
Combining Micro-Blogging and IDE Interactions
to Support Developers in their Quests

Anja Guzzi Martin Pinzger Arie van Deursen
Delft University of Technology – The Netherlands
{a.guzzi, m.pinzger, arie.vandeursen}@tudelft.nl

Abstract—Software engineers spend a considerable amount of

time on program comprehension. Although vendors of Integrated

Development Environments (IDEs) and analysis tools address this

challenge, current support for reusing and sharing program com-

prehension knowledge is limited. As a consequence, developers

have to go through the time-consuming program understanding

phase multiple times, instead of recalling knowledge from their

past or other’s program comprehension activities.

In this paper, we present an approach to making the knowledge

gained during the program comprehension process accessible, by

combining micro-blog messages with interaction data automati-

cally collected from the IDE. We implemented the approach in an

Eclipse plugin called James and performed a first evaluation of

the underlying approach effectiveness, assessing the nature and

usefulness of the collected messages, as well as the added benefit

of combining them with interaction data.

I. INTRODUCTION

In order to be able to conduct a software maintenance task,
software developers need to build up a substantial amount of
knowledge about the software being changed [1]. For example,
developers need to understand dependencies between classes,
the impact of changes to particular methods, or the ways in
which two services interact. Once the maintenance task is
completed, most of this knowledge built up during the process
of conducting the task will “disappear”: the only permanent
result is the modified software, and, optionally, some updates
made to the requirements or (UML) design documentation.
This is an unfortunate situation, since this knowledge may
be valuable for future maintenance tasks, possibly being
conducted by different developers. In our research, we seek
ways to avoid this loss of precious knowledge.

In this paper, we present a novel light-weight approach that
integrates (Twitter-like [2]) micro-blogging into the Integrated
Development Environment (IDE). Inspired by the tremendous
success of Twitter, we first of all encourage developers to
micro-blog about their activities. Furthermore, we propose to
combine these short messages with interaction data automat-
ically collected from the IDE. One could say that we add
“location awareness” to the messages by recording which, e.g.,
classes, methods, and work products are inspected or modified
by the developer.

The approach is implemented into a prototype tool called
James, which includes an Eclipse plugin allowing developers
to write and view new messages, and which collects IDE
events triggered by the developer. Using James, we conducted
a set of explorative user studies, in which we evaluate:

James Core

navigation
data

messages messages
collector

interaction
traces builder

knowledge
builder

DB

Visualizations
Statistics

...

Recommenders

James Core

interaction
data

messages messages
collector

interaction
traces builder

knowledge
builder

DB

Visualizations
Statistics

...

Recommenders

Fig. 1. Overview of the James approach

(1) to what extent developers are willing to communicate
their activities through micro-blog messages; (2) the sort of
information they typically provide in the messages; and (3) the
quality of the connections between messages and interactions
as established by our algorithms. The results of our explorative
studies provide strong indication of the great potential in the
combination of micro-blogging and automated collection of
IDE interaction data.

Natural next steps for our work are to share the collected
knowledge among all the team members, to integrate other
elements of social networks into the IDE, such as the ability to
(un)follow team mates, specific projects, packages, or classes,
and the adoption of recommender systems based on interaction
and micro-blogging histories [3]. The focus of the present
paper is on the messages themselves and their connection to
IDE interactions, providing a necessary first step towards such
a collaborative development environment.

II. APPROACH: QUEST = MESSAGE + INTERACTIONS

In this paper, we aim at combining messages and IDE
interactions to record knowledge built up during software
maintenance tasks. We discuss how we collect and group
interaction data, and how we expect developers to report on
their activities.

The overall approach is illustrated in Figure 1. Developers
interact with their IDE as they normally do, resulting in nav-
igation data collected as interaction traces by an IDE plugin.
Furthermore, developers can actively write (short) messages,
which are also collected by the IDE. Both data sources are
linked to each other and stored in a repository. We refer to
this combination as quest. The stored data can then be used in
visualizations, recommendations, or other presentation forms
helpful to developers.

ioana verebi
978-1-4244-8628-1/10/$26.00 ©2010 IEEE

ioana verebi

ioana verebi
26th IEEE International Conference on Software Maintenance in Timișoara, Romania

ioana verebi

A. Capturing IDE Interactions
We want to capture a fine granularity model of how de-

velopers interact with the IDE. Our minimal independent unit
capturing user interaction within the environment (the IDE)
is called Action. Actions refer to IDE features that can be
executed by the user, such as opening a file, changing tab,
selecting text, performing an editing operation, closing a file,
running a test case, etc. For every action detected, we record
the developer who performed it, the IDE entity involved (i.e.,
Java file X , Package Explorer view, etc.), the type of action
(i.e., opening/closing of a view, editing, etc.) and the date and
time at which the action has been performed.

t

t

t

Fig. 2. Example of user actions within the IDE on a timeline

Figure 2 shows a timeline of actions a developer performs
within an IDE while working on an ordinary task. On the time
line we draw a vertical mark for every action detected, with
more recent actions on the right. Actions are automatically
collected and then processed. We group actions into inter-
actions according to their time proximity. Actions at a short
time distance apart from each other will be part of a single
interaction, modeling the fact that people take a few instants
to decide on what to focus on. As an example: when a user
closes a number of files one after the other (which is recorded
as three distinct actions), we consider this a single interaction
with the IDE (which would be described as “closing files X,
Y, Z”). Our heuristic is based on the time elapsed between
one action and the next one. After the initial action, every
other action in the same interaction has been performed within
x ≤ ∆t from the previous one. From observations during our
initial experiments, we set ∆t = 3 seconds.

t

t

t

Fig. 3. Example of grouping actions into five interactions

As an example, Figure 3 visually depicts the grouping of
the actions previously presented into five interactions. We can
also notice that single interactions can differ from each other
by various factors and degrees. Some interactions group few
actions, while some others are longer, grouping more actions.

B. Micro-blogging within the IDE
Users are requested to explicitly tell what they are doing

in the form of a short, Twitter-like, message. Developers are
encouraged to contribute in first person, discussing the things
they care about in their code. For every message, we also
record the developer who wrote it and the date and time at
which the message has been written. To encourage developers
to keep their messages short, we propose a (Twitter-like)
message length indicator, suggesting a maximum message
length of 140 characters.

James Core

navigation
data

status
messages

status
messages
collector

interaction
traces builder

knowledge
builder

DB

Visualizations
Statistics

...

Recommenders

?

James Core
messages

! !

?

!

!

Fig. 4. Developers sending micro-blog messages

Figure 4 depicts the micro-blogging scenario. Developers
write and send a series of short messages, in which they
can provide information about their activities and express
questions, remarks or any other information related to the
software project. Messages are collected and stored into a
central database.

C. Quests: Building a Knowledge Base
In our approach, we combine a micro-blog message and a

series of interactions into a quest. We refer to the message as
quest goal and to the interactions as quest trace. The quest
trace contains all the collected interactions until a new quest
goal is entered by the developer.

Figure 5 depicts how quests act as “containers” for a
series of interactions. Micro-blog messages are shown as taller
lines with respect to actions, while quests are represented as
rectangles.

t

t

t

Fig. 5. Quests are formed by one message and a series of interactions

The chronological history of user interactions with the
IDE can be suitable for the identification of development
sessions. According to Robbes et al., development sessions,
defined as phases during which a developer actively modifies
a software system, represent a valuable resource for program
comprehension as they hold useful information to comprehend
the development plans of developers [4]. In our approach, not
only information about the developer activities are available,
but also explicit messages written by the developer himself.
Such messages potentially contain relevant information to
better understand the session’s course.

D. Implementation
We implemented the proposed approach in an Eclipse plug-

in named James. James follows a client-server architecture.
The client plug-in collects navigation information and allows
users (i.e., developers) to enter quest messages. Messages and
actions are sent to the James server in order to be stored and
analyzed. Note that our approach is language-independent,
thus can be applied to any IDE (e.g., IBM Jazz, Microsoft
Visual Studio). We also anticipate the implementation of a
fully web-based client. More information on James can be
found at http://www.st.ewi.tudelft.nl/∼guzzi/james/.

III. INITIAL EVALUATION

We conducted an initial evaluation with 7 developers in 5
different settings. The goal of this explorative study was to
provide first insights into the following research questions:
(1) How often do developers change quest? (2) What do
developers write in messages? and (3) How can quests support
programming activities in multi-developer projects?

A. Study Setup
In all 5 settings, the developers used Eclipse with the James

plug-in installed, that collected their quest messages and IDE
interactions. We clarified the use of James to the developers.

Setting I was a pilot study that involved three developers
who were asked to micro-blog while performing the following
maintenance task on the James plug-in itself (4,5k lines
of code): Implement a new feature that retrieves the latest
messages from the database and properly displays them in the
James view. Each participant performed the task (which took
approximately 4 hours) on her own. The goal of this pilot
study was mainly to find out about the content of messages.
One of the participants was an expert of the code, while the
other two only knew the basics of the approach. Only two of
the developers were familiar with micro-blogging.

Settings II to V were with developers working on academic
and industrial software projects. We invited one developer per
project to use James while performing her typical development
and maintenance activities for two weeks. Both developers in
Setting II and Setting III were focusing on bug fixing: one
in an industrial project (200k lines of code) and the other
one in an academic project (19k lines of code). In Setting IV,
the developer was testing a 4k lines of Java code academic
project. All the developers were expert of the code they were
maintaining. The main activity in Setting V was trying to
understand the structure and dependencies between Eclipse
plug-ins. Only the developer in Setting II was not familiar
with micro-blogging.

B. The Data Set
We collected a total of 300 messages in the 5 settings. For

each of the three developers in Setting I, there was a large
number of messages (35-40) in a single development session,
whereas in Setting II to V we identified a total of 29 sessions,
most of which counted between 3 and 9 messages. Analyzing
the quest traces, we noticed that the traces of more than half
of the quests contain between 1 and 10 interactions. Looking
at the interactions, we found that the majority of interactions
(66%) comprise only a single action.

C. Data Analysis
1) How often do developers change quest? More than

half of the messages have been written within 5 minutes
from the previous one. Of the remaining messages, many
were written either within a short (10 minutes) or after a
longer (1 hour or more) delay. Almost no message was written
after 20-30 minutes from the previous one. Such a trend is
common to all our 5 settings, indicating that the frequency

at which developers update their quest message is probably
independent from the setting in which they work. The number
and frequency of collected messages are a first indication that
users are willing to share what they are doing.

2) What do developers write in messages? To answer
this question, we had a detailed look at the content of all
the 300 collected messages. The content of messages in a
development session seems to be sufficient to get an idea of
what the developer has been working on during the session.
As an example, Figure 6 shows a word cloud1 created from
messages entered by one of the participants in Setting I, who
worked on implementing the retrieval of messages from a
database. The size of a word corresponds to its frequency
in the messages.

Fig. 6. Most used words in messages by one of the users in Setting I

We also observed that a fair share (28%) of the messages
reference a code element (package, class, method or attribute).
Interestingly, the portion of messages mentioning at least one
code element is similar in every setting. To give a better feeling
about their content, we present a subset of messages collected
during our study:

1) “first figuring out how to connect to the server”
2) “testing to see the importance of the synchronized state-

compartor”
3) “Trying to figure out how to create a proper UUID from

an int in the database.”
4) “Finding out that ’blue’ actually means green here”
5) “No real significant differences found between

CrawlQueue / SpeedQueue”,
We noticed that we can distinguish quest messages express-

ing past, current or future activities and messages commenting
on (parts of) the code. Some users also wrote to-do’s. For
this reason, we manually categorized messages according to
what they expressed. We observe that 33% of the messages are
about future intentions (“Now I am going to..”), 21% on a past
activity (“I just did...”), while 23% covers an ongoing activity
(“I am..”). The remaining messages are divided between
comments (“This is like so”, 16%) and todo’s (‘Later, I will
need to..”, 6%). Figure 7 visually describes the result of this
categorization. We can see that only a minor part of messages
does not fall into one of the proposed categories.

Inspecting quest messages very close to each other (within
30 seconds), we noticed that they are either directly correlated,
with the second message acting as “annotation” for the pre-
vious quest message, or it is the case that the first message
states the end of the previous activity.

1Image created by Wordle.net (http://www.wordle.net/); colors are chosen
at random and do not represent any meaningful attribute.

intention (future)

33%

ongoing activity

23%

report (past)

21%

comment

16%

todo

6%

remaining

1%
total

intention

(future)

ongoing

activity

report (past)

comment

Fig. 7. Categories of what developers write in messages

Regarding the length of messages, more than half of the
messages (58%) are between 20 and 80 characters long, with
an average of 54.5 characters per message. This indicates that
the limit suggested by James of 140 character per message is
sufficient to express what they are doing.

3) How can quests support programming activities in

multi developer projects? Concerning this question, we
analyzed quests from Setting I that referred to Java classes
and methods. As result, we found that a portion of these
messages refers to common problems faced by the developers,
as demonstrated by the following example:

User A: “I think startPlugin() and stopPlugin() are good
places to start/stop the job.” (Q5)

User B: “first figure out where the job is invoked ;-)” (Q6)
User B: “postponed starting - have to figure out first where

to start the job” (Q7, 16 minutes after Q6)
We can see that the answer to Q6 is directly embedded

in Q5. However, not having access to this information, user
B spent quite some time browsing class files in the project
before eventually reaching the same conclusion as user A (2
minutes after setting Q7). User B could have saved almost 20
minutes by having easy access to the quest message previously
expressed in Q5 by user A.

We hypothesize that easy and light-weight accessibility to
the knowledge base about the system could have helped (latter)
developers in their programming activity.

D. Summary of Findings
The number, frequency and content of collected messages

indicate that developers are willing and inclined to share what
they are doing by means of a short micro-blog message,
regardless from the setting in which they work. Developers
participating in our pilot study (Setting I) wrote a new quest
message, in most cases, every five minutes.

We found 5 categories of messages and observed that
one third of the messages express future intentions. Status
updates referring to concluded and ongoing activities each
account for one fifth of all the messages. Remaining messages
included comments and to-do’s. More than one fourth of all
the collected messages contained an explicit reference to a
code element (e.g., a class name).

We further analyzed how messages connect to interactions
and we investigated whether these connections are in principle
meaningful. By manually comparing quest goals expressed in
similar messages, we observed that quests provide information
valuable to other developers working on similar tasks, both in
the associated traces and in the goals themselves.

From the exploratory evaluation, we can conclude that
knowledge about the software being changed, constantly built
up by developers, can be captured in the form of quests.
Accessibility to this knowledge base has a great potential for
supporting developers in their maintenance tasks.

E. Future Research Directions

Through the sharing of the knowledge captured by James,
developers could take advantage of the knowledge of others.
This paves the way for a range of applications, such as increas-
ing knowledge awareness among developers or recommending
comprehension paths. For example, developers could actively
“follow” (in a Twitter-like manner) each other, a project,
a class, etc.. Furthermore, given a quest goal, James could
suggest where to look in the source code or which developer(s)
to contact for assistance, establishing in this way a foundation
for collaborative program comprehension.

We identified a number of challenges to be tackled in order
to strengthen our approach. First of all, we wonder and plan
to study to what extent the sharing of messages between
developers impacts the frequency of messages. We hypothesize
that the frequency of messages would slightly decrease when
a developer “filters out” those messages in which she mainly
“talks to herself”. Second, our Eclipse James plugin captures
actions modeling navigation information in the IDE, such as
browsing through projects files. However, other programming
activities, such as writing code, are currently not monitored.
Further investigation on which data to collect and also on how
to cluster actions in interactions is needed. Third, developers
referring to code elements in quest messages suggests that
James should support developers, for example in the form of
auto-completion, to easily establish a direct link between their
messages and the source code. Additionally, further research
on how to better link interactions to corresponding quest
goals is needed. In this direction, we propose to investigate
whether and to which extent (automatic) categorizations of
messages can help determining an appropriate association of
quest messages with interaction traces. Another important re-
search question to be addressed is how to identify information
relevant to the user’s goal and how to maintain the consistency
and value of the collected data, when the system evolves.

Furthermore, we envision that users will have the possibility
to tell the IDE whether their journey through the code (cap-
tured in the trace) has been any useful to accomplish the quest
goal. With direct feedback from developers, additional value is
added to the quest trace. This information can be particularly
important when sharing this knowledge with other developers.

IV. RELATED WORK

Our research builds upon several (software engineering)
disciplines. First, there is related work concerning studies of
what developers do, and what information they need from the
IDE. As an example, Sillito et al. provide a study of questions
asked during programming change tasks [5] and Ko et al.
report on an ethnographic study of how developers work at
Microsoft and what their information needs are [6].

Software development and maintenance are inherently col-
laborative activities: a survey of research in the area of
collaborative software engineering is provided by [7]. Web
2.0 provides new ways of collaboration and informal commu-
nication [8], and the incorporation of Web 2.0 techniques in
software development is attracting more and more attention
both in industry and academia [9], [3]. As an example, IBM’s
Jazz2 incorporates the possibility of adding tags to work items,
and its use by IBM developers has been studied extensively
by Treude and Storey [10].

Micro-blogging is an important element of Web 2.0, and
thanks to the massive success of, e.g., Twitter, an active area
of research itself3 [11]. We are not aware of other papers
studying the potential of micro-blogging during software de-
velopment. Similar to some extent to micro-blogging, however,
are Internet Relay Chat (IRC) discussions, and their use during
the development of the Linux Gnome code has recently been
analyzed by Shihab [12].

A number of existing studies report on the meaningfulness
of navigation traces and their potential. Fritz et al. conducted
an empirical study assessing the relationship between pro-
grammers activity and what a programmer knows about a code
base [13] and DeLine et al. report results of two studies which
demonstrate that sharing navigation data can improve program
comprehension “and is subjectively preferred by users” [14].
Both Mylyn [15] and NavTracks [16] are navigation aids
based on what the programmer is currently looking at in the
IDE, to recommend other entities to look at. Additionally, a
study by Robbes on recommender systems based on recorded
interactions [17], recognizes the lack of support for interaction
annotations.

V. CONCLUDING REMARKS

During the process of trying to understand a piece of code,
developers build up a substantial body of knowledge on the
code they are inspecting — knowledge that often evaporates
after the corresponding maintenance task is finished. In this
paper, we propose a method to stop this loss of valuable
knowledge, by recording how developers interact with the
source code, and by encouraging developers to tell their team
members what they are doing.

Based on our first studies, we consider the combination of
micro-blogging messages and automatically collected interac-
tion data a highly promising route for recording and sharing
knowledge built up in the program comprehension process.

2http://jazz.net/projects/content/project/plans/jia-overview/
3See the bibliography at http://www.danah.org/researchBibs/twitter.html

Future research directions include enriching the James tool
suite with additional mechanisms such as providing the ability
to follow specific developers or work products, enhance quest
visualizations, and carrying out larger scale case studies in
which teams will be using James for a longer period of time.

REFERENCES

[1] T. A. Corbi, “Program understanding: Challenge for the 1990s,” IBM
Systems Journal, vol. 28, no. 2, pp. 294–306, 1989.

[2] T. O’Reilly and S. Milstein, The Twitter Book. O’Reilly Media, Inc.,
2009.

[3] A. van Deursen, A. Mesbah, B. Cornelissen, A. Zaidman, M. Pinzger,
and A. Guzzi, “Adinda: A knowledgeable, browser-based IDE,” in
23d International Conference on Software Engineering; New Ideas and
Emerging Results Track (ICSE NIER). ACM, 2010.

[4] R. Robbes and M. Lanza, “Characterizing and understanding develop-
ment sessions,” in ICPC ’07: Proceedings of the 15th IEEE International
Conference on Program Comprehension. Washington, DC, USA: IEEE
Computer Society, 2007, pp. 155–166.

[5] J. Sillito, G. C. Murphy, and K. De Volder, “Asking and answering
questions during a programming change task,” IEEE Transactions on
Software Engineering, vol. 34, no. 4, pp. 434–451, 2008.

[6] A. J. Ko, R. DeLine, and G. Venolia, “Information needs in collocated
software development teams,” in ICSE ’07: Proceedings of the 29th
international conference on Software Engineering. Washington, DC,
USA: IEEE Computer Society, 2007, pp. 344–353.

[7] J. Whitehead, “Collaboration in software engineering: A roadmap,” in
FOSE ’07: 2007 Future of Software Engineering. Washington, DC,
USA: IEEE Computer Society, 2007, pp. 214–225.

[8] T. O’Reilly, “What is Web 2.0: Design patterns and business models for
the next generation of software,” Oreillynet, 2005, http://www.oreillynet.
com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html.

[9] C. Treude, M.-A. Storey, K. Ehrlich, and A. van Deursen, “Web2se: First
workshop on web 2.0 for software engineering,” in Companion to the
Proceedings of the International Conference on Software Engineering.
ACM, 2010.

[10] C. Treude and M.-A. Storey, “How tagging helps bridge the gap between
social and technical aspects in software development,” in Proceedings of
the 31st International Conference on Software Engineering (ICSE’09).
IEEE Computer Society, 2009.

[11] J. H. Grace, D. Zhao, and d. boyd, Eds., Proceedings of the CHI
Workshop on Microblogging: What and How can We Learn from It?
ACM, 2010, http://www.cs.unc.edu/∼julia/chi2010.html.

[12] E. Shihab, Z. M. Jiang, and A. E. Hassan, “On the use of Internet Relay
Chat (IRC) meetings by developers of the GNOME GTK+ project,” in
Proceedings of the 6th IEEE Working conference on Mining Software
Repositories (MSR). IEEE, 2009.

[13] T. Fritz, G. C. Murphy, and E. Hill, “Does a programmer’s activity
indicate knowledge of code?” in ESEC-FSE ’07: Proceedings of the
the 6th joint meeting of the European software engineering conference
and the ACM SIGSOFT symposium on The foundations of software
engineering. New York, NY, USA: ACM, 2007, pp. 341–350.

[14] R. DeLine, M. Czerwinski, and G. Robertson, “Easing program com-
prehension by sharing navigation data,” in VLHCC ’05: Proceedings of
the 2005 IEEE Symposium on Visual Languages and Human-Centric
Computing. Washington, DC, USA: IEEE Computer Society, 2005,
pp. 241–248.

[15] M. Kersten and G. C. Murphy, “Using task context to improve program-
mer productivity,” in SIGSOFT ’06/FSE-14: Proceedings of the 14th
ACM SIGSOFT international symposium on Foundations of software
engineering. New York, NY, USA: ACM, 2006, pp. 1–11.

[16] J. Singer, R. Elves, and M.-A. Storey, “Navtracks: Supporting navigation
in software,” in IWPC ’05: Proceedings of the 13th International
Workshop on Program Comprehension. Washington, DC, USA: IEEE
Computer Society, 2005, pp. 173–175.

[17] R. Robbes, “On the evaluation of recommender systems with recorded
interactions,” in SUITE ’09: Proceedings of the 2009 ICSE Workshop
on Search-Driven Development-Users, Infrastructure, Tools and Eval-
uation. Washington, DC, USA: IEEE Computer Society, 2009, pp.
45–48.

