
Data Clone Detection and Visualization in
Spreadsheets

Felienne Hermans, Ben Sedee, Martin Pinzger, and Arie van Deursen
Software Engineering Research Group

Delft University of Technology, Infotron
Netherlands

f.f.j.hermans@tudelft.nl, b.m.w.sedee@student.tudelft.nl, m.pinzger@tudelft.nl, arie.vandeursen@tudelft.nl

Abstract—Spreadsheets are widely used in industry: it is
estimated that end-user programmers outnumber programmers
by a factor 5. However, spreadsheets are error-prone, numerous
companies have lost money because of spreadsheet errors. One
of the causes for spreadsheet problems is the prevalence of copy-
pasting.

In this paper, we study this cloning in spreadsheets. Based on
existing text-based clone detection algorithms, we have developed
an algorithm to detect data clones in spreadsheets: formulas
whose values are copied as plain text in a different location.

To evaluate the usefulness of the proposed approach, we
conducted two evaluations. A quantitative evaluation in which
we analyzed the EUSES corpus and a qualitative evaluation
consisting of two case studies. The results of the evaluation clearly
indicate that 1) data clones are common, 2) data clones pose
threats to spreadsheet quality and 3) our approach supports users
in finding and resolving data clones.

Index Terms—spreadsheets, clone detection, spreadsheet
smells, code smells

I. INTRODUCTION

Spreadsheets are heavily used within companies in many do-
mains, ranging from financial to medical and from educational
to logistics. It is estimated that 90% of desktops have Excel
installed [1] and that the number of spreadsheet programmers
is bigger than that of software programmers [2]. Because of
their widespread use, they have been the topic of research since
the nineties [3]. However, most papers focus on analyzing and
testing the formulas in a spreadsheet.

The impact of data on spreadsheet calculations has been
somewhat overshadowed by this interest in formulas. However,
problems with data can pose threats to a spreadsheet’s integrity
too. A paper by Ballou et al. [4] phrases the problem as
follows “...errors in the operational data can influence the
determination of the most appropriate forecasting model” and
“The manager is unlikely, however, to study the implications
of errors in the data that are being projected. Clearly such
errors have an impact, but it is not necessarily obvious which
are potentially serious and which less”. Although this paper is
25 years old, the problem statement is still very valid. In 2003,
TransAlta lost US$24 Million because of a copy-paste error
in a spreadsheet1. More recently, the Federal Reserve made
a copy-paste error in their consumer credit statement which,
although they did not make an official statement about the

1http://bit.ly/cQRoy8

impact, could have led to a difference of US$4 billion2. These
stories, although anecdotal, underline the fact that copy-paste
errors in spreadsheets can greatly impact spreadsheet quality.

In this paper we focus on the occurrence of copy-pasting
in spreadsheets by analyzing how the detection of data clones
can help spreadsheet users in finding errors and improving the
quality of their calculations. To that end we study related work
in the field of clone detection in source code and come up with
an approach to detect data clones in spreadsheets. In addition
to exact clones, we also detect near-miss clones, those where
minor to extensive modifications have been made to the copied
fragments [5].

Our approach is based on existing text-based clone detec-
tion techniques [6], we use cell values as fingerprints and
remove values that do not occur as formula and plain text.
Subsequently, we group values that occur in multiple places
into clone clusters, to detect groups of cells that are possibly
copied.

Detected clones are visualized in two ways. Firstly, we
generate a dataflow diagram that indicates how data is cloned
between two worksheets, by drawing an arrow between boxes
that represent those worksheets. This way, users can see how
data is copied through worksheets and files. Secondly, we add
pop-up boxes within the spreadsheet to show where data is
copied, and in the case of near-miss clones, what cells differ.

This approach is subsequently validated both quantitatively
and qualitatively. Firstly, we analyze the EUSES corpus [7] to
calculate the precision and performance of our algorithm and
to understand how often clones occur. Secondly, we perform
two case studies: one with a large budget spreadsheet from
our own university and a second one for a large Dutch non-
profit organization, for which we analyzed 31 business critical
spreadsheets.

From these three evaluations, we conclude that 1) data
clones in spreadsheets are common, 2) data clones in spread-
sheets often indicate problems and weaknesses in spreadsheets
and 3) our algorithm is capable of detecting data clones
quickly with 80% precision and supports spreadsheet users
in finding errors and possibilities for improving a spreadsheet.

2http://bit.ly/6XwN9t

978-1-4673-3076-3/13/$31.00 c© 2013 IEEE ICSE 2013, San Francisco, CA, USA292

II. RELATED WORK

As stated in the Introduction, Ballou et al. [4] described
the problem of data quality in spreadsheets. More recently,
O’Beirne [8] states that “...much present use of spreadsheets
is as data manipulation and reporting tools used to bypass
the controls around IT development. ” And that this “ad
hoc integration, transformation, or simple cobbling together
is done by the user to get what they need when they need
it. This gives rise to many extracted copies of corporate data
as imports or query links in spreadsheet files. These personal
data stores are often referred to as ‘data shadows’ or ‘silos’ or
‘spreadmarts’ giving rise to ‘multiple versions of the truth’.”
[8] He furthermore cites evidence that “errors in the transfer
of data from the field officer forms through to the DEFRA
spreadsheet equating to an error rate of 14 percent over the
year.”

Clone detection in source code has been researched exten-
sively and resulted in numerous clone detection techniques and
tools. Bruntink et al. [9] give the following overview:

Text-based techniques perform little or no transformation
to the raw source code before attempting to detect identical
or similar (sequences of) lines of code. Typically, white space
and comments are ignored [6], [10].

Token-based techniques apply a lexical analysis (tokeniza-
tion) to the source code and, subsequently, use the tokens as
a basis for clone detection [11], [12].

AST-based techniques use parsers to obtain a syntactical
representation of the source code, typically an abstract syntax
tree (AST). The clone detection algorithms then search for
similar subtrees in this AST [13].

PDG-based approaches go one step further in obtaining
a source code representation of high abstraction. Program
dependence graphs (PDGs) contain information of a seman-
tical nature, such as control and data flow of the program.
Kommondoor and Horwitz [14] look for similar subgraphs
in PDGs in order to detect similar code. Krinke [15] first
augments a PDG with additional details on expressions and
dependencies, and similarly applies an algorithm to look for
similar subgraphs [14], [15].

Other related efforts are Roy [5], [16], who created NiCad,
a parser-based and language specific tool that detects both
exact and near-miss clones with high precision and recall.
Roy and Cordy [16] compared several open source systems
and study, among other properties, the occurrence of near-
miss clones versus exact clones. They detected significantly
higher numbers of near-miss clones than exact clones in the
systems under evaluation. For more information on existing
code clone detection techniques and tools, we refer the reader
to the comprehensive survey by Roy et al. [17].

Our approach is text-based and is most similar to that of
Johnson [6], where we use cell values as fingerprints.

Recently, there have been other efforts to apply clone detec-
tion to artifacts other than source code, Alalfi et al. [18] have
successfully applied clone detection to SimuLink models. For
this purpose they adapted NiCad and were able to efficiently

find exact, renamed and near-miss clones in SimuLink models.
To the best of our knowledge, no approach to detect data
clones in spreadsheets exists. Most related are the efforst of
Burnett et al. [19] that also compute similarity between cells,
albeit in a quite different way and for the purpose of supporting
the testing of spreadsheets. Also relevant is the work of Gold
et al. that describe an approach to detect clones in dataflow
languages [20].

Finally, there is our own work on spreadsheet analysis.
Previously, we have worked on an algorithm to visualize
spreadsheets as dataflow diagrams [21], and subsequently on
detecting inter-worksheet smells in those diagrams [22]. Re-
cently we have also worked on detecting smells in spreadsheet
formulas [23]. This paper is a continuation of our research
on smells in spreadsheets, however we shift our focus to
detecting and visualizing clones in spreadsheet data. A tweet-
sized paper on clones in spreadsheets was recently accepted
in Tiny Transactions on Computer Science [24].

III. MOTIVATION

In our work with spreadsheet users, we often see that they
copy and paste data from one spreadsheet to the other, from
to worksheet to the other, and even within worksheets. When
data is copy-pasted, or cloned, the spreadsheet might become
more prone to errors, similar to the effect clones have on a
software system.

Research in the field of source code analysis has analyzed
the negative effect of clones on quality and maintenance.
Mayrand et al. [25] showed that duplicated code fragments can
increase maintenance effort. Furthermore a study by Jurgens
et al. that analyzes industrial code shows that inconsistent
changes to code duplicates are frequent and lead to severe
unexpected behavior [26]. However, not all clones are harmful,
Kapser en Godfrey [27] show that clones can also have a
positive impact on maintainability.

Strictly, copy-pasting data in spreadsheets is not necessary:
most spreadsheet systems have a feature where data can be
linked from one worksheet to another and even from one file
to another. In Excel, this can be done by either typing the
location of the file in a formula, followed by the name of
the worksheet and the cell(s), or by opening both worksheets
or spreadsheets and creating the link by clicking, just as one
would do with any formula.

So why would spreadsheet users resort to copy-pasting data
from one spreadsheet file to the other, if most spreadsheet
systems have a ‘better’ way to do this? In our experience, this
practice can have several reasons. Firstly, sometimes users are
not aware of a way to link spreadsheets, they do not know how
to use the link-formulas. Secondly, users are often unaware of
the risks of copy-pasting data and it seems the easiest way.

We do not aim at changing the spreadsheet users’s behavior,
since that would, most likely, involve changing the process
around a spreadsheet and that would be hard to implement in
a company. We rather follow an approach that allows users
to proceed as they normally would, but mitigate the risks by
detecting and visualizing the copy-paste relationships. This

293

Fig. 1. Cells B10 and D25 form a clone. Since all their non-empty neighboring
cells are also clones, we detect two clone clusters in this example.

enables users to take the appropriate measures in a similarly
pragmatic way.

Therefore the aim of this paper is to both understand
the impact of copy-pasting, and to develop a strategy to
automatically detect data clones in spreadsheets. We refine
this goal into three research questions.

R1 How often do data clones occur in spreadsheets?
R2 What is the impact of data clones on spreadsheet

quality?
R3 Does our approach to detect and visualize data clones

in spreadsheets support users in finding and under-
standing data clones?

IV. DATA CLONES

The type of clones we are interested in are formula results
that are copied as data for other parts of the spreadsheet. This
type of copying is easy in Excel: with ‘paste special’ a user
can copy values only.

We hypothesize that this type of cloning is risky: when
formulas or their input is updated and their values change,
this results in an extra maintenance task: updating the copies
of the formulas too. If this is forgotten, errors could occur. We
therefore look for tuples of a formula cell and a constant cell
(a cell with a fixed value in it) that contain the same value.
We call such a tuple of cells a clone and corresponds to what
is called a clone pair in the clone detection literature.

It can, of course, happen by coincidence that a formula
and a cell contain the same value. However, if a group of
neighboring cells are all copies, or are all copied, we are
probably dealing with data that has been copied by the user.
We call such a group a clone cluster. In more detail: a clone
cluster consists of cells that are all either formula cells or
constant cells, and all of them are contained in a clone.

We call two clone clusters matching if they contain the same
values. Figure 1 shows an example of a clone, in the small
green rectangle, and two matching clone clusters in the gray
rectangles.

Finally, we distinguish between clones clusters of which
all values match and near-miss clone clusters, which contain
cloned cells, but also cells that differ from each other. Near-
miss clone clusters can occur when by a user updates a copied
cell, but not does not update the original cell.

V. DATA CLONE DETECTION

In this section we describe the algorithm with which we
detect clone clusters. This algorithm consists of 5 steps, as
shown in the overview in Figure 2.

A. Algorithm

In the first step, cell classification, we divide the cells into
data cells, formula cells and empty cells. For data cells, we
only consider cells containing a number. Although strings can
be the result of a formula, such as string concatenation or
a lookup function, we do not take them into consideration,
since strings are usually used for labels and descriptions in
spreadsheets. In Figure 2 formula cells are colored pink and
data cells containing a number are colored green. Note that
this classification differs slightly from the cell classification
algorithms we have used in previous papers [21], [28]. In our
current version, all cells containing a number are considered
data cells, and not only cells that are used as input for
formulas. Since we are looking for clones, the data cells do
not necessarily have to be used in calculations.

In the second step, lookup creation, a lookup table of all
cells is created, with the cell value as key and a list of locations
as the value. Shown in Figure 2 the value 0.4101 occurs
only in Eff4!B28 and 0.1156 occurs in Problem Data!B10 and
Eff4!D25. This step is similar to the creation of fingerprints
in Johnson’s clone detection approach [6].

The third step, pruning, removes all values from the lookup
table that do not occur both in a formula and a constant
cell, since these cells can never be part of a clone, conform
our definition. In the example shown in Figure 2, 0.4101 is
removed, since it only occurs in a formula and not in a constant
cell.

In the subsequent fourth step called cluster finding, the
algorithm looks for clusters of neighboring cells that are all
contained in a clone, and that are all either formula cells
or constant cells. The clusters are found by starting with a
cell that is still contained in a value of the lookup table. In
Figure 2, we start with cell Problem Data!B10 that contains
0.1156. Subsequently, this cell’s neighbors are inspected. If
these neighbors are contained in the lookup table too, the
cluster is expanded and their neighbors are inspected. The
fourth step of the algorithm results in a list of formula clusters
and a list of constant clusters.

In the fifth and final step, cluster matching, each formula
cluster is matched with each constant cluster. For two clusters
to match, they have to contain the same values, i.e. all values
in one cluster also have to occur in the second cluster. If one
cluster is bigger than the other, all values of the smaller cluster
have to be found in the second cluster. Furthermore, there may
not be a formula link between the formula cells and the cloned

294

Fig. 2. Overview of the approach consisting of the five different steps: cell
classification, lookup creation, pruning, cluster finding and cluster matching.

value cells, since we do not consider a link (i.e. =Sheet2!B1)
to be a clone. In Figure 2, the two gray clusters match, since
all values of the left cluster match with values on the right.

B. Parameters

The algorithm takes four parameters as input:
StepSize is used in the fourth step of the algorithm and
indicates the search radius in terms of numbers of cells. Setting
it to 1 means we are only looking for direct neighbors, with
step size 2, a ‘gap’ of 1 cells is allowed in a cluster.
MatchPercentage is used in the final step, when clusters are
matched. This percentage indicates what percentage of the
cells has to match. Setting it to 100% means the values have
to match exactly, lower percentages allow for the detection of
near-miss clones.
MinimalClusterSize sets the minimal number of cells that a
cluster has to consist of. Very small clusters might not be very
interesting, hence we allow for a minimal threshold.
MinimalDifferentValues represents the minimal number of
different values that have to occur in a clone cluster. Similar
to small clusters, those clusters consisting of a few different
values will be of less interest.
Furthermore, a user of the algorithm can indicate whether
clones are found within worksheets, between worksheets,
between spreadsheets or a combination of those.

VI. CLONE VISUALIZATION

We visualize the detected clones in two ways. Firstly,
we generate a dataflow diagram that shows the relationship
between worksheets that contains clones. Secondly, we add a
pop-up to both parts of a clone indicating the source and the
copied side of a clone.

The two visualizations serve a different purpose. The
dataflow diagram is aimed at understanding the relationship
between worksheets and show how data is copied between
worksheets in a spreadsheet or between multiple spreadsheets.

The pop-ups within the spreadsheet, on the other hand, are
meant for support when maintaining a spreadsheet. Whether
it is updating the copied side of a clone or refactoring the
copy into a link, the pop-ups support the spreadsheet user in
selecting the right cells.

A. Dataflow diagrams

In previous work [21], [22] we have developed a tool to
generate a dataflow diagram from a spreadsheet to represent
dependencies between worksheets. In this visualization, work-
sheets are visualized as rectangles, while arrows are used to
indicate a formula dependency between two worksheets.

We consider the copying of data from one worksheet to
another as a dependency between worksheets and hence we
decided to show this dependency in our original dataflow
diagrams too. We show data clone dependencies with a dashed
arrow to show the difference with formula dependencies which
are shown with solid arrows.

Figure 3 shows the dataflow diagram corresponding to the
spreadsheet hw4a.xls shown in Figure 1. In this spreadsheet

295

Fig. 3. Screenshot of the clone detection dataflow diagram corresponding to
our running example hw4a.xls

data is copied from formulas in the worksheet Eff4 to the
worksheet Problem Data, this is shown in the diagram with a
dashed arrow.

B. Pop-ups
As described above, we add pop-ups to the spreadsheets to

both the source and the copied side of the clone. This warns
the user that data has been copied, so he can update the copy in
case of a change to the formulas. Furthermore provides an easy
way for the user to improve the design of the spreadsheet, by
changing the copy-paste relationship into a link. By creating
a link, the dependencies are made explicit and future changes
will automatically be propagated.

Figure 4 shows an example of a pop-up indicating a detected
clone cluster. On the formula side, we show where the data is
copied and on the data side, we indicate the source.

VII. IMPLEMENTATION

Our current approach for the detection of data clones in
spreadsheets is implemented into our existing spreadsheet
analysis tool Breviz [21], [22]. Breviz is implemented in
C# 4.0 using Visual Studio 2010. It utilizes the Gembox
component to read Excel files.3 Breviz reads an Excel file and
executes the above described clone detection algorithm, either
within a spreadsheet or among multiple files, and subsequently
generates the dataflow diagram and a copy of the spreadsheet
with pop-ups.

Breviz, including the data clone analysis, is available as-a-
service, by uploading a spreadsheet to Infotron’s website.4

3http://www.gemboxsoftware.com/spreadsheet/overview
4http://app.infotron.nl

Fig. 4. Screenshot of the clone detection pop-up showing the copy-paste
dependency for our running example hw4a.xls

VIII. EVALUATION OVERVIEW

To evaluate our approach, we performed both a quantitative
and a qualitative analysis. First, we analyzed a subset of
the EUSES corpus [7] to determine how well our algorithm
performs and to learn how often data clones exist in this
corpus. The corpus consists of more than 4000 spreadsheets
from 11 different domains collected from practice.

Secondly, we studied two different real-life cases. The first
case study was conducted at the South-Dutch foodbank, where
employees keep track of all logistics using spreadsheets. For
the second case study we evaluated a spreadsheet used by our
university to calculate the budget for a large (> e25 Million)
research proposal. With the qualitative analyses we aim to
determine whether detected data clones actually pose a threat
to spreadsheet quality.

IX. QUANTITATIVE EVALUATION

A. Goal

The aim of the first evaluation is to answer research question
1 “How often do data clones occur in spreadsheets?” and to
preliminarily evaluate the performance of our algorithm both
in terms of execution time as in terms of the precision of the
algorithm.

B. Background

In this evaluation, we used spreadsheets from the EUSES
corpus [7]. This corpus contains real-life spreadsheets from
11 different domains, ranging from educational to financial,
and from inventory to biology. It was created in 2005 and
has since then been used by several researchers to evaluate
spreadsheet algorithms, among which [29] and [30]. Of the
4223 spreadsheets in the corpus, 1711 spreadsheets contain
formulas.

296

C. Setup

To reach our goal, we ran our data clone detection algo-
rithm on those 1711 spreadsheets, for different values of the
MinimalClusterSize and MinimalDifferentValues parameter.

Since we do not have a validated benchmark, we focus on
matching exact clones. Evaluating the correctness of near-miss
clones without the owners of the spreadsheets would leave too
much room for speculation. Hence we set MatchPercentage
to 100% for the quantitative study. In the qualitative studies,
we will take near-miss clones into consideration. Furthermore,
we do not search for clones between the files of the EUSES
corpus. Since the spreadsheets are unrelated, matches between
spreadsheets would always be false positives.

For each detected clone, we manually determine whether
this is a real clone or a false positive. We do this by inspecting
clones and determining whether 1) the detected clone clusters
indeed share the same data values, 2) one of the detected clone
clusters consists of formulas and the other of constant cells
and 3) headers of the found clones match to decide whether
the clones indeed concern the same conceptual data. This
way we calculate the precision of our approach. We calculate
this precision as the percentage of spreadsheets in which we
verified a clone, divided by the total number of spreadsheets
in which a clone is detected by the algorithm, rather than
measuring it as the number of verified clones divided by the
number of detected clones. We do this because we found that
some spreadsheets contain as many as 25 clones, all of which
are very similar and this could skew the results.

Since we do not know what spreadsheets in the corpus
contain clones, we cannot not analyze the recall of our
algorithm at this point. It would be both time-consuming and
speculative to inspect all 4000+ spreadsheets in the corpus by
hand to check whether they contain data clones. We plan to
analyze recall in a future study on a smaller set of spreadsheets
of which we can contact the creators.

The results of our analysis are all available online in the
FigShare corpus5, to enable other researchers to replicate our
results.

D. Findings

1) Precision: Using MinimalClusterSize 5 and MinimalD-
ifferentValues 3, which we consider the lowest meaningful
values, our algorithm detects 157 spreadsheet files in the
EUSES corpus that contain clones. Manual inspection showed
that of these detected files, 86 contain verified clones. This 86
is highlighted in Table II. 86 files out of 157 detected files
with clones leads to a precision of 54.8%, as highlighted in
Table I.

In this table, one can find the precision for different
values of MinimalClusterSize and MinimalDifferentValues.
Combinations where MinimalDifferentValues is bigger than
MinimalClusterSize are not allowed, since there cannot be
more different values in a clone cluster than cells.

5http://figshare.com/authors/FelienneHermans/98650

As illustrated by Table I, the precision rises for higher values
of the two parameters, especially the parameter MinimalDif-
ferentValues is of influence, as we suspected. Highest precision
(81.7%) is obtained with both parameters set to 9, this value
is also highlighted in Table I. In that case we still detect 49
clone files, which amounts to 57% of all 87 spreadsheets that
contain verified clones in the EUSES test set (highlighted in
Table II).

2) False positives: The biggest category of false positives
is a group of data that happen to occur at multiple places in
a spreadsheet. For instance in a spreadsheet used for grades,
we detect several groups of the numbers 1 to 10. If some are
calculations and others are input data, this is detected as a
clone. Especially for low values of MinimalClusterSize and
MinimalDifferentValues, both below 6, this occurs frequently,
since chances that small groups of values are found in multiple
places are higher. A second category of false positives is a
clone that is actually a header: spreadsheet users use formulas
to describe their data, such as a department code or a year. If
in one case they use a formula and in another case they use
a constant value, this is detected as a clone. Another type of
false positives are clones consisting of array formulas that have
the same value as other formulas in the worksheet. Gembox,
the third party library we use to read spreadsheets, is not able
to recognize array formulas, so they are read as being values.

3) Performance: Running the clone detection algorithm
over the 1711 spreadsheet files in the EUSES corpus which
contain formulas total took 3 hours, 49 minutes and 14 seconds
(13,754 seconds in total). This means analyzing one file takes
an average of 8.1 seconds.

4) Clone occurrence: In total, there are 1711 spreadsheets
in the EUSES corpus that contain formulas, which means
around 5% of all spreadsheets with formulas contain verified
clones. Although not directly comparable, papers on clone
analysis on source code estimate that 10 to 30% of lines of
code are duplicated. For instance, Baker [12] reported that
around 13% - 20% of large code bases can be clones. Lague
et al. [31] found that, when considering function clones only,
between 6.4% - 7.5% of code is cloned. Baxter et al. [13]
have reported 12.7% cloning and Mayrand et al. [25] have
estimated that industrial source code contains between 5% and
20% duplication.

5) Observations: While we cannot yet conclude something
about the impact of data clones on spreadsheet quality, we
noted several interesting similarities in this evaluation.

Firstly, we saw that a common pattern for cloning is the use
in overviews and reports. In this scenario, spreadsheet users
use one worksheet to calculate values, and copy them to a
second worksheet to create a summary, a graph or a report
sheet. Since many of these spreadsheets did contain links
between worksheets, we do not think this use is due to the
fact that the user did not know how to create links.

Secondly, we saw that copies are used to sort. In this
scenario, a whole column is copied, sometimes directly next
to the column with values, but the copy is sorted. This use
might be due the way sorting in combination with links is

297

TABLE I
RESULTS OF THE EUSES EVALUATION SHOWING THE PERCENTAGE OF SPREADSHEETS CONTAINING A CLONE

Minimal Different Values
Minimal Size 3 4 5 6 7 8 9 10 11 12 13

5 54.8% 59.1% 63.7% - - - - - - - -
6 54.2% 59.2% 62.9% 70.1% - - - - - - -
7 53.8% 59.1% 62.5% 69.5% 70.9% - - - - - -
8 56.1% 60.2% 63.6% 70.1% 71.6% 72.9% - - - - -
9 56.6% 60.6% 64.3% 71.2% 72.9% 74.6% 81.7% - - - -
10 55.1% 58.6% 62.3% 69.7% 71.4% 73.3% 80% 79.2% - - -
11 56.3% 57.7% 60.9% 68.3% 70.2% 71.4% 78.4% 77.6% 78.3% - -
12 56.6% 58.1% 60.6% 67.8% 69.6% 70.9% 78% 77.1% 77.8% 81% -
13 56.9% 57.4% 61% 66.7% 69.2% 70.6% 76.6% 75.6% 76.7% 80% 80%

TABLE II
THE NUMBER OF SPREADSHEETS IN EUSES CONTAINING A DATA CLONE, FOR VARYING VALUES OF MINIMALDIFFERENTVALUES AND MINIMALSIZE

Minimal Different Values
Minimal Size 3 4 5 6 7 8 9 10 11 12 13

5 86 81 72 - - - - - - - -
6 77 74 66 61 - - - - - - -
7 70 68 60 57 56 - - - - - -
8 64 62 56 54 53 51 - - - - -
9 60 57 54 52 51 50 49 - - - -
10 54 51 48 46 45 44 44 42 - - -
11 49 45 42 41 40 40 40 38 36 - -
12 47 43 40 40 39 39 39 37 35 34 -
13 41 39 36 36 36 36 36 34 33 32 32

implemented in Excel. When one sorts a column that has links,
the formulas get sorted too. Users might prefer to make a copy
to keep their formulas intact.

Finally, an unexpected observation was that in some cases
the format of the cells that were clones did not match. For
instance, the original formulas were typed currency, while the
copied cells were typed as a percentage. Even without knowing
the context of this spreadsheet, we can conclude that one of
the cell formats must be wrong. This practice is error-prone,
especially in the case of dates. When a date is typed as a
number, Excel will show a the number of days this day is
removed from January 1, 1900, since Excel uses the 1900
date system. This way a user can easily overlook the fact that
this value represents a date. In future work we plan to work
on the detection of these mismatching clones.

X. THE CASE STUDIES

After we performed the quantitative evaluation and we were
convinced of both the applicability of our approach and the
frequency with which clones occur in practice, we conducted
two case studies to investigate the implications of data clones
in spreadsheets.

A. Goal

The goal of the two case studies is to answer research
questions 2 and 3: to learn more about the impact of data
clones and to evaluate our data clone detection and visualiza-
tion approach.

B. Setup

To reach this goal, we have analyzed real-life spreadsheets
in both case studies: we ran the data clone detection algorithm

and subsequently we presented the results to the spreadsheet
owners. Next, we went over all detected clones with them and
asked them the following questions:

• Is this a real clone, in other words: did you copy this
data?

• Did this clone lead to errors or problems?
• Could this clone be replaced by a formula link?

Furthermore, we asked them the following questions about
clones and about our approach:

• Do you know why no direct links were used initially?
• How did the pop-ups help you in understanding the found

data clones?
• How did the dataflow diagrams help you in understanding

the found data clones?

C. Background

The following describes the background of the two case
studies.

Foodbank A foodbank is a non-profit organization that
distributes food to those who have difficulty purchasing it. We
ran our case study at the distribution center of the foodbank,
that supplies 27 local foodbanks. In 2011 the distribution
center processed an average of 130.000 kilograms of food
per month. To keep track of this process, they use a set of
spreadsheets. The figures of incoming food from sponsor and
food sent out to local foodbanks should balance, since no food
is supposed to remain in the distribution center.

In January 2012, the distribution center of the foodbank
approached us and asked whether we could help them improve
their spreadsheet administration, since they observed that the

298

total result did not balance and food remained in the center,
or went missing.

Initially, we did not know what caused their problems, but
when we learned about the copy-pasting practice that was
used, we suspected that clone detection might help to locate
the errors. We asked the foodbank whether they would be
interested in participating in a study of a new feature we were
developing, with which they agreed.

Subsequently, we received 31 spreadsheet files from the
foodbank, to check whether clones might be the source of
problems. One of those spreadsheets was the distribution list,
while the other 30 were lists of a specific region.

Delft University In April of 2012 Delft University of
Technology participated in a grant proposal, for which a
budget spreadsheet had to be created. One of the authors of this
paper was involved in this proposal and got this spreadsheet
from a financial employee of the university.

This particular spreadsheet calculates, among other things,
the salary cost of different types of employees. These salaries
are raised every year, because of inflation, and the creator of
this spreadsheet calculated the salaries once and copied them
to different places in the spreadsheet.

The author involved in this proposal noticed this duplication
and asked this employee whether he would want to participate
in a study on cloning in spreadsheets and this employee
agreed.

D. Findings

In this subsection we describe the results of both case
studies.

Foodbank In the first study, we searched for data clones
in the test set of the foodbank by running the prototype tool
over the 31 spreadsheets. We used parameters 9 for Minimal-
ClusterSize and MinimalDifferentValues, since they were the
optimal choice in the quantitative analysis. Furthermore we set
MatchingPercentage to 80% and StepSize to 2 to enable the
detection of near-miss clones. Running the algorithm took 3
hours, 9 minutes and 39 seconds, which amounts to 6 minutes
per file. Performance was worse than in the EUSES case, since
in this analysis, all clones of all files had to be compared with
each other, since we were searching for clones between files
too.

With these settings, we detected 145 clones, of which 61
were near-miss clones, in other words, they had a matching
percentage of less than 100%. Furthermore, in this case we
only searched for clones between spreadsheets, since we knew
that there would only be clones between files. We discussed the
found clones one by one with three employees of the foodbank
and checked whether the found clones were actual clones.
Only one of the found clones was identified as a false positive:
in that case, by coincidence two files contained similar values.

Subsequently, we studied the near-miss clones in more
detail: were they really errors that had been made in copy-
pasting? We found that all cases were ‘wrong’ in the sense
that the values should match. The employee that we discussed
the results with stated “these should always match, I don’t

understand why they do not.” However, in many cases, the
updates made to the copies were the right values, but in 25
of the detected 61 near-miss clones were actual errors that the
employees were not aware of before our analysis. In the other
cases, the copies were not mistaken. For instance, in some
cases only half of the column was copied, because for the
other items, the amounts from the previous month remained in
the distribution center. While checking the near-miss clones,
we also found that one of the exact clones was actually an
error: here the data had been copied into the wrong column.
The foodbank employees stated that all found clones could, in
theory, be replaced by direct links. No direct links were used
initially, since the employee who created the spreadsheets, was
not very proficient in spreadsheets at that time. She started with
a few spreadsheets and copying the values would not be much
of a problem. When the collection of spreadsheets got bigger,
it became increasingly more difficult to make the change.

Later on, another employee was put in charge of handling
the spreadsheets. She stated: “Since I did not build all the
sheets, I am always a bit afraid to adapt formulas. Since I can
see the links in the pop-ups that you created, I feel more safe,
since I know it will do the right things.”

This sentiment is shared even by the original creator of the
spreadsheets, saying “The problem with managing multiple
sheets is that you never know if changing one cell will mess
up other sheets or files.” Especially for the current maintainer
of the spreadsheets, seeing files that were not linked was
insightful. “I assumed this region was already copied into the
total sheet, but in the diagram I see it is not. I should fix
that right away.” After the employees fixed the clones that we
found, the overall results balanced as they should, meaning
less food is wasted on a monthly basis, which we consider
a very good result and strong evidence that data clones can
indeed be the cause of errors.

Delft University In the case study for the Delft University,
we studied the budget spreadsheet, consisting of 15 work-
sheets. We again used MinimalClusterSize 9 and MinimalDif-
ferentValues 9 and set the MatchingPercentage to 80% and
StepSize to 2. In this case study, we searched for clones
between worksheets, since there was just one spreadsheet.
Running the algorithm took 3 seconds.

We found 8 exact clones, which all turned out to be real
clones, i.e. they were copied by the spreadsheet creator. When
we asked him why he used the clones instead of links, he stated
that the spreadsheet was a draft version and that it seemed
easier to simply copy the values. Although these clones did not
lead to problems in this case, the spreadsheet owner did state
that if he had to share the spreadsheet with others, he thought
he should replace the clones with links. He stated that our
analysis would be very useful in improving the spreadsheet and
removing the clones: “This scan is very useful. You can just
copy-paste and the system indicates where you should make
links”. In this case study, the visualization was interesting,
since there were two worksheets that were both connected by
a solid arrow, indicating formula dependencies, and a dashed
arrow which shows a clone dependency. We consider this as

299

extra risky, because the spreadsheet’s user might think all
values are linked upon seeing one of the formula dependencies.

XI. THE RESEARCH QUESTIONS REVISITED

In this section, we revisit the research questions.
R1: How often do data clones occur in spreadsheets? We

learned from the both EUSES case and the case studies
that clones occur often in spreadsheets. Around 5% of all
spreadsheets in the EUSES corpus contain clones.

R2: What is the impact of data clones on spreadsheet
quality? From the two case studies, we learned that clones
can have two different types of risks. We learned that clones
matching 100% mainly impact the users perspective of spread-
sheets (“I did not know these values were copied from that
source”), while near-miss clones really causes trouble (“this
value should have been updated months ago”).

R3: Does our approach to detect and visualize data clones
in spreadsheets support users in finding and understanding
data clones? In both studies we saw that employees were not
always aware of what values were copied from what sheets to
what others. Even creators of the spreadsheets did not know
all relations by heart. The dataflow visualizations aided users
in quickly getting an overview of the, otherwise very hidden,
copy dependencies (“the system indicates where you should
make links”).

XII. DISCUSSION

Our current approach to finding clones helps spreadsheet
users to understand how data is copied throughout worksheets
and spreadsheets and furthermore supports them in improving
erroneous relations. In this section, we discuss a variety
of issues that affect the applicability and suitability of the
proposed approach.

A. Relative settings for parameters

In the current evaluations, we have used fixed settings for
the parameters: we set MinimalDifferentValues and Minimal-
ClusterSize both to 9, irrespective of the spreadsheet. However,
it could improve performance of the algorithm if these param-
eters were calibrated using properties of the spreadsheets. For
instance, in a spreadsheet with only 8 rows, no clones will ever
be found. Although the evaluations showed that using fixed
settings leads to useful results, taking spreadsheet properties
into account might improve the algorithm even further.

B. Headers

In previous work, we have worked on the extraction of meta
data from spreadsheets [28]. Other authors have worked on this
as well [32], [33]. We could use extracted header information,
such as column or row names to gain more confidence in
detected clones. If clones are found below column headers
with the same name, chances are bigger that clones are are
‘real’ clones and concern the same conceptual data.

C. Copied data

In addition to copying the results of formulas, a spreadsheet
user can also copy data to different places of the spreadsheet.
This is a different type of cloning in spreadsheets that we have
not yet considered for this paper. We hypothesize that copy-
pasting of data might also be error-prone, however this calls
for more research. Furthermore, there is be the challenge of
detecting the origin of the clone, similar to origin analysis in
source code [34], [35]. We see this as an interesting avenue
for future research.

D. Clone genealogy

The current approach analyzes cloning as it occurs in a
spreadsheet at a given point in time. However, it would also
be very interesting to understand how clones are created and
adapted. When spreadsheets are be placed under version con-
trol, such as provided by Microsoft’s Sharepoint, for example,
it will be possible to also track the history of a set of clones,
similar to clone genealogy work in source code analysis [36],
[37].

E. Spreadsheet maintenance support

We learned from the case study at the foodbank that, when
spreadsheets become larger and more complex, their users
become more anxious to make structural changes. Although
this does not relate to cloning directly, updating a clone into a
formula link is one of those changes that users fear might mess
up the entire sheet. This means that spreadsheets need better
support for previewing a change, such as some refactoring
tools offer, or the option to calculate what cells will be affected
by a certain change.

F. Threats to validity

A treat to the internal validity of our quantitative evaluation
is the fact that we validated the precision of the algorithm
manually. We have however described our approach and made
our results publicly available, so our results can be replicated.
A threat to the external validity of our quantitative evaluation
concerns the representativeness of the EUSES corpus. How-
ever, the EUSES corpus is a large set that is collected from
practice and has been used for numerous spreadsheet papers.
The external validity of the qualitative evaluation might suffer
from this threat, however these spreadsheets too are collected
from practice and available online to enable other researchers
to replicate our results.

XIII. CONCLUDING REMARKS

The goal of this paper is to investigate the risks that data
clones pose to spreadsheets. To that end we have defined data
clones and described a way to detect and visualize them. We
have subsequently evaluated data clones in two ways, with a
quantitative evaluation on the EUSES corpus and two real-life
case studies in which we found that data clones are common
and can lead to real errors.

The key contributions of this paper are as follows:
• The definition of data clones in spreadsheets (Section IV).

300

• An approach for the automatic detection (Section V) and
visualization (Section VI).

• An implementation of that approach into our existing
spreadsheet analysis toolkit Breviz (Section VII).

• A quantitative evaluation of the proposed clone detection
algorithm on the EUSES corpus (Section X).

• A real-life evaluation with 31 spreadsheet from a Dutch
non-profit organization and 1 from academia (Section
IX).

The results of our evaluations show that around 5% of
spreadsheets contain data clones and that these clones lead
to actual errors such as in the case of the foodbank. The
current research gives rise to several directions for future
work. Firstly , the algorithm could be improved to get a better
precision. Also, in a new study, we will analyze the recall
of the algorithm and on detecting clone that do not match in
their number format, since these might be even more error-
prone than the data clones we detect currently. Furthermore,
the case study learned us that impact analysis of changes
in spreadsheets could help to increase a spreadsheet user’s
confidence, either before the change or directly after. This is
a very interesting avenue for further research.

Finally, taking the meta data into account might strengthen
the clone detection algorithm.

REFERENCES

[1] L. Bradley and K. McDaid, “Using bayesian statistical methods to
determine the level of error in large spreadsheets,” in Proc. of ICSE
’09, Companion Volume, 2009, pp. 351–354.

[2] C. Scaffidi, M. Shaw, and B. A. Myers, “Estimating the numbers of end
users and end user programmers,” in Proc. of VL/HCC ’05, 2005, pp.
207–214.

[3] D. Bell and M. Parr, “Spreadsheets: A research agenda,” SIGPLAN
Notices, vol. 28, no. 9, pp. 26–28, 1993.

[4] D. P. Ballou, H. L. Pazer, S. Belardo, and B. D. Klein, “Implication of
data quality for spreadsheet analysis,” DATA BASE, vol. 18, no. 3, pp.
13–19, 1987.

[5] C. K. Roy, “Detection and analysis of near-miss software clones,” in
Proc. of ICSM ’09, 2009, pp. 447–450.

[6] J. H. Johnson, “Identifying redundancy in source code using finger-
prints,” in Proc. of CASCON ’93, 1993, pp. 171–183.

[7] M. Fisher and G. Rothermel, “The EUSES spreadsheet corpus: a shared
resource for supporting experimentation with spreadsheet dependability
mechanisms,” ACM SIGSOFT Software Engineering Notes, vol. 30,
no. 4, pp. 1–5, 2005.

[8] P. O’Beirne, “Information and data quality in spreadsheets,” in Proc. of
Eusprig ’08, 2008.

[9] M. Bruntink, A. van Deursen, R. van Engelen, and T. Tourwé, “On the
use of clone detection for identifying crosscutting concern code,” TSE,
vol. 31, no. 10, pp. 804–818, 2005.

[10] S. Ducasse, M. Rieger, and S. Demeyer, “A language independent
approach for detecting duplicated code,” in Proc. of ICSM ’99, 1999,
pp. 109–118.

[11] T. Kamiya, S. Kusumoto, and K. Inoue, “CCfinder: A multilinguistic
token-based code clone detection system for large scale source code,”
TSE, vol. 28, no. 7, pp. 654–670, 2002.

[12] B. S. Baker, “On finding duplication and near-duplication in large
software systems,” in Proc. of WCRE ’95, 1995, pp. 86–95.

[13] I. D. Baxter, A. Yahin, L. M. de Moura, M. Sant’Anna, and L. Bier,
“Clone detection using abstract syntax trees,” in Proc. of ICSM ’98,
1998, pp. 368–377.

[14] R. Komondoor and S. Horwitz, “Using slicing to identify duplication in
source code,” in Proc. of SAS ’01, 2001, pp. 40–56.

[15] J. Krinke, “Identifying similar code with program dependence graphs,”
in Proc. of WCRE ’09, 2001, pp. 301–309.

[16] C. K. Roy and J. R. Cordy, “Near-miss function clones in open source
software: an empirical study,” Journal of Software Maintenance, vol. 22,
no. 3, pp. 165–189, 2010.

[17] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and evaluation
of code clone detection techniques and tools: A qualitative approach,”
Science of Computer Programming, vol. 74, no. 7, pp. 470–495, 2009.

[18] M. H. Alalfi, J. R. Cordy, T. R. Dean, M. Stephan, and A. Stevenson,
“Models are code too: Near-miss clone detection for simulink models,”
in Proc. of ICSM ’12, 2012, to appear.

[19] M. Burnett, A. Sheretov, B. Ren, and G. Rothermel, “Testing homo-
geneous spreadsheet grids with the ”what you see is what you test”
methodology,” TSE, vol. 28, no. 6, pp. 576–594, 2002.

[20] N. Gold, J. Krinke, M. Harman, and D. Binkley, “Issues in clone
classification for dataflow languages,” in Proc. of IWSC ’10, 2010, pp.
83–84.

[21] F. Hermans, M. Pinzger, and A. van Deursen, “Supporting professional
spreadsheet users by generating leveled dataflow diagrams,” in Proc. of
ICSE ’11, 2011, pp. 451–460.

[22] ——, “Detecting and visualizing inter-worksheet smells in spread-
sheets,” in Proc of ICSE ’12, 2012, pp. 441–451.

[23] ——, “Detecting code smells in spreadsheet formulas,” in Proc of ICSM
’12, 2012, to appear.

[24] F. Hermans, “Exact and near-miss clone detection in spreadsheets,”
TinyToCS, vol. 1, no. 1, 2012.

[25] J. Mayrand, C. Leblanc, and E. Merlo, “Experiment on the automatic
detection of function clones in a software system using metrics,” in Proc.
of ICSM ’96, 1996, pp. 244–.

[26] E. Jürgens, F. Deissenboeck, B. Hummel, and S. Wagner, “Do code
clones matter?” in Proc. of ICSE ’09, 2009, pp. 485–495.

[27] C. J. Kapser and M. W. Godfrey, “”cloning considered harmful” con-
sidered harmful: patterns of cloning in software,” Empirical Software
Engineering, vol. 13, no. 6, pp. 645–692, 2008.

[28] F. Hermans, M. Pinzger, and A. van Deursen, “Automatically extracting
class diagrams from spreadsheets,” in Proc. of ECOOP ’10, 2010, pp.
52–75.

[29] R. Abraham and M. Erwig, “Inferring templates from spreadsheets,” in
Proc. of ICSE ’06, 2006, pp. 182–191.

[30] J. Cunha, J. Saraiva, and J. Visser, “Discovery-based edit assistance for
spreadsheets,” in Proc. of VL/HCC ’09, 2009, pp. 233–237.

[31] B. Laguë, D. Proulx, J. Mayrand, E. Merlo, and J. P. Hudepohl,
“Assessing the benefits of incorporating function clone detection in a
development process,” in Proc. of ICSM ’97, 1997, pp. 314–321.

[32] R. Abraham and M. Erwig, “Header and unit inference for spreadsheets
through spatial analyses,” in Proc. of VL/HCC ’04, 2004, pp. 165–172.

[33] M. Erwig and M. M. Burnett, “Adding apples and oranges,” in Proc. of
PADL ’02, 2002, pp. 173–191.

[34] M. Godfrey and Q. Tu, “Tracking structural evolution using origin
analysis,” in Proc. of IWPSE ’02, 2002, pp. 117–119.

[35] L. Zou and M. W. Godfrey, “Detecting merging and splitting using origin
analysis,” in Proc. of WCRE ’03, 2003, pp. 146–154.

[36] M. Kim and D. Notkin, “Using a clone genealogy extractor for under-
standing and supporting evolution of code clones,” in Proc. of MSR ’05,
2005.

[37] T. Bakota, “Tracking the evolution of code clones,” in Proc. of SOFSEM
’11, 2011, pp. 86–98.

301

