, arrays, and objects, causing the majority of assertion-level exclusions.

As symbolic analysis improves to support additional types, semantics-based test generalization would directly

benefit. Other limitations of Teralizer are addressable through engineering improvements without requiring research

advances: interprocedural analysis would recover assertions in helper methods, broader framework support would

reduce test-level exclusions, and extended constraint encoding in generated tests would improve effectiveness and

efficiency by reducing filter-and-regenerate cycles. Our complete implementation and replication package are publicly

available to support reproduction and extension of this work [32].
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