An Exploratory Study of the Pull-Based Software
Development Model

Georgios Gousios
Delft University of Technology
Delft, The Netherlands
G.Gousios@tudelft.nl

ABSTRACT

The advent of distributed version control systems has led to the
development of a new paradigm for distributed software develop-
ment; instead of pushing changes to a central repository, devel-
opers pull them from other repositories and merge them locally.
Various code hosting sites, notably Github, have tapped on the op-
portunity to facilitate pull-based development by offering workflow
support tools, such as code reviewing systems and integrated issue
trackers. In this work, we explore how pull-based software devel-
opment works, first on the GHTorrent corpus and then on a care-
fully selected sample of 291 projects. We find that the pull request
model offers fast turnaround, increased opportunities for commu-
nity engagement and decreased time to incorporate contributions.
We show that a relatively small number of factors affect both the
decision to merge a pull request and the time to process it. We also
examine the reasons for pull request rejection and find that techni-
cal ones are only a small minority.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and

Martin Pinzger
University of Klagenfurt
Klagenfurt, Austria

martin.pinzger@aau.at

Enhancement—Version control; D.2.9 [Software Engineering]: Man-

agement—Programming teams

General Terms

Management

Keywords

Pull-based development, pull request, distributed software devel-
opment, empirical software engineering

1. INTRODUCTION

Pull-based development is an emerging paradigm for distributed
software development. As more developers appreciate isolated de-
velopment and branching [7], more projects, both closed source
and, especially, open source, are being migrated to code hosting
sites such as Github and Bitbucket, which provide support for pull-
based development [2]. A unique characteristic of such sites is that

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions @acm.org.

ICSE’14, May 31 — June 7, 2014, Hyderabad, India

Copyright 2014 ACM 978-1-4503-2756-5/14/05...$15.00
http://dx.doi.org/10.1145/2568225.2568260

345

Arie van Deursen
Delft University of Technology
_ Delft, The Netherlands
Arie.vandeursen@tudelft.nl

they allow any user to clone any public repository. The clone cre-
ates a public project that belongs to the user that cloned it, so the
user can modify the repository without being part of the develop-
ment team. Furthermore, such sites automate the selective contri-
bution of commits from the clone to the source through pull re-
quests.

Pull requests as a distributed development model in general, and
as implemented by Github in particular, form a new method for col-
laborating on distributed software development. The novelty lays in
the decoupling of the development effort from the decision to incor-
porate the results of the development in the code base. By separat-
ing the concerns of building artifacts and integrating changes, work
is cleanly distributed between a contributor team that submits, often
occasional, changes to be considered for merging and a core team
that oversees the merge process, providing feedback, conducting
tests, requesting changes, and finally accepting the contributions.

Previous work has identified the processes of collaboration in
distributed development through patch submission and acceptance
[23, 5, 32]. There are many similarities to the way pull requests
work; for example, similar work team structures emerge, since
typically pull requests go through an assessment process. What
pull requests offer in addition is process automation and central-
ization of information. With pull requests, the code does not have
to leave the revision control system, and therefore it can be ver-
sioned across repositories, while authorship information is effort-
lessly maintained. Communication about the change is context-
specific, being rooted on a single pull request. Moreover, the re-
view mechanism that Github incorporates has the additional effect
of improving awareness [9]; core developers can access in an ef-
ficient way all information that relates to a pull request and solicit
opinions of the community (“crowd-source”) about the merging de-
cision.

A distributed development workflow is effective if pull requests
are eventually accepted, and it is efficient if the time this takes is
as short as possible. Advancing our insight in the effectiveness and
efficiency of pull request handling is of direct interest to contribu-
tors and developers alike. The goal of this work is to obtain a deep
understanding of pull request usage and to analyze the factors that
affect the efficiency of the pull-based software development model.
Specifically, the questions we are trying to answer are:

RQ1 How popular is the pull based development model?
RQ2 What are the lifecycle characteristics of pull requests?

RQ3 What factors affect the decision and the time required to
merge a pull request?

RQ4 Why are some pull requests not merged?

Our study is based on data from the Github collaborative devel-

opment forge, as made available through our GHTorrent project [16].

Using it, we first explore the use of almost 2 million pull requests
across all projects in Github. We then examine 291 carefully se-
lected Ruby, Python, Java and Scala projects (in total, 166,884 pull
requests), and identify, using qualitative and quantitative analysis,
the factors that affect pull request lifetime, merging and rejection.

2. BACKGROUND

Since the appearance of the first open source implementations in
2001, distributed version control systems (DVCS), notably Git [8],
have revolutionized the way distributed software development is
carried out. Driven by pragmatic needs, most DVCSs were de-
signed from scratch to work as advanced patch management sys-
tems, rather than versioned file systems, the then dominant ver-
sion control paradigm. In most DVCSs, a file is an ordered set of
changes, the serial application of which leads to the current state.
Changes are stamped by globally unique identifiers, which can be
used to track the commit’s content across repositories. When inte-
grating changes, the change sets can originate from a local filesys-
tem or a remote host; tools facilitate the acquisition and application
of change sets on a local mirror. The distributed nature of DVCSs
enables a pull-based development model, where changes are of-
fered to a project repository through a network of project forks; it
is up to the repository owner to accept or reject the incoming pull
requests.

The purpose of distributed development is to enable a poten-
tial contributor to submit a set of changes to a software project
managed by a core team. The development models afforded by
DVCSs are a superset of those in centralized version control envi-
ronments [31, 6]. With respect to receiving and processing external
contributions, the following strategies can be employed with DVCs:

Shared repository. The core team shares the project’s repos-
itory, with read and write permissions, with the contributors. To
work, contributors clone it locally, modify its contents, potentially
introducing new branches, and push their changes back to the cen-
tral one. To cope with multiple versions and multiple developers,
larger projects usually adopt a branching model, i.e., an organized
way to inspect and test contributions before those are merged to the
main development branch [7].

Pull requests. The project’s main repository is not shared among
potential contributors; instead, contributors fork (clone) the reposi-
tory and make their changes independent of each other. When a set
of changes is ready to be submitted to the main repository, they cre-
ate a pull request, which specifies a local branch to be merged with
a branch in the main repository. A member of the project’s core
team is then responsible to inspect the changes and pull them to the
project’s master branch. If changes are considered unsatisfactory,
more changes may be requested; in that case, contributors need to
update their local branches with new commits. Furthermore, as pull
requests only specify branches from which certain commits can be
pulled, there is nothing that forbids their use in the shared repos-
itory approach (cross-branch pull requests). An overview of the
pull request process can be seen in Figure 1.

Pull Requests in Github. Github supports all types of dis-
tributed development outlined above; however, pull requests re-
ceive special treatment. The site is tuned to allow easy forking of
projects by contributors, while facilitating the generation of pull re-
quests through automatic comparison of project branches. Github’s
pull request model follows the generic pattern presented above;
in addition it provides tools for contextual discussions and in-line

Corerfeam i i Contriputor
create _ | '
fork i
commit
commit
@ «crepte»
ingpect
camment
commit 1---- a:’;ﬁ?::j\t
comment of inspection
grge
,,,,,, commits gte pulled _____ |
close

Figure 1: The pull request process.

code reviews. An example pull request on Github can be seen in
Figure 2.

A Github pull request contains a branch (local or in another
repository) from which a core team member should pull commits.
Github automatically discovers the commits to be merged and pre-
sents them in the pull request. By default, pull requests are sub-
mitted to the base (“upstream” in Git parlance) repository for in-
spection. The inspection is either a code review of the commits
submitted with the pull request or a discussion about the features
introduced by the pull request. Any Github user can participate to
both types of inspection. As a result of the inspection, pull requests
can be updated with new commits or be closed as redundant, unin-
teresting or duplicate. In case of an update, the contributor creates
new commits in the forked repository, while Github automatically
updates the displayed commits. The code inspection can then be
repeated on the refreshed commits.

When the inspection process finishes and the pull requests are
deemed satisfactory, the pull request can be merged. A pull request
can only be merged by core team members. The versatility of Git
enables pull requests to be merged in three ways, presented below
sorted by the amount of preservation of the original source code
properties:

1. Through Github facilities. Github can automatically verify
whether a pull request can be merged without conflicts to the base
repository. When a merge is requested, Github will automatically
apply the commits in the pull request and record the merge event.
All authorship and history information is maintained in the merged
commits.

2. Using Git merge. When a pull request cannot be applied
cleanly or when project-related policies do not permit automatic
merging, a pull request can be merged using plain Git utilities, us-
ing the following techniques:

e Branch merging: The branch in the forked repository con-
taining the pull request commits is merged into a branch in
the base repository. Both history and authorship information
are maintained, but Github cannot detect the merge in order
to record a merge event [8, Chapter 3.2].

e Cherry-picking: Instead of merging all commits, the merger
picks specific commits from the remote branch, which then
applies to the upstream branch. The unique commit identifier
changes, so exact history cannot be maintained, but author-
ship is preserved [8, Chapter 5.3].

A technique that complements both of the above is commit squa-
shing: if the full history is not of interest to the project, several

dsaff merged 12 commits into junit-teom:master from Tibori7:junit.fix 2 months ago 7

¥® Discussion - Commits 12

2

[®) Files Changed &

Tibor17 opened this pull request 5 months ago
Treatments for parallel execution

No one is assigned No milestone

In parallel execution, the objects like runners, Description, TestClass are created in main Thread and used in forked
Thread. This will treat the multithreaded visibility.

4 participarts @ M L3

2 -0~ Tibor17 added a commit

2 Tibori7 Treatments for parallel execution 83a25d4

™ deaff started a discussion in the diff

src/main/javasorg/junit/internal /requests/ClassRequest . java View full changes

private final Object fRunnerLock = new Object();
private final Classc?> fTestClass;

private final boolean fCanUsesuiteMethod;
private Runner fRunner;

private volatile Runner fRunner;

Doesnt the lock already take care of this one?

.s

5 months ago

L3 keomey

- -0 Tibor17 added a commit

5 months ago

R Tibor17 shorten line, renamed var, removed unnecessary empty array in varargs.

14 dsafi referenced this pull request from a commit 2 monihs ago

. dsaff Merge pull request #666 from Tiborl?/junit.fix elbf14b

™ dsaff merged commit e1bf14b into junit-team:master from Tibo

m % dsatt closed the pull request 2 months ago

7:junit. fix 2 months ago

Figure 2: An example Github pull request (667 from junit-
team/junit — edited for space). The participants first interact
in a code review, the result of which is a new commit. The sec-
ond reviewer then merges the pull request

consecutive commits are combined into a single one on the pull
request branch, which can then be merged or cherry-picked to the
upstream branch. In this case, the author of the commit is differ-
ent from the person that applied the commit [8, Chapter 6.4]. Both
cherry-picking and commit squashing are by-products of Git’s sup-
port for re-ordering commits (rebase) [8, Chapter 3.6].

3. Committing the patch. The merger creates a textual differ-
ence between the upstream and the pull request branch, which she
then applies to the upstream branch. Both history and authorship
information are lost.

As the project branches are updated in a distributed manner, the
changes in a pull request may interfere with new changes in the
project’s main branch. Merging such a pull request will result in
conflicts. Github automatically detects conflicting pull requests and
marks them as such. Conflicts can be resolved by either the contrib-
utor or a core team member; however, pull request etiquette dictates
that the contributor takes care of bringing the pull request back into
a state where there are no conflicts. The conflict resolution process
involves pulling new commits from the project’s main repository,
making changes to eliminate the conflicts and extending the pull
request with the resulting conflict eliminating commits.

Issues and pull requests are dual on Github; for each pull request,
an issue is opened automatically. Commits can also be attached to
issues to convert them to pull requests (albeit with external tools).
This duality enables the core team to treat pull requests as work
items, which can be managed using the same facilities used for is-
sues. Moreover, issue discussions can include links to pull requests
and vice versa, while specific commit message formats can be used

347

to automatically close issues or pull requests when commits are
merged to the project’s main branch.

The open nature of Github’s pull requests lends itself to a va-
riety of usage patterns. Except from basic patch submission, pull
requests can be used as a requirements and design discussion tool'
or as a progress tracking tool towards the fulfillment of a project re-
lease.? In the first case, a pull request serves as a discussion board
for soliciting the opinions of other developers while a new feature is
being implemented. In the second case, pull requests are associated
with milestones in Github’s issue tracker.

3. RESEARCH DESIGN

The main focus of this study is to understand and explain how
pull requests are used by projects to enable collaboration. To an-
swer our research questions, we use a sequential mixed-methods
approach, a procedure for collecting, analyzing, and integrating
both quantitative and qualitative data at some stage of the research
process within a single study for the purpose of gaining a better
understanding of the problem [17]. For specific research questions,
we first explore the domain quantitatively, and then highlight in-
teresting cases by exploring cases qualitatively. Below, we present
how we approached each research question.

RQ1 To assess the popularity of the pull-based development
model, we provide and analyze descriptive statistics on the use of
pull requests in Github. In particular, we investigate such ques-
tions as how many projects actually make use of pull requests, how
many of the projects are original repositories (versus, e.g., forks),
and how pull requests relate to Github’s issue tracking facilities.
The outcomes are presented in Section 5.

RQ2 and RQ3 Identifying the lifecycle characteristics of pull
requests and determining the factors that affect them calls for a
dedicated dataset of projects that have a sufficiently long history of
using pull requests. This dataset is described in Section 4.2.

Given this dataset, we answer RQ2 and RQ3 by determining a
set of suitable candidate features through consultation of related
work in the fields of patch submission, bug triaging, code review-
ing and distributed collaboration. Then, we clean it up through
cross-correlation analysis to obtain a set of features with maximum
predictive power. Using the data from the extracted features, we
perform a detailed statistical analysis of pull request characteristics
to answer RQ2 (Section 6).

Next, we use machine learning to retrieve the dominant features.
Prior to running the classification algorithms, we automatically la-
beled each pull request with an outcome factor; in the case of the
merge decision classification task, the label signifies whether the
pull request has been merged. For the merge time task, we first
filter out pull requests that have not been merged and then split the
remaining data points into three classes (hour, day, more than a
day) according to the time required to merge the pull request. The
split points were chosen to reflect the results of RQ2, and split the
available data points into roughly equally sized bins.

At a high level, the process to retrieve the dominant features
for both classification tasks consists of two steps. First, we run
each dataset through 6 classification algorithms, namely Random
Forests (randomforest), variants of Logistic Regression (Log—
regr) (binary for the merge decision task, multinomial for the
merge time task) and Naive Bayes (naivebayes), Support Vec-
tor Machines (svm), decision trees (dt ree) and AdaBoost with
decision trees (adaboost). We used those algorithms as they

!Github uses this internally: https://github.com/blog/
1124

https://github.com/blog/831

are known to perform well in large datasets [21] and have been
used in previous work involving prediction models [13]. We do not
perform any additional tuning to the classification algorithms. We
only report results on the first three, as those performed best. Then,
we select the best classifier and apply a classifier-specific process
to rank features according to their importance in the classification
process.

To evaluate the classification performance, we use the Accuracy
(Acc) and Area Under the receiver operating characteristic Curve
(AUC) metrics. To select the appropriate classification algorithm,
we run a 10-fold random selection cross-validation and aggregate
the mean values for each classification metric. At each iteration, the
algorithm randomly samples half of the available data points, trains
a classifier with 90% percent of the input and uses it to predict the
remaining 10%. The 10-fold run results also allowed us to evaluate
the metric stability across runs (Section 7).

RQ4 To examine why some pull requests are not merged, we
qualitatively analyze a set of randomly chosen non-merged pull re-
quests in depth. We use open coding (a grounded theory tool) to
come up with an inclusive set of reasons of why pull requests are
not merged as follows: the first author read the pull request discus-
sion on Github for randomly selected pull requests and summarized
the reasons for closing them into one sentence per sample; during a
second pass, the descriptions were aggregated and codes were ex-
tracted. To validate the identified codes, all three authors applied
them on a different set of pull requests, compared results, iden-
tified inconsistencies and retrofitted the initial selection of codes.
The final set of codes was then applied on a third sample which we
used to draw results from. The sampling process is described in
Section 4.3.

4. DATA
4.1 Github Data

We used Github data as provided through our GHTorrent project
[16], an off-line mirror of the data offered through the Github API.
The Github API data come in two forms; a streaming data flow
lists events, such as forking or creating pull requests, happening
on repositories in real time, while a static view contains the cur-
rent state of entities. To obtain references to the roots of the static
view entities, the GHTorrent project follows the event stream. From
there, it applies a recursive dependency-based parsing approach to
yield all data offered through the API. The data is stored in unpro-
cessed format, in a MongoDB database, while metadata is extracted
and stored in a MySQL relational database. The GHTorrent dataset
covers a broad range of development activities on Github, including
pull requests and issues. The project has been collecting data since
February 2012. Up to August 2013, 1.9 million pull requests from
more than two hundred thousand projects have been collected.

4.2 Pull Request Project Sample

Project selection. To make the analysis practical, while avoiding
to examine toy projects, we use a dataset consisting of all projects
for which GHTorrent recorded more than 200 pull requests in the
period between February 2012 and August 2013. The initial se-
lection resulted in 374 projects. The following criteria were then
applied to exclude projects from the initial selection:

e Projects should include tests. To measure the effect of test-
ing on pull request acceptance, we could only use projects
that include tests which we could measure reliably. For that,
we exploited the convention-based project layout in the Ruby
(Gem), Python, Java and Scala (both Maven) language ecosys-
tems, so our project selection was limited to those languages.

348

e Projects should have at least one commit coming from a pull
request, to ensure that the project is open to external contri-
butions and that pull requests are not just used by developers
inside the project.

e Projects should be developing software frameworks or ap-
plications, rather than documentation or programming lan-
guages. We excluded documentation projects, because we
are interested in distributed software development. We ex-
cluded programming language implementation projects be-
cause we wanted to avoid cases where the developed pro-
gramming language’s core library was overshadowing the
metrics of the actual implementation. This is especially true
for the 5 Ruby implementations hosted on Github.

After selection, the full history (including pull requests, issues
and commits) of the included projects was downloaded and fea-
tures were extracted by querying the GHTorrent databases and ana-
lyzing each project’s Git repository. Furthermore, for these selected
projects we collected all merges and the values for all factors that
we use in our machine learning experiment, as described below.

Merge detection. To identify merged pull requests that are mer-
ged outside Github, we resorted to the following heuristics, listed
here in order of application:

1. At least one of the commits associated with the pull request
appears in the target project’s master branch.

2. A commit closes the pull request (using the fixes: con-
vention advocated by Github) and that commit appears in
the project’s master branch. This means that the pull request
commits were squashed onto one commit and this commit
was merged.

3. One of the last 3 (in order of appearance) discussion com-
ments contain a commit unique identifier, this commit ap-
pears in the project’s master branch and the corresponding
comment can be matched by the following regular expres-
sion:

(?:merglappl|pull |push|integrat) (?:ing|i?ed)

4. The latest comment prior to closing the pull request matches
the regular expression above.

If none of the above heuristics identifies a merge, we mark the

pull request as unmerged.

After creating the data files, we investigated projects where the
pull request merge ratio was significantly less than the one we cal-
culated across Github (73%), and in any case less than 40%, as this
means that our heuristics are not good enough for this project. This
way, we filtered out 2 projects, which we did not replace.

The final dataset consisted of 291 projects (99 Python, 91 Java,
87 Ruby, 14 Scala) and 166,884 pull requests (59,970; 55,468;
43,870 and 7,576 for Python, Ruby, Java and Scala projects re-
spectively). Both distributions are representative of the contempo-
rary popularity of each respective programming language on both
Github and other sites.

Feature Extraction. The feature selection was based on prior
work in the areas of patch submission and acceptance [24, 4, 32,
3], code reviewing [28], bug triaging [1, 14] and also on semi-
structured interviews of Github developers [9, 26, 22]. The selected
features are split into three categories:

Pull request characteristics. These features attempt to quantify
the impact of the pull request on the affected code base. When ex-
amining external code contributions, the size of the patch is affect-
ing both acceptance and acceptance time [32]. There are various
metrics to determine the size of a patch that have been used by re-
searchers: code churn [24, 27], changed files [24] and number of
commits [11]. In the particular case of pull requests, developers
reported that the presence of tests in a pull request increases their

confidence to merge it [26]. To investigate this, we split the churn
feature into two features, namely src_churnand test_churn.
The number of participants has been shown to influence the time to
process of code reviewing [28]. Finally, through our own expe-
rience analyzing pull requests, we have found that in many cases
conflicts are reported explicitly in pull request comments while in
other cases pull requests include links to other related pull requests.

Project characteristics. These features quantify how receptive
to pull requests the project is. If the project’s process is open to
external contributions, then we expect to see an increased ratio of
external contributors over team members. The project’s size may
be a detrimental factor to the speed of processing a pull request, as
its impact may be more difficult to assess. Also, incoming changes
tend to cluster over time (the “yesterday’s weather” change pat-
tern [15]), so it is natural to assume that pull requests affecting a
part of the system that is under active development will be more
likely to merge. Testing plays a role in speed of processing; ac-
cording to [26], projects struggling with a constant flux of contrib-
utors use testing, manual or preferably automated, as a safety net to
handle contributions from unknown developers.

Developer. Developer-based features quantify the influence that
the person who created the pull request has on the decision to merge
it and the time to process it. In particular, the developer who cre-
ated the patch has been shown to influence the patch acceptance
decision [19]. To abstract the results across projects with different
developers, we include features that quantify the developer’s track
record [9], namely the number of previous pull requests and their
acceptance rate; the former has been identified as a strong indicator
of pull request quality [26]. Bird et al. [5], presented evidence that
social reputation has an impact on whether a patch will be merged;
in our dataset, the number of followers on Github can be seen as a
proxy for reputation.

All features are calculated at the time a pull request has been
closed or merged, to evaluate the effect of intermediate updates to
the pull request as a result of the ensuing discussion. Features that
contain a temporal dimension in their calculation (e.g., team_size
orcommits_on_files_touched) are calculated over the three-
month time period before the pull request was opened.

The initial selection contained 25 features. To check whether the
selected features are sufficiently independent, we conducted a pair-
wise correlation analysis using the Spearman rank correlation (p)
metric across all features. We set a threshold of p = £0.7, above
which we eliminated features. Using this cutoff, we removed 2
features, asserts_per_kloc and test_cases_per_kloc
as they where very strongly correlated (p > 0.92) with the in-
cluded test_lines_per_kloc feature. We also removed fea-
tures that could not be calculated reliably at the time a pull request
was done (followers and stars). Finally, we merged simi-
lar features (i.e. doc_files and src_files were merged to
files_changed).

The post processing phase left us with 15 features, which can be
seen in Table 1. In general, very few features are correlated at a
value p > 0.2, while only two, src_churn and files_chan-
ged, are strongly correlated at p = 0.63. While the correlation
is strong, it is below our threshold and it is not definite; therefore
we do not remove either feature from the dataset. All results are
statistically significant (n = 166, 884, p < 0.001).

4.3 Qualitative Data

To investigate how pull requests are used in practice and why
some pull requests are not merged, we performed in-depth exami-
nation of random samples of pull requests followed by coding and

349

thematic analysis. 100 pull requests were initially used by the first
coder to identify discrete reasons for closing pull requests (boot-
strapping sample), while a different set of 100 pull requests were
used by all three coders to validate the identified categories (cross-
validation sample). After cross validation, the two datasets were
merged and a further 150 randomly selected pull requests were
added to the bootstrapping sample to construct the finally analyzed
dataset for a total of 350 pull requests.

5. POPULARITY OF PULL-BASED DEVE-
LOPMENT

As of August 2013, Github reports more than 7 million reposito-
ries and 4 million users. However, not all those projects are active:
in the period Feb 2012 — Aug 2013, the GHTorrent dataset cap-
tured events initiated by (approximately) 2,281,000 users affecting
4,887,500 repositories. The majority of registered repositories are
forks of other repositories, special repositories hosting user web
pages program configuration files and temporary repositories for
evaluating Git. In the GHTorrent dataset, less than half (1,877,660
or 45%) of the active repositories are original repositories.

Pull requests are enabled by default on all repositories opened on
Github; however, not all projects are using them to collaborate. In
the period from February to August 2012, 315,522 original repos-
itories received a single commit. From those, 53,866 (17%) re-
ceived at least one pull request, while 54,205 (18%) used the shared
repository approach, having received commits by more than one
developers and no pull requests. The situation is similar during
the same period in 2013; from the 1,157,625 repositories that re-
ceived a single commit, 120,104 (10%) repositories received a pull
request while 124,316 (11%) used the shared repository approach
exclusively. In both cases, the remaining 65% and 79% are single
developer projects. Across both years, 14% of the active repos-
itories use pull requests. While pull request usage is increasing
overall, partially reflecting Github’s growth, the relative number
of repositories using the pull request model has decreased slightly.
An almost equal number of projects use pull requests and shared
repositories for distributed collaboration.

For those projects that received pull requests in 2013, the mean
number of pull requests per project is relatively low at 8.1 (median:
2, percentiles: 5%: 1, 95%: 21); however, the distribution of the
number of pull requests in projects is highly skewed. Projects ex-
ists, such as Ruby on Rails and the Homebrew package manager,
that have more that 5,000 pull requests. From the pull requests that
have been opened in 2013, 73,07% have been merged using Github
facilities, thereby indicating that pull requests in principle can work
as a means for obtaining external contributions. Moreover, even
though one might expect that it is the well known projects that re-
ceive most pull requests, this is only moderately supported by our
data: the Spearman rank correlation between the number of stars of
a project and the number of pull requests it has received is p = 0.36
(p < 0.001,n = 239,131).

Reviews on a pull request can either target the pull as whole or
the individual commits, thereby resembling a code review. On av-
erage, each pull request receives 2,89 (quantiles: 5%: 0, 95%: 11,
median: 1) discussion and code review comments. Even though
any Github user can participate in the review process, usually it is
the project community members that do so: only 0.011% of pull
request comments come from users that have not committed to the
project repository. Across projects that received pull requests in
2012, 35% also received a bug report (not pull-request based) on
the Github issue tracker, indicating moderate use of Github’s col-
laboration facilities by both the project and the project community.

Table 1: Selected features and descriptive statistics. Histograms are in log scale.

Feature Description 5% mean median 95 % Histogram
Pull Request Characteristics
num_commits Number of commits in the pull request 1.00 4.47 1.00 12.00
src_churn Number of lines changed (added + deleted) by the pull re- 0.00 300.72 10.00 891.00
quest.
test_churn Number of test lines changed in the pull request. 0.00 88.88 0.00 282.00 il
files_changed Number of files touched by the pull request. 1.00 12.12 2.00 31.00 b
num_comments Discussion and code review comments. 0.00 2.77 1.00 12.00 base..
num_participants Number of participants in the pull request discussion 0.00 1.33 1.00 4.00 I
conflict The word conflict appears in the pull request comments. — — — — —
forward_link Pull request includes links to other pull requests. — — — —_ —
Project Characteristics
sloc Executable lines of code at pull request creation time. 1,390 6,0897 26,036 302,156 all.
team_size Number of active core team members during the last 3 1.00 15.37 7.00 65.00 it
months prior to the pull request creation.
perc_ext_contribs The ratio of commits from external members over core team 8.00 52.81 54.00 95.00 -
members in the last 3 months.
commits_files_touched Number of total commits on files touched by the pull request 0.00 52.39 5.00 210.00 ol
3 months before the pull request creation time.
test_lines_per_kloc A proxy for the project’s test coverage. 1.39 1,002.61 440.80 2,147.43 al
Developer
prev_pullregs Number of pull requests submitted by a specific developer, 0.00 45.11 14.00 195.00 T
prior to the examined pull request.
requester_succ_rate % of the developer’s pull requests that have been merged up 0.00 0.59 0.78 1.00 1

to the creation of the examined pull request.

RQI: 14% of repositories are using pull requests on Github.
Pull requests and shared repositories are equally used among
projects. Pull request usage is increasing in absolute numbers,
even though the proportion of repositories using pull requests
has decreased slightly.

6. PULL REQUEST LIFECYCLE

Lifetime of pull requests. After being submitted, pull requests
can be in two states: merged or closed (and therefore not-merged).
In our dataset, most pull requests (84.73%) are eventually merged.
This result is higher than the overall we calculated for Github; we
attribute this to the fact that the dataset generation process em-
ploys heuristics to detect merges in addition to those happening
with Github facilities.

For merged pull requests, an important property is the time re-
quired to process and merge them. The time to merge distribution
is highly skewed, with the great majority of merges happening very
fast. Measured in days, 95% of the pull requests are merged in 26,
90% in 10 and 80% in 3.7 days. 30% of pull requests are merged
in under one hour; the majority of such pull requests (60%) come
from the community, while their source code churn is significantly
lower than that of the pull requests from the main team members
(medians: 5 and 13 lines respectively). If we compare the time to
process pull requests that are being merged against those that are
not, we can see that pull requests that have been merged are closed
much faster (median: 434 minutes) than unmerged (median: 2,250
minutes) pull requests. The results of an unpaired Mann-Whitney
test (p < 0.001) showed that this difference is statistically signif-
icant, with a moderately significant effect size (Cliff’s § : 0.32).
This means that pull requests are either processed fast or left lin-
gering for long before they are closed.

Based on these observations, we check whether the pull requests
originating from main team members are treated faster than those

350

from external contributors. To answer it, we performed an unpaired
Mann-Whitney test among the times to merge pull requests from
each group. The result is that while the two groups differ in a sta-
tistically significant manner (n1 = 51,829, no = 89,454,p <
0.001), the apparent difference is negligible (Cliff’s § : —0.09).
This means that merged pull requests received no special treatment,
irrespective whether they came from core team members or from
the community.

On a per project basis, if we calculate the median time to merge
a pull request, we see that in the vast majority of projects (97%),
the median time to merge a pull request is less than 7 days. The
mean time to merge is not correlated with the project’s size (p =
—0.05), nor the project’s test coverage (p = 0.27). It is how-
ever, strongly correlated (p = —0.69) with the contributor’s track
record: the more pull requests a developer has submitted to the
same project, the lower the time to process each one of them. More-
over, projects are not getting faster at pull request processing by
processing more pull requests; the correlation between the mean
time to merge and the number of pull requests the project received
is weak (p = —0.23,n = 291,p < 0.01).

Sizes of pull requests. A pull request bundles together a set of
commits; the number of commits on a pull request is generally less
than 10 (95% percentile: 12, 90% percentile: 6, 80% percentile:
3), with a median of 1. The number of files that are changed by
a pull request is generally less than 20 (95% percentile: 36, 90%
percentile: 17, 80% percentile: 7), with median number of 2. The
number of total lines changed by pull requests is on average less
than 500 (95% percentile: 1227, 90% percentile: 497, 80% per-
centile: 168) with a median number of 20.

Tests and pull requests. Except from the project’s source code,
pull requests also modify test code. In our sample, 33% of the pull
requests included modifications in test code, while 4% modified
test code exclusively. Of the pull requests that included modifica-
tions to test code, 83% were merged, which is similar to the aver-

age. This seems to go against the findings by Pham et al. [26],
where interviewed developers identified the presence of tests in
pull requests as a major factor for their acceptance. The pres-
ence of tests in a pull request does not seem to affect the merge
time either: an unpaired Mann-Whitney test shows that while there
is a statistically significant difference in the means of the pull re-
quest merge time between pull requests that include tests (median:
17 hours) and those that do not (median: 5 hours) (pr_tests =
45,488, pr_no_tests = 95,980,p < 0.001), the effect size is
small (6 = 0.18).

Discussion and code review. Once a pull request has been sub-
mitted, it is open for discussion until it is merged or closed. The
discussion is usually brief: 95% of pull requests receive 12 com-
ments or less (80% less than 4 comments). Similarly, the number
of participants in the discussion is also low (95% of pull requests
are discussed by less than 4 people). The number of comments
in the discussion is moderately correlated with the time to merge
a pull request (p = 0.48,n = 141,468) and the time to close a
non-merged pull request (p = 0.37,n = 25,416).

Code reviews are integrated in the pull request process. While
the pull request discussion can be considered an implicit form of
code review, 12% of the pull requests in our sample have also
been through explicit code reviewing, by having received com-
ments on source code lines in the included commits. Code re-
views do not seem to increase the probability of a pull request be-
ing merged (84% of reviewed pull requests are merged), but they
do slow down the processing of a pull request: the unpaired Mann-
Whitney test between the time required to merge reviewed (me-
dian: 2719 minutes) and non-reviewed (median: 295 minutes) pull
requests gives statistically significant differences with a significant
effect size (6 = 0.41). Projects that employ code reviews feature
larger code bases and bigger team sizes than those that do not.

Any Github user can participate in the discussion of any pull

request. Usually, the discussion occurs between core team mem-
bers trying to understand the changes introduced by the pull re-
quest and community members (often, the pull request creator)
who explain it. In most projects, more than half of the partici-
pants are community members. This is not true however for the
number of comments; in most projects the majority of the com-
ments come from core team members. One might think that the
bigger the percentage of external commenters on pull requests, the
more open the project is and therefore the higher the percentage of
external contributions; a Spearman test indicates that it is not true
(p=0.22,n = 291,p < 0.05).
RQ2: Most pull requests are less than 20 lines long and pro-
cessed (merged or discarded) in less than 1 day. The discussion
spans on average to 3 comments, while code reviews affect the
time to merge a pull request. Inclusion of test code does not affect
the time or the decision to merge a pull request. Pull requests re-
ceive no special treatment, irrespective whether they come from
contributors or the core team.

7. MERGING AND MERGE TIME

To understand which factors affect the decision to merge and the
time it takes to make this decision, we run the classification pro-
cesses according to the method specified in Section 3. Each clas-
sifier attempts to predict the dependent variable (merge decision,
merge time class) based on the features presented in Table 1. For
the mergetime experiment, we excluded the num_comments,
num_commits and num_participants features as they could
not be measured at the pull request arrival time. Based on the re-
sults presented in Table 2, we selected the randomforest clas-
sification algorithm for both our experiments. For the mergetime

351

Table 2: Classifier performance for the merge decision and
merge time classification tasks.

classifier AUC ACC PREC REC
mergedecision task(n = 166, 884)
binlogregr 0.75 061 095 0.55
naivebayes 0.71 059 094 0.55
randomforest 0.94 0.86 093 0.94
merge time task(n = 141, 468)
multinomregr 0.61 0.44 — —
naivebayes 0.63 0.38 — —
randomforest 0.73 0.59 — —

experiment, randomforest achieved an AUC of 0.73, with a
prior probability of 31%, 35% and 34% for each of the hour, day
and more than a day classes respectively. For the mergedeci-
sion experiment, the prior probability for the dominant class was
84% which allowed the algorithm to achieve near perfect scores.
In both cases, the stability of the AUC metric across folds was good
(mergetime: g4uc = 0.019, mergedecision: g4uc = 0.008).

To extract the features that are important for each classification
task, we used the process suggested by Genuer et al. [12]. Specifi-
cally, we run the algorithm 50 times on a randomly selected sample
of n = 83,442 items, using a large number of generated trees
(2000) and trying 5 random variables per split. We then used the
mean across 50 runs of the Mean Decrease in Accuracy metric, as
reported by the R implementation of the random forest algorithm,
to evaluate the importance of each feature. The results can be seen
in Figure 3.

Finally, to validate our feature selection, we rerun the 10-fold
cross-validation process with increasing number of predictor fea-
tures starting from the most important one per case. In each itera-
tion step, we add to the model the next most important feature. We
stop the process when the mean AUC metric is within 2% from the
value in Table 2 for each task. The selected set of features should
then be enough to predict the classification outcome with reason-
able accuracy, and therefore can be described as important [12].

For the mergedecision task, the feature importance result is
dominated by the commits_on_files_touched feature. By
re-running the cross validation process, we conclude that it suffices
to use the features commits_on_files_touched, sloc and
files_changedto predict whether a pull request will be merged
(AuC: 0.94, Acc: 0.86). Therefore, we can conclude that the deci-
sion to merge a pull request is affected by whether it touches an ac-
tively developed part of the system (a variation of the “yesterday’s
weather” hypothesis), how large the project’s source code base is
and how many files the pull request changes.

For the mergetime task, there is no dominant feature; the clas-
sification model re-run revealed that at least 6 features are required
to predict how fast a pull request will be merged. The classification
accuracy was moderate (AUC: 0.74, AcC: 0.59), but still improved
over random selection. The results provide evidence that the de-
veloper’s previous track record, the size of the project and its test
coverage and the project’s openness to external contributions seem
to play a significant role on how fast a pull request will be accepted.

RQ3: The decision to merge a pull request is mainly influenced
by whether the pull request modifies recently modified code. The
time to merge is influenced by the developer’s previous track
record, the size of the project and its test coverage and the
project’s openness to external contributions.

Merge decision variable importance
(n = 83442, ntree = 2000, mtry = 5, runs = 50)

commits_on_files_touched- .
sloc- .

test_lines_per_kloc-

files_changed- .

team_size-

perc_external_contribs-

num_commits- .
)
5 num_participants- .
g
S src_churn- .
prev_pullreqs- o

requester_succ_rate-
forward_links-
num_comments-
test_churn- .
main_team_member- @
conflict-

0 300 600 900

Mean Decrease in Accuracy

Variable

commits_on_files_touched-

Merge time (3 classes) variable importance
(n = 83442, ntree = 2000, mtry = 5, runs = 50)

requester_succ_rate- .

sloc-
test_lines_per_kloc- .
prev_pullregs-
perc_external_contribs-
src_churn-

team_size- .

main_team_member-
files_changed-
test_churn- .
conflict-
forward_links- e

300 400

200
Mean Decrease in Accuracy

Figure 3: Random forest feature importance for predicting merge decision (a) and merge time (b)

Table 3: Reasons for closing pull requests without merging.

Reason Description %

obsolete The PR is no longer relevant, as the project 4
has progressed.

conflict There feature is currently being implemented 5
by other PR or in another branch.

superseded A new PR solves the problem better. 18

duplicate The functionality had been in the project 2
prior to the submission of the PR

superfluous PR doesn’t solve an existing problem or add 6
a feature needed by the project.

deferred Proposed change delayed for further investi- 8
gation in the future.

process The PR does not follow the correct project 9
conventions for sending and handling pull re-
quests.

tests Tests failed to run. 1

incorrect im- The implementation of the feature is incor- 13

plementation rect, missing or not following project stan-
dards.

merged The PR was identified as merged by the hu- 19
man examiner

unknown The PR could not be classified due to lacking 15

information

8. UNMERGED PULL REQUESTS

As most pull requests are indeed merged, it is interesting to ex-
plore why some pull requests are not merged. For that reason, we
manually looked into 350 pull requests and classified the reasons
in categories as described in Section 4.3. The cross-validation of
the categories on a different set of pull requests revealed that the
identified categories are enough to classify all reasons for closing
a pull request, even though differences existed among the coders.
The results are presented in Table 8.

The results show that there is no clearly outstanding reason for
closing pull requests. However, if we group together close reasons
that have a timing dimension (obsolete, conflict, superseded),
we see that 27% of unmerged pull requests are closed due to con-
current modifications of the code in project branches. Another 16%
(superfluous, duplicate, deferred) is closed as a result of the con-
tributor not having identified the direction of the project correctly

352

and is therefore submitting uninteresting changes. 10% of the con-
tributions are rejected with reasons that have to do with project
process and quality requirements (process, tests); this may be an
indicator of processes not being communicated well enough or a
rigorous code reviewing process. Finally, another 13% of the con-
tributions are rejected because the code review revealed an error in
the implementation.

Moreover, for 15% of the pull requests, the human examiners
could not identify the cause of not merging them. This usually
means that there was no discussion prior to closing the pull request
or the pull request was automatically initiated and managed by ex-
ternal tools; incidentally, all but one project that had such pull re-
quests in our random sample did not use Github’s issue tracking
facilities. Consequently, the use of pull requests by such projects
may be superficial, only complementing parts of a process managed
by other tools. Finally, the human examiner could identify 19% of
the pull requests as merged even though the automated heuristics
could not; this means that the proportion of merged pull requests
reported in this study (84%) may be slightly underrated, due to non-
inclusive heuristics. By extrapolation, the total number of merged
pull requests could be as high as 90%.

It is interesting to note that only 13% of the contributions are
rejected due to technical issues, which is the primary reason for
code reviewing, while a total 53% are rejected for reasons having
to do with the distributed nature of the pull request process (con-
current modifications) or the way projects handle communication
of project goals and practices. This may mean that the pull-based
model (or at least the way Github implements it) may be transpar-
ent for the project’s core team [10] but not so much for potential
contributors. The fact that human examiners could not understand
why pull requests are rejected even after manually reviewing them
supports this hypothesis further.

RQ4: 53% of pull requests are rejected for reasons having to do
with the distributed nature of pull based development. Only 13%
of the pull requests are rejected due to technical reasons.

9. DISCUSSION
9.1 The Pull-based Development Model

Development turnover. One of the promises of the pull request
model is fast development turnover, i.e., the time between the sub-
mission of a pull request and its acceptance in the project’s main
repository. In various studies of the patch submission process in
projects such as Apache and Mozilla, the researchers found that the
time to commit 50% of the contributions to the main project repos-
itory ranges from a few hours [30] to less than 3 days [32, 3]. Our
findings show that the majority (80%) of pull requests are merged
within 4 days, 60% in less than a day, while 30% are merged within
one hour (independent of project size). These numbers are indicat-
ing that pull-based development through pull requests may be more
efficient than traditional email-based patches. Also, it is project-
related factors that affect the turnover time, rather than characteris-
tics of the pull request itself. This means that it is mostly up to the
project to tune its processes (notably, testing coverage and process
openess) for faster turnover.

Managing pull requests. The interviewees in Dabbish et al. [10]
identify the management of pull requests as the most important
project activity. Dabbish et al. mention that project managers
“made inferences about the quality of a code contribution based
on its style, efficiency, thoroughness (for example, was testing in-
cluded?), and the submitter’s track record”. Some of the inspec-
tion points mentioned by project managers (testing code in pull
requests, track record) are also included as features in our classi-
fication models, but they do not seem to affect the merge decision
process as much. However, the developer track record is important
for the speed of processing pull requests. Moreover, we found that
from rejected pull requests, almost 53% are rejected due to the dis-
tributed nature of pull-based development. While the pull request
process is transparent from the project manager’s side (and praised
for that by Dabbish et al.’s interviewees), our findings suggest it is
less so from the potential contributor’s point of view.

Attracting contributions. Pham et al. [26] mention that pull re-
quests make casual contributions straightforward through a mech-
anism often referred to as “drive-by commits”. As the relative cost
to fork a repository is negligible on Github (54% of the repositories
are forks), it is not uncommon for developers to fork other reposito-
ries to perform casual commits. Such commits might be identified
as pull requests that contain a single commit from users that are not
yet part of the project’s community and comprise 7% of the total
number of pull requests in 2012. Moreover, 3.5% of the forks were
created for the sole purpose of creating a drive-by commit. More
work needs to be done for the accurate definition and assessment
of the implications of drive-by commits.

Crowd sourcing the code review. An important part of the
contribution process to an open source project is the review of
the provided code. Rigby and German [29], report that 80% of
the core team members are also participating in the code reviews
for patches, a number that is also in line with earlier findings by
Mockus et al. [23]. In our dataset, we found that all core team
members across all projects have participated in at least one dis-
cussion in a pull request. Moreover, we found that in all projects
in our dataset, the community discussing pull requests is actually
bigger than the core team members.

Democratizing development. One of the key findings of this
work is that pull requests are not treated differently based on their
origin; both core team members and external developers have equal
chances to get their pull request accepted within the same time
boundaries. Indeed, even the classification models we built assign
to the corresponding feature low importance. In our opinion, this

353

is a radical change in the way open source development is being
carried out. Before pull requests, most projects employed mem-
bership promotion strategies [18] to promote interested third party
developers to the core team. With pull requests, developers can
contribute to any repository, without loss of authorship informa-
tion. The chances that those contributions will get accepted are
higher with pull requests; across Github, more than 70% of exter-
nal contributions are merged (40% in other studies [29, 32]). Spe-
cialized sites such as Ohloh and CoderWall track developer activity
and help developers advertise their expertise. We believe that the
democratization of the development effort will lead to a substan-
tially stronger commons ecosystem; this remains to be verified in
further studies.

9.2 TImplications

Contributors. Prospective project contributors want their con-
tributions to be accepted. Our research shows that pull requests that
affect parts of the project that have been changed often lately (are
“hot”) are very likely to get merged. Also 80% of the merged pull
requests modify three or less files and include patches less than 100
lines long. Therefore, our advice to contributors seeking to add a
particular feature or fix a bug is to “keep it short”. If the contri-
bution’s purpose is to make the contributor known to the project
community, it is also beneficial to affect a project area that is hot.

Core team. The primary job of the core team is to evaluate a list
of pull requests and decide whether to apply them or not. To make
sure pull requests are processed on time, the obvious strategy is to
invest in a comprehensive test suite and ensure that the project pro-
cesses are sufficiently open and transparent. To avoid development
concurrency related issues, core team members could ask contrib-
utors to communicate their indented changes by opening an issue
that is then augmented by code and converted to a pull request. The
project should include a clear articulation of what is expected from
a pull request, for example tests or localized changes, on a promi-
nent location in the project’s Github page.

A direct application of our results is the construction of fools to
help the core team prioritize their work; since we can predict with
very high accuracy whether a pull request will be merged or not,
a potential tool might suggest which pull requests can be merged
without further examination by the time they arrive. Other tools
might examine the quality of the pull request at the contributor’s
site, and based on the project’s profile, would provide automated
suggestions for improvement (e.g., more tests, documentation).

9.3 Threats to Validity

Internal validity. Our statistical analysis uses random forests as
a way to identify and rank cross-factor importance on two response
variables. The classification scores in the mergetime case are not
perfect, so feature ranking may not be exactly the same given a dif-
ferent dataset. Further work is needed on validating the models on
data from different sources (e.g., Bitbucket) or projects in different
languages.

To analyze the projects, we extracted data from i) the GHTorrent
relational database ii) the GHTorrent raw database iii) each project’s
Git repository. Differences in the data abstraction afforded by each
data source may lead to different results in the following cases: 1)
Number of commits in a pull request: During their lifecycle, pull
requests may be updated with new commits. However, when de-
velopers use commit squashing, the number of commits is reduced
to one. Therefore the number of commits metric used in our anal-
ysis is often an idealized version of the actual work that took place
in the context of a pull request. ii) Number of files and commits
on touched files: The commits reported in a pull request also con-

tain commits that merge branches, which the developer may have
merged prior to performing his changes. These commits may con-
tain several files not related to the pull request itself, which in turn
affects our results. Therefore, we filtered out those commits, but
this may not reflect the contents of certain pull requests.

External validity. In our study, we used merged data from sev-
eral projects. The statistical analysis treated all projects as equal,
even though differences do exist. For example, the larger project in
our dataset, Ruby on Rails, has more than 7,000 pull requests while
the smaller ones 200. While we believe that the uniform treatment
of the samples led to more robust results in the classification ex-
periment, variations in pull request handling among projects with
smaller core teams may be ironed out. The fact that we performed
random selection cross-validation (instead of the more common
sliding window version) and obtained stable prediction results is,
nevertheless, encouraging.

10. RELATED WORK

Arguably, the first study of DVCS systems as input for research
was done by Bird et. al in [6]. One finding related to our work
is that maintaining authorship information leads to better identifi-
cation of the developer’s contributions. Bird and Zimmermann [7]
investigated the use of branches in DVCSs (in Section 2, we refer
to this DVCS use as “shared repository”) and found that excessive
use of branching may have a measurable, but minimal, effect on
the project’s time planning. On the other hand, Barr et al. [2] find
that branches offer developers increased isolation, even if they are
working on inter-related tasks. Finally, Shihab et al. [31] inves-
tigate the effect of branching on software quality; they find that
misalignment of branching structure and organizational structure is
associated with higher post-release failure rates.

This work builds upon a long line of work on patch submission
and acceptance. In reference [23], Mockus et al. presented one
of the first studies of how developers interact on large open source
projects in terms of bug reporting. Bird et al. [4] introduced tools
to detect patch submission and acceptance in open source projects.
Weillgerber et al. presented an analysis of patch submission, where
they find that small patches are processed faster and have higher
change to be accepted into the repository. Baysal et al. [3] find
that 47% of the total patches make it into the source code reposi-
tory, a number much lower than our finding for pull requests (84%).
Jiang et al. [20] analyzed patch submission and acceptance on the
Linux kernel, which follows the pull-based development model in a
more decentralized and hierarchical manner. They find that the re-
viewing time is becoming shorter through time while contributors
can reduce it by controlling, among others, the number of affected
subsystems and by being more active in their community. Those
findings are similar to ours, where we find that the contributor’s
previous track record and number of lines in the pull request affect
the time to merge it.

An inherent part of pull-based development is peer-reviewing the
proposed changes. In that sense, our work complements the work
by Rigby and Bird [28] and supports many of their findings. Both
works find that the peer review discussion is usually short, that
peer-reviewed changes are small and that reviews happen before
the changes are committed and are very frequent. Rigby and Bird’s
work examines industry-led projects and different code reviewing
processes than ours. The fact that many aspects of the results are
indeed similar leads us to hypothesize that it is the underlying pro-
cess (pull-based development) that govern the reviewing process.

Recently, Github has been the target of numerous publications.
Dabbish et.al [10] found that Github’s transparency helps develop-
ers manage their projects, handle dependencies more effectively,

354

reduce communication needs, and decide what requires their atten-
tion. Peterson [25] finds that open source software (0SS) develop-
ment on Github works mostly similarly to traditional 0SS devel-
opment, with the exception of faster turnaround times. Pham et
al. [26] examined the testing practices of projects on Github and
found that the lower barriers to submission hinders high-quality
testing as the work load on project member increases. Finally, Mc-
Donald and Goggins [22] find that increased transparency in pull
requests allows allows teams to become more democratic in their
decisions.

11. CONCLUSION

The goal of this work is to obtain a deep understanding of the
pull-based software development model, as used for many impor-
tant open source projects hosted on Github. To that end, we have
conducted a statistical analysis of millions of pull requests, as well
of a carefully composed set of hunders of thousands of pull requests
from projects actively using the pull-based model.

Our main findings are as follows:

1. The pull-based model is not as popular as we had anticipated:
Only 14% of the active projects use pull requests, but this
number is equal to the number of projects using the shared
repository approach (Section 5).

. Most pull requests affect just a few dozen lines of code, and
60% are processed (merged or discarded) in less than a day.
The merge decision is not affected by the presence of test
code. Core members and external developers have equal
chances to get their pull request accepted (Section 6).

3. The decision to merge is mainly affected by whether the pull
request modifies recently modified code. The time to merge
is influenced by various factors, including the developer’s
track record, and the project’s test coverage.

. 53% of non-merged pull requests are rejected for reasons
related to the distributed nature of pull-based development.
Only 13% of the pull requests are rejected due to technical
reasons.

Our findings have the following implications:

1. The pull-based model calls for a revision of some of our
current understanding of open source software development.
Interesting research directions might include the formation
of teams and management hierarchies, novel code reviewing
practices and the motives of developers to work in a highly
transparent workspace.

. Teams seeking to attract external contributors and to speed up
merging of contributions can do so not just by providing clear
pull request processing guidelines, but also by incorporating
a high coverage test suite.

3. Insufficient task articulation seems the most important cause
for wasted (non-merged) work: Devising new ways for in-
tegrating task coordination into the pull-based model is a
promising area of further research.

Last but not least, our dataset provides a rich body of informa-
tion on open source software development. The dataset as well as
custom-built Ruby and R analysis tools are available on the Github
repository gousiosg/pullregs, along with instructions on how to use
them.

12. ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their com-
ments. This work is partially supported by the Marie Curie IEF
298930 — SEFUNC and the NW0 639.022.314 — TestRoots projects.

13. REFERENCES

[1] J. Anvik, L. Hiew, and G. C. Murphy. Who should fix this
bug? In Proceedings of ICSE "06, pages 361-370. ACM,
2006.

[2] E.T. Barr, C. Bird, P. C. Rigby, A. Hindle, D. M. German,
and P. Devanbu. Cohesive and isolated development with
branches. In Proceedings of FASE ’12. Springer, 2012.

[3] O. Baysal, R. Holmes, and M. W. Godfrey. Mining usage
data and development artifacts. In Proceedings of MSR *09,
pages 98-107. IEEE, 2012.

[4] C. Bird, A. Gourley, and P. Devanbu. Detecting patch
submission and acceptance in oss projects. In Proceedings of
MSR °07, page 26. IEEE Computer Society, 2007.

[5] C. Bird, A. Gourley, P. Devanbu, A. Swaminathan, and
G. Hsu. Open borders? Immigration in open source projects.
In Proceedings of MSR ’07, page 6. IEEE Computer Society,
2007.

[6] C.Bird, P. C. Rigby, E. T. Barr, D. J. Hamilton, D. M.
German, and P. Devanbu. The promises and perils of mining
Git. In Proceedings of MSR ’09, pages 1-10, 2009.

[7] C.Bird and T. Zimmermann. Assessing the value of
branches with what-if analysis. In Proceedings of FSE ’12,
pages 45:1-45:11. ACM, 2012.

[8] S. Chacon. Pro Git. Expert’s Voice in Software
Development. Apress, 1rst edition, Aug 2009.

[9] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb. Social coding
in Github: transparency and collaboration in an open
software repository. In Proceedings of CSCW ’12, pages
1277-1286. ACM, 2012.

[10] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb. Leveraging
transparency. IEEFE Software, 30(1):37-43, 2013.

[11] B. Fluri, M. Wursch, M. PInzger, and H. Gall. Change
distilling: Tree differencing for fine-grained source code
change extraction. I[EEE Trans. Soft. Eng., 33(11):725-743,
2007.

[12] R. Genuer, J.-M. Poggi, and C. Tuleau-Malot. Variable
selection using random forests. Pattern Recognition Letters,
31(14):2225 - 2236, 2010.

[13] E. Giger, M. D’ Ambros, M. Pinzger, and H. C. Gall.
Method-level bug prediction. In In Proceedings of ESEM
’12, pages 171-180. ACM, 2012.

[14] E. Giger, M. Pinzger, and H. Gall. Predicting the fix time of
bugs. In In Proceedings of RSSE 10, pages 52-56. ACM,
2010.

[15] T. Girba, S. Ducasse, and M. Lanza. Yesterday’s weather:
guiding early reverse engineering efforts by summarizing the
evolution of changes. In Proceedings of ICSM 04, pages 40
— 49, sept. 2004.

[16] G. Gousios. The GHTorrent dataset and tool suite. In
Proceedings of MSR ’13, May 2013.

[17] N. V. Ivankova, J. W. Creswell, and S. L. Stick. Using
mixed-methods sequential explanatory design: From theory
to practice. Field Methods, 18(1):3-20, 2006.

[18] C. Jensen and W. Scacchi. Role migration and advancement
processes in OSSD projects: A comparative case study. In
Proceedings of ICSE "07, pages 364-374. IEEE Computer
Society, 2007.

[19] G. Jeong, S. Kim, T. Zimmermann, and K. Yi. Improving
code review by predicting reviewers and acceptance of
patches. Research on Software Analysis for Error-free
Computing Center Tech-Memo (ROSAEC MEMO), 20009.

[20] Y. Jiang, B. Adams, and D. M. German. Will my patch make
it? and how fast?: case study on the Linux kernel. In
Proceedings of MSR ’13, pages 101-110. IEEE Press, 2013.

[21] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch.
Benchmarking classification models for software defect
prediction: A proposed framework and novel findings. [EEE
Trans. Softw. Eng., 34(4):485-496, July 2008.

[22] N. McDonald and S. Goggins. Performance and participation
in open source software on github. In CHI ’13 Extended
Abstracts on Human Factors in Computing Systems, CHI EA
’13, pages 139-144. ACM, 2013.

[23] A. Mockus, R. T. Fielding, and J. D. Herbsleb. Two case
studies of open source software development: Apache and
Mozilla. ACM Trans. Softw. Eng. Methodol., 11(3):309-346,
2002.

[24] N. Nagappan and T. Ball. Use of relative code churn
measures to predict system defect density. In Proceedings of
ICSE °05, pages 284-292. ACM, 2005.

[25] K. Peterson. The github open source development process.
Technical report, Mayo Clinic, May 2013.

[26] R.Pham, L. Singer, O. Liskin, F. Figueira Filho, and
K. Schneider. Creating a shared understanding of testing
culture on a social coding site. In Proceedings of ICSE 13,
pages 112-121. IEEE Press, 2013.

[27] J. Ratzinger, M. Pinzger, and H. Gall. EQ-mine: predicting
short-term defects for software evolution. In Proceedings of
FASE 07, pages 12-26. Springer-Verlag, 2007.

[28] P.C. Rigby and C. Bird. Convergent software peer review
practices. In Proceedings of FSE ’13, 2013.

[29] P. C. Rigby and D. M. German. A preliminary examination
of code review processes in open source projects. University
of Victoria, Canada, Tech. Rep. DCS-305-1IR, 2006.

[30] P.C. Rigby, D. M. German, and M.-A. Storey. Open source
software peer review practices: a case study of the Apache
server. In Proceedings of ICSE 08, pages 541-550. ACM,
2008.

[31] E. Shihab, C. Bird, and T. Zimmermann. The effect of
branching strategies on software quality. In In Proceedings of
ESEM 12, pages 301-310. ACM, 2012.

[32] P. Weilgerber, D. Neu, and S. Diehl. Small patches get in! In
Proceedings of MSR "08, pages 67-76. ACM, 2008.

355

