Empir Software Eng
DOI 10.1007/s10664-013-9296-2

Detecting and refactoring code smells in spreadsheet
formulas

Felienne Hermans - Martin Pinzger - Arie van Deursen

© Springer Science+Business Media New York 2014

Abstract Spreadsheets are used extensively in business processes around the world and just
like software, spreadsheets are changed throughout their lifetime causing understandability
and maintainability issues. This paper adapts known code smells to spreadsheet formulas. To
that end we present a list of metrics by which we can detect smelly formulas; a visualization
technique to highlight these formulas in spreadsheets and a method to automatically suggest
refactorings to resolve smells. We implemented the metrics, visualization and refactoring
suggestions techniques in a prototype tool and evaluated our approach in three studies.
Firstly, we analyze the EUSES spreadsheet corpus, to study the occurrence of the formula
smells. Secondly, we analyze ten real life spreadsheets, and interview the spreadsheet own-
ers about the identified smells. Finally, we generate refactoring suggestions for those ten
spreadsheets and study the implications. The results of these evaluations indicate that for-
mula smells are common, that they can reveal real errors and weaknesses in spreadsheet
formulas and that in simple cases they can be refactored.

Keywords Spreadsheets - Code smells - Refactoring

1 Introduction

The use of spreadsheets is very common in industry, Winston (2001) estimates that 90 % of
all analysts in industry perform calculations in spreadsheets. Spreadsheet developers are in
fact end-user programmers that are usually not formally trained software engineers. There

Communicated by: Massimiliano Di Penta and Jonathan Maletic

F. Hermans (P<)) - M. Pinzger - A. van Deursen
Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands
e-mail: FFE.J. Hermans @tudelft.nl

M. Pinzger
e-mail: m.pinzger @tudelft.nl

A. van Deursen
e-mail: arie.vandeursen @tudelft.nl

Published online: 07 February 2014 4\ Springer

mailto:F.F.J.Hermans@tudelft.nl
mailto:m.pinzger@tudelft.nl
mailto:arie.vandeursen@tudelft.nl

Empir Software Eng

are many of those end-user programmers, more than there are traditional programmers, and
the artifacts they create can be just as important to an organization as regular software.
Technically, spreadsheets also have similarities to software. One could view spreadsheet
formulas as little pieces of source code, since both consist of constants, variables, condi-
tional statements and references to other parts of the software. It therefore seems viable to
investigate what principles from software engineering are also applicable to spreadsheets.

In previous work (Hermans et al. 2012a) we have defined code smells between work-
sheets, such as high coupling between worksheets and middle men worksheets. The
evaluation of those smells showed that they can indeed reveal weak spots in a spreadsheet’s
design. In this paper we follow that line of thought, but focus our attention on smells within
spreadsheet formulas. To that end we present a set of formula smells, based on Fowler’s code
smells. We subsequently define metrics for each of the formula smells, to enable the auto-
matic detection of the smells. Our detection approach uses thresholds to divide the severity
of each formula smell into low, moderate, and high. The thresholds are based on the anal-
ysis of 4,233 spreadsheets from the EUSES corpus (Fisher and Rothermel 2005). Thereon
we address the issue of communicating the detected smells to spreadsheet users. We choose
to do this within the spreadsheet itself, with a spreadsheet risk map, a colored overlay on
the spreadsheet, indicating risk in the spreadsheet formulas. Finally we evaluate the catalog
of smells in two ways, with a quantitative and qualitative evaluation. First, we perform a
quantitative evaluation on the EUSES spreadsheet corpus. Then, a qualitative analysis was
performed with ten real life spreadsheets and their developers from industry. With these two
studies we aim to answer the three research questions

R; What formula smells are most common, and why?
Ry, To what extent do formula smells expose threats to spreadsheet quality?
R3 To what extent are risk maps an appropriate way to visualize formula smells?

This paper is an extension of our previous paper published in the proceedings of ICSM
2012 (Hermans et al. 2012b). In comparison to the ICSM paper, this paper adds: an
extended version of the discussion section (Section 13); a broader overview of related work
(Section 14); a catalog of refactorings to resolve the formula smells (Section 4); a descrip-
tion of an implementation that generates refactorings (Section 6.2) and a new exploratory
study of the impact of refactoring smells. This additional study, found in Section 11, answers
the additional research question

R4 To what extent can formula smells be refactored by generated refactoring suggestions?

The aim of this extended version is to gain a more deeper understanding on how detected
smells in spreadsheets can be refactored. The evaluations in the original ICSM paper showed
that formula smells can indeed reveal weaknesses and even find real mistakes in a spread-
sheet. It furthermore showed that risk maps, although not yet perfect, are a good aid in
locating and understanding formula smells. Based on the additional evidence we present
in this paper, we conclude that many spreadsheet smells can be refactored; however, some
smells are in balance with each other and additional support is needed to help users find the
sweet spot in that balance.

2 Formula Smells

In this section, we present our formula smells, which are based on the existing work
in the field of source code smells. Smells in source code indicate suspicious pieces of

@ Springer

Empir Software Eng

code, that the developer might want to refactor to improve readability and minimize the
chance of future errors. Formula smells are inspired by source code smells: they indi-
cate formulas that are suspicious; not easy to read or error-prone. To create our catalog
of formula smells, we looked at all inter-class code smells defined by Fowler (1999) and
removed those code smells that are specific to source code, like the Temporary Field smell.
This left us with the following list of formula smells. Note that in other work (Hermans
et al. 2012a), we studied code smells between worksheets, based on code smells between
classes.

2.1 Multiple Operations

One of the most well-known code smells is the Long Method. Inspired by this code smell,
we define the formula smell Multiple Operations. Analogous to a long method, a formula
with many operations will likely be harder to understand than a shorter one. Especially
since in most spreadsheet programs, there is limited space to view a formula, causing long
formulas to be cut off.

2.2 Multiple References

Another code smell that we use as a basis is the Many Parameters code smell. A method
that uses many input values might be split into multiple methods to improve readability.
The formula equivalent of this smell occurs when a formula references many different other
cells, like SUM(AI:A5;B7,C18;C19;F19). In this case the essence of the formula is clear;
some cells are summed. However locating the different cells that are contained in the sum
can be challenging.

2.3 Conditional Complexity

Fowler states that the nesting of many conditional operations should be considered a threat
to code readability, since conditionals are hard to read. Since spreadsheet systems also
allow for the use of conditionals, spreadsheet formulas are at risk of this treat too. We
hence consider a formula with many conditional operations as smelly, like the formula
IF(A3=1,IF(A4=1,IF(A5<34700,50)),0). Because this formula contains many conditional
branches, it is quite hard to read.

2.4 Long Calculation Chain

Spreadsheet formulas can refer to each other, creating a chain of calculations. In Fig. 1 a
spreadsheet is shown in which we find a calculation chain of two steps: C15 refers to F3,
G3 and B15. G3 and B15 are constants, F3 however refers to B3 to E3. To fully understand
what a chain of formulas calculates, a spreadsheet user has to trace along all steps to find
the origin. Nardi and Miller (1990) described that spreadsheet users find tracing a long
calculation chain a tedious task. Note that there is a trade off between this metric on the
one hand and Multiple Operations and Multiple References on the other. When they are
lowered, this metric will be increased, and vice versa. Such trade offs occur in source code
smells too.

@ Springer

Empir Software Eng

(8]

-

wn
4

fe | =(F3+G3)*B15

A B [C D E F G
Hours Worked in December
week1 week2 week 3 week 4 Total Hours Overtime

Green [
Jones

Smith
Johnson
White
Edwards

©WNDO A WN -
omo o oo

11 Weekly Total 193
12 Max Hours

o m

14 Hourly
15 |Green

16 Jones

17 Smith 18 $1,872.00
18 Johnson 14 $147420
19 White 14 $1,358.00
20 Edwards 20 $3,066.00

Fig. 1 A spreadsheet containing a calculation chain of two steps

2.5 Duplicated Formulas

Finally there is the duplication code smell, that indicates that similar snippets of code are
used throughout a class. This is a concept common in spreadsheets too, where some for-
mulas are partly the same as others. Consider, for example, a worksheet that contains a cell
with formula MIN(A1:A6)+10 % and a second formula MIN(A1:A6)+20 %. This formula
exhibits duplication; the part MIN(A1:A6) is contained in more than one formula. A group
of formulas that exhibit duplication can be found in Fig. 2. Duplication is suspicious for
two reasons. Firstly it poses a threat to maintainability, since when the duplicated part of
the formula is adapted, this adaptation has to be performed at multiple places. This could
be forgotten by the spreadsheet user, or a mistake could be made in some of the cases. Sec-
ondly, there is an impact on readability, when long parts of the formula are duplicated, it is
hard to see how they differ from each other.

3 Formula Smell Metrics

To identify smell occurrences automatically, we make use of metrics. This is a common
approach in the automatic detection of code smells (Moha et al. 2010). We follow our
approach outlined in Hermans et al. (2012a) defining a metric to detect each of the formula

Fig. 2 Formulas containing

e SUM ~ X ¢ S« =MIN(A2:D2)+10
similar subtrees () %l

A B Cc D E
1 »
2 27 73 72 66] =MIN(A2:D2)+10% l
3 30 86 97 32 =MIN(A3:D3)+20%
4 16 88 30 61 =MIN(A4:D4)+30%
5 43 81 58 21 =MIN(A5:D5)+40%
6 81 55 76 64 =MIN(A6:D6)+50%
7

@ Springer

Empir Software Eng

smells in spreadsheets. This method entails the definition of a metric for each of the smells
to indicate the presence of that particular smell.

Multiple Operations We measure the length of a formula in terms of the total number of
functions that the formula contains.

Multiple References This metric is counted in terms of the number of ranges a formula is
referring to. We use the number of ranges rather than the number of individual references,
as in previous work we have found that formulas referring to multiple ranges are more
difficult for spreadsheet users to read (Hermans et al. 2012c).

Conditional Complexity is measured in terms of the number of conditionals contained
by a formula.

Long Calculation Chain This metric is defined as the length of the longest path of cells
that need to be dereferenced when computing the value of the formula.

Duplicated Formula For the localization of this smell more information about all formu-
las in the spreadsheet is needed. Consider the spreadsheet in Fig. 2. All the formulas in
column E calculate the minimum of the four cells left to it, followed by the addition of a
certain percentage. We argue that in this case, duplication should be detected. However,
looking at the formulas, they do not look similar. We therefore will use the relative R1C1
notation when detecting duplication.

In the relative R1C1 notation, references to other cells are expressed relative to the
cell containing the formula. MIN(A2:D2) in cell E2 is written as MIN(RC[-4]:RC[-1]) in
relative R1C1 notation. With this notation, all formulas in Fig. 2 contain the subformula
MIN(RC[-4]:RC[-1]), with different percentages. With this, we will measure the dupli-
cate code smell as the number of formulas, located in the same worksheet and expressed
in relative R1C1 notation, with which a formula shares at least one proper subtree. We
exclude the entire tree as subtree, since having the same R1C1 formula in an entire row
or column is the usual way of defining a formula in spreadsheets.

With our definition of smells, we focus at smells in the calculation design of the formulas.
Therefore, other plausible smells, like the occurrence of magic numbers in formulas, are left
out of the scope of this paper.

4 Refactorings Corresponding to Smells
In this section, we will describe how the five formula smells can be refactored.
4.1 Multiple Operations

A refactoring corresponding to the Multiple Operations smell is the division of the multi-
ple operations over different cells in the spreadsheet. This refactoring looks at arguments
of the root of the formula. Each argument of the root will be a new formula and the current
formula will reference those new formulas. We call this refactoring the Extract Subformula
refactoring. An additional, supporting refactoring that can be performed is the Extract Com-
mon Subformula refactoring. This refactoring can be applied if a formula contains the same
subformula multiple times.

@ Springer

Empir Software Eng

4.2 Multiple References

When a formula suffers from the Multiple References smell, there are several options to
refactor. The simplest refactoring we can apply, is to restructure the cells a formula refer-
ences into a lower number of ranges. This is possible when adjacent cells are referenced
individually, like in formula SUM(A1;A2;A3;A4; A5), this can be rewritten to SUM(A1:A5).
We call this refactoring Group References.

Secondly, there is the option to relocate the cells in the spreadsheet. If a formula is refer-
ring to multiple cells, like SUM(A1:A5;B7;C18;C19;F19), we could move the values in B7,
C18, C19 and F19 to A6 until A10, and subsequently rewrite the formula as SUM(A1:A10).
We call this refactoring the Move References refactoring. However, this is not always a
desired option, as there might be other formulas referring to a subset of these cells. In that
case, this refactoring will cause those formulas to start suffering from the Multiple Refer-
ences smell. Finally, we could apply the Extract Subformula refactoring. This refactoring is
always applicable.

4.3 Conditional Complexity

To reduce the Conditional Complexity smell, in some cases we could combine multiple
branches of an IFformula into one. This is possible if multiple branches result in the same
value. For instance, in the formula IF(A1=5,“0K”, IF(B1=7, “OK”, “NOT OK”)), two
different branches result in “OK”. These can be combined into one: IF(OR(A1=5,B1=7),
“OK”, “NOT OK”). This formula might be easier to understand, as it only contains one IF.
If this refactoring results in a too complex condition, this can be again refactored with the
Extract Subformula refactoring. We call this refactoring the Merge Branches refactoring.

If the conditional formula contains similar subformulas, the Extract Common Subfor-
mula is suggested. If that is not possible, the Extract Subformula can be applied, both on
the condition and on the branches.

4.4 Long Calculation Chain

This smell is most difficult to refactor, as there is a trade off between this metric and
Multiple Operations and Multiple References. For this smell, we look whether there are cal-
culation steps in the chain that do not occur in other chains. If this is the case, these two
calculation steps can be put into one formula. We call this refactoring the Merge Formu-
las refactoring. This is the only refactoring in our catalog applicable to cells with the Long
Calculation Chain smell.

4.5 Duplicated Formulas

The Duplicated Formula smell can be refactored by putting the shared subtrees in a separate
formula and replacing the subtree with a reference to that formula. This is just a special
application of the Extract Subformula refactoring, in this case applied to a group of cells.
In the example of Fig. 2 this would mean that column E becomes MIN(A2:D2). Then, in
column E, all cells are R1C1 equal, whereas in column F we would get A2410 %. This way
the common functionality is in one place (E) and the variable part has its own place (F). If
something were to change in the refactored version of the spreadsheet (for instance, MIN
becomes MAX), we can adapt cell E2 and let Excel change the entire column by double

@ Springer

Empir Software Eng

clicking the bottom right corner of the cell. In the original situation, that change would
involve updating all cells separately.

5 Determining Smell Thresholds

In order to use metrics as smell indicators, we determine thresholds for each of the metrics.
We do this by analyzing a large body of spreadsheets. Then, based on the values for the
metrics we find in that body of spreadsheets, setting the thresholds for the metrics that
indicate the smell.

The body of spreadsheets we use is the EUSES Spreadsheet Corpus (Fisher and
Rothermel 2005). This corpus consists of 4,223 real life spreadsheets, from all sorts of
domains, ranging from educational to financial, and from inventory to biology. It was cre-
ated in 2005 and has since then been used by several researchers to evaluate spreadsheet
algorithms, for instance (Abraham and Erwig 2006; Cunha et al. 2009).

The total of 4,223 spreadsheets together contain 15,015 worksheets and 426,986 formu-
las. A spreadsheet however often contains many rows with formulas that are equal in the
relative R1C1 notation, which we call unique formulas. We collect the metrics for all unique
formulas, of which there are 55,736 in the EUSES corpus. Figure 3 shows the cumulative
percentage of formulas (x-axis) above a given metric value (y-axis) for all unique formulas
in the EUSES corpus. As can been seen in this figure, the metrics all follow a power law
like distribution, having most of their variability on the tail.

We therefore choose to select the thresholds in this tail. In the analysis of source code
smells (Alves et al. 2010), the percentages 70, 80 and 90 % are common thresholds and
looking at the distribution, we propose to use these thresholds for formula smells too. Hence,
the values at 70, 80 and 90 % of the metric values will correspond to the risk levels low,
moderate and high. In the subsequent two evaluations, we will investigate whether these
thresholds are well chosen.

Table 1 shows the thresholds that follow from the given selection for the five formula
smells.

100

== Multiple Operations
= Duplicated Formulas

,J Conditional Complexity
/]

7 w— Multiple References
' === Long Calculation Chain

0 10 20 30 40 S0 60 70 80 S0 100

Cumulative percentage of formulas

Metric Value
.
o

1

Fig. 3 A quantile plot (% of formulas) for the five metrics for formulas in the EUSES corpus, with a
logarithmic scale for the y axis

@ Springer

Empir Software Eng

Table 1 Thresholds for the
metrics that indicate the formula Smell 70 % 80 % 90 %
smells

Multiple operations
Multiple references
Conditional complexity

Long calculation chain

[=) N~ SR USRS
© W W A W
[SSHEEN N N =)

—_

Duplicated formulas

6 Risk Maps

Now we have established a method to detect the formula smells, this section will describe a
way to communicate the located smells and their corresponding refactorings to spreadsheet
users.

6.1 Smells

We have chosen to show the formula smells inside the spreadsheet itself. We have seen
in previous work that, when reasoning about formulas, spreadsheet users like to see the
context of the formula (Hermans et al. 2012a). We therefore use a colored overlay over
the spreadsheet that indicates the formula smells, inspired by other spreadsheet tools like
UCheck (Abraham and Erwig 2007; Chambers and Erwig 2009; Erwig 2009), combined
with pop-ups showing what smell is detected, similar to those in UFix (Abraham and Erwig
2005). We call this the spreadsheet risk map. Before the risk map is generated, existing
colors are removed from the spreadsheet.

We attach a comment to each colored cell, so when a spreadsheet user clicks a cell, an
explanation about the located smell will pop up. The three different risk levels are marked
with different colors; yellow for low; orange for moderate and red for high. If multiple
smells are detected in one cell, they are both shown and ordered by severity. The color of
the cell represents the severity of the worst smell. For instance, the pop-up in Fig. 4 shows
that cell AQ3 suffers from both the Multiple Operations and Multiple References smells,
the red color of the cell indicates the worst smell is detected at the 90 % level.

6.2 Refactoring
At this point, we do not yet offer support for automated refactoring. We generate suggestions

for refactoring and let the spreadsheet users execute them themselves. Generation of the
suggestions is done by trying to apply the refactorings on smelly formulas in the order as

b

AQ3 - =AP3-MIN(R3:A03)-SMALL(R3:A03;2)-SMALL(R3:A03;3)- SMALL(R3:A03;4)-SMALL(R3:A03;5)

A AN | AO | AP | AQ AR AS AT AU AY BB BC BD
1 Code Quiz Quiz Quiz Drop Quiz Quiz Exam Exam Final Term Total
2 23 24 Total _5_, TiiicTomula contains many | Paper _Grade
3] 10 10 240 1 operations. (High) o 100% 100,0% rade
4 '030767 10 5 166 8|This formula refers tomany [o 87% 96,5%
5 11291129 9 10 155 8|groups of cells.(High) b 71% 95,0%
6 12345 9 10 21 br—vom——vr—oh 89% 100,0%
7 2182 10 10 164 832% 832 88% 94% 99% 98,0%
8 '2663 10 10 200 97,4% 97,4 97% 71% 86% 98,0%
9 3196 10 10 203 953% 953 88% 90% 93% 100,0%

10

Fig. 4 A spreadsheet with its risk map

@ Springer

Empir Software Eng

B13 ~ fe | =SUM(B2:B4)-SUM(B7:B11)
A [B [c D

1 Profitand Loss 2011
2 Total Europe =Turnover!C7
3 Total Asia =Turnover!C15
4 Total USA =Turnover!C16
5 Total Turnover =SUM(B2:B4)
6 Costs 2011
7 Housing =Costs!C7
8 Equipment =Costs!C12
9 Salary director =Costs!C17 . .

_ Refactoring Possible:
10 Salary employees =CostsIC18 Common Subformula
11 Other =Costs!C20 SUM(B2:B4) can be
12 Total Costs =SUM(B7:B11 extracted.
13 EBITA =SUM(B2:B4)-SUM(B7-B11) |
14

Fig. 5 A spreadsheet with a refactoring suggestion. The subformula SUM(B2:B4) also occurs in BS and
could be extracted from the highlighted formula in B13

described in Section 4. In the suggestion that is generated, we place the suggestions for the
refactorings in the pop-ups that also contain the smells, as illustrated by Fig. 5.

Furthermore, a list is generated containing all refactorings that can be applied, to make
it easier for users to check them all.

7 Implementation

The generation of the risk maps is incorporated into the existing spreadsheet analysis system
Breviz (Hermans et al. 2011). Breviz is implemented in C# 4.0. It utilizes the Gembox com-
ponent to read Excel files.! Breviz reads an Excel file and calculates the metrics described
above and subsequently generates the spreadsheet risk map. Furthermore the metric val-
ues are stored in a SQL Server 2008 database to perform the threshold detection. Breviz,
including refactoring suggestions, is available as a SaaS application at http://app.infotron.nl.

8 Evaluation

In order to evaluate the formula smells, metrics, thresholds, risk map visualization and refac-
toring suggestions, we perform three separate evaluations. In the first evaluation we turn our
attention back to the EUSES Spreadsheet corpus. We analyze all spreadsheets in the cor-
pus that contain formulas. On those 1711 spreadsheets, we determine the occurrence of the
five spreadsheet smells. With this analysis, we seek to find a preliminary answer to research
question Rp: what formula smells are common, and why.

For the second evaluation, aimed at a deeper understanding of Rj, plus answers to R and
R3, we ask ten professional spreadsheet developers for access to their real life spreadsheets.
We let our tool Breviz identify possible formula smells and show the participants the gener-
ated risk map. We thereon ask the spreadsheet users to reflect on the identified spreadsheet
smells, in a semi-structured interview.

Finally, to evaluate the refactoring suggestions and answer research question R4, we gen-
erated suggestions for those ten spreadsheets, studied the results and asked the spreadsheet

Thitp://www.gemboxsoftware.com/spreadsheet/overview

@ Springer

http://app.infotron.nl
http://www.gemboxsoftware.com/spreadsheet/overview

Empir Software Eng

owners to comment on a number of selected refactorings. The following sections describe
the three evaluations in more detail.

9 Smell Occurrences in the EUSES Corpus
9.1 Goal

The objective of the first study is to understand how common the five formula smells are,
given the thresholds we have selected. While the thresholds were chosen such as percentages
of formulas containing a smell, here we are interested in the distribution of smelly formulas
across spreadsheets.

9.2 Setup

We use the Breviz tool to analyze those spreadsheets in the EUSES corpus that contain
formulas and check those 1711 spreadsheets for the presence of formula smells and their
severity. Per spreadsheet the tool outputs the metric values for each of the five formula
smells. We use this data to analyze the distribution of the formula smells over the three
metric categories; above the 70, 80 and 90 % thresholds.

This evaluation tells us whether the choices we made for the thresholds are justified, as
it gives us an initial idea of the distribution of the formula smells over the spreadsheets.

9.3 Results

Table 2 shows the results of the first evaluation. As shown in this Table, Multiple Opera-
tions and Multiple References are most common in the EUSES Corpus. This is consistent
with previous spreadsheet experiments, where it has been shown that spreadsheet are often
adapted by their users (Hermans et al. 2012a). In that process, spreadsheet formulas tend to
get longer and more complex. As opposed to software development, where code is some-
times rewritten to improve readability or maintainability, the answers of the ten subjects of
the second evaluation (see below) have taught us that this is not a common practice among
spreadsheet creators. Hence, when a formula has become long and complex, it is likely to
remain as is.

Third and fourth come the Duplicated Formula and Long Calculation Chain. These two
smells share the property that they are not immediately visible to the spreadsheet user. In
most modern spreadsheet systems, when a cell is clicked, the formula it contains is shown.
However in the case of Duplicated Formula and Long Calculation Chain, the formula does

Table 2 Percentage of

spreadsheets in the EUSES Smell > 70 % > 80 % > 90 %
corpus that suffer from at least
one of the five spreadsheet smells ~ Multiple references 23.8 % 18.4 % 6.3 %
in EUSES corpus, for the three Multiple operations 21.6 % 17.1 % 6.3 %
thresholds :
Duplicated formulas 10.8 % 7.1 % 3.7 %
Long calculation chain 9.0 % 7.9 % 33%
Conditional complexity 4.4 % 3.0 % 1.1 %
Any of the above smells 42.7 % 31.4 % 19.7 %

@ Springer

Empir Software Eng

not reveal where the calculation chain of the formula ends, and with what formulas a cell
shares subtrees. So it is interesting to see that around 10 percent of spreadsheets suffer from
a smell that is not visible to a spreadsheet user that is not explicitly looking for it.

Conditional Complexity is the least common smell. This is surprising, since we have seen
before that conditional operations are quite common in spreadsheets. We therefore dived
into this phenomenon deeper. We found that of the total of 426,986 formulas in the corpus,
5,976 contain at least one conditional operation, this is 1.4 % of all formulas. These formu-
las are divided over 380 spreadsheets, which amounts to 22.2 % of the spreadsheets with
formulas. We can hence state that the use of conditional operations is relatively common.

However, only 92 of the spreadsheets (5.3 %) contain formulas with more than 2 con-
ditional operations in one formula, adding up to only 695 formulas (0.2 %). Evidently, the
nesting of conditional formulas is not very common. We will hence devote attention to this
fact in the second evaluation.

Regarding the thresholds, given our current choices a substantial percentage of the corpus
suffers from spreadsheet smells, especially in the low category. In the second case study
we will continue to investigate the thresholds, by observing how spreadsheet users from
industry feel about formulas that are marked as smelly by these thresholds.

10 Formula Smells in an Industrial Case Study
10.1 Goal

The aim of our second evaluation is investigating which of the formula smells actually
poses a threat to spreadsheets (R»), and whether risk maps help spreadsheet users find and
understand formula smells (R3). To determine this, we have surveyed spreadsheet users and
interviewed them about a spreadsheet that they often work with and that they found was
large and complicated. We stated that this spreadsheet did not necessarily had to be created
by them initially, but they had to have experience with changing its formulas.

10.2 Setup

For the second evaluation we interviewed 10 professional spreadsheet users from the finan-
cial domain. We conducted our evaluation at Robeco, a Dutch asset management company
with approximately 1600 employees worldwide, and over 130 billion Euro worth of assets
under management.

We invited 27 participants of a previous study performed at Robeco (Hermans et al.
2012a) to participate in this evaluation, where they were asked to provide us with a spread-
sheet that they worked with regularly. We explained to participants that we were going to
analyze the quality of their spreadsheet, and discuss it with them. We provided subjects with
a list of the five formula smells and a short explanation of each smell, so they could study
this before the experiment. We had one interview with every participant and for each of the
sessions, the procedure was as follows. First we asked the subject to explain the spreadsheet
to us. We then analyzed the spreadsheet and generated the spreadsheet risk map, which we
showed to users within Excel. We subsequently let subjects inspect the risk map, and asked
them in a semi-structured interview setup, for each of the located formula smells 1) whether
they understood the smell that was identified and 2) whether they thought this smell posed
a threat to spreadsheet understandability, and if yes, why, and how severe the threat was,
according to them. We finally asked them how the risk map and the pop-up helped them

@ Springer

Empir Software Eng

in understanding the formula smells. We made notes of each of the interviews by hand and
subsequently coded them.

Each of the participants was interviewed on its own, separate from other participants
and studied only their own spreadsheet. The interviews were performed face to face at the
Robeco headquarters, on three different days. The interviews were executed and transcribed
in Dutch, so quotes in the following are translations.

10.3 Results

Table 3 shows an overview of the spreadsheets used in the case study in terms of the num-
bers of worksheets, cells, formulas, unique formulas and file size. The five final columns
indicate the number of unique formulas in the spreadsheets suffering from the given smell,
Multiple Operations (MO), Duplicate Formula (DF), Multiple References (MR), Condi-
tional Complexity (CoC) and Long Calculation Chain (CaC). As can be seen from this table,
formula smells occur frequently in the ten spreadsheets. The following describes the result
of the case studies in detail.

10.3.1 General Observations

When confronted with the most smelly formula cells, participants often needed time to
explain the formula. In all cases the participants expressed statements like “what was this
formula again?” or “let me just have a quick look”. A commonality among the ten cases in
the study is the fact that all participants immediately recognized the impact a smelly, hence
complex formula could have on spreadsheet formulas understandability. When we discussed
the most complex formulas in the spreadsheet with the participants, they indicated that it
was going to be very hard to understand or adapt this formula for someone else than the
spreadsheet’s creator.

Most participants (8) had never considered the situation where another spreadsheet user
had to understand their formulas that much. A previous study by Hermans et al. confirms
the importance of such transfer scenarios (Hermans et al. 2012a). What we found in our
present study, however, is that participants did not realize prior to this study that keeping
formulas short and simple would help future users of the spreadsheet understand it better
and faster. A side effect of our study was increased awareness with our participants that they
should take understandability into account when building and adapting spreadsheets.

We found that the three thresholds and the corresponding coloring help subjects estimate
severity of the detected smell. One of the subjects compared this to the triangle function in
Excel. This function marks potential errors, like calculations over empty cells with a small
green triangle at the bottom of a cell. He stated: “That function is annoying, since many
cells get colored. Because you have different shades, I can start inspecting the red ones, and
ignore the yellow ones for now”.

Regarding the values of the thresholds, we discussed each colored cell with the spread-
sheet owner, systematically going through the worksheets. In all but one case the subjects
agreed with the classification of the formulas. Only spreadsheet user S3 stated that he felt
that the system was too strict. His spreadsheet contained 3 cells with five different references
and four operations. These cells were hence marked as having both the Multiple Operations
and the Multiple References smell, while the user still found this acceptable. In the other
formulas in his spreadsheet where these smells were located, he did found they were smelly,
since the metric values for those formulas where higher than respectively 5 and 4. So from

@ Springer

Empir Software Eng

pringer

NS

st 0¢ 1L 651 0t OpLTT 6LT'T 901°6S POT'ELT 201 TeloL,
v 0 L € 01 TEL'T 96 6v0°€ 9061 1 s1sK[eur 10y wIep 193pa] [v10UD) 01
0 6 0 81 € £69'1 LIT 0€6°LI 911°6S sc su Apmbry pue jsasanur poday 6
0 v 0 €€ SI 9L 9 €891 62€°T I sapen jo Suruue[q 8
0 0 € vl L1 8pe 6¢ 88€°€ 085'7C vl s[opow uone[nores Sutredwio) L
0 0 4 € v £33 a 8¥1 0616 6 $10109 JUSIOJIP JOJ MATAIIAO YSTY 9
0 L L1 € 9T 197% wl w16 £9T°L1 01 SIOpED [[E JO MITAIIAO T29d S
1z 0 v 0 L1 069'T L9 €0’ S8P1E 8 sdems jo uonenyep v
0 0 1 13 8s 98 1€S WL 000°T8 vl saruedwiod A510u9 [9poy €
0 € v 8 6 509 86 1€0°€ 009'12 S SQI397E1S JUAWSIAU] z
0 L € 9 il €81 €5 210'9 L69°E1 S PUSPIAIP AJe[nO[E) 1
00D oed aa AN O az1g brung w0 g4 SIPO# SYIM# uonduosa(10ayspraidg ar

Apms 9sed oY) Ul pasn sjaoyspea1ds Jo SPIoYsaIY) 95 (), Y} QAOQE S[[WIS JO JOqUINU PUL SONSLINILIRYD) € IR

Empir Software Eng

the perspective of this user the thresholds should be higher, however as stated above, he was
the only one; the other nine subjects stated all marked formulas were indeed smelly.

10.3.2 Multiple Operations

Findings Multiple Operations were found in all ten spreadsheets, making them the number
one common smell. In all cases we found that the subjects said that keeping the formulas
short makes them easier to read and understand. Two of the subjects believed that formulas
with many operations are often a cause of errors, saying “the chance of errors in such a
long formula is so much bigger; when I find errors, it is almost always in long formulas”.
When asked for the reason that Multiple Operations where created, all subjects stated that
this was an evolutionary process. Multiple Operations are hardly ever created at once. They
are the result of the repeated adaptation of a formula, adding operations as the spreadsheet
changes. As one of the subjects stated “Usually it starts with just a sum, but than you want
to round it, add something and before you know it, the formula is two lines long”. The
two subjects above—the ones who had realized the error risk of Multiple Operations—did
try to minimize formula length. However, sometimes, for instance, when a deadline was
approaching, Multiple Operations were introduced anyway. There was no common practice
among the spreadsheet users to restructure the spreadsheet after such a deadline. One of
these two subjects mentioned “when it works, it works. No one really cares how it is done”.

We found that the risk map helped in the case of Multiple Operations. In the case where
this smell was located, the smelly cells were clearly marked with a color (yellow, orange or
red). Hence, the reason why the smell was detected was immediately clear; many subjects
stated something like “T understand why this formula is selected by your system, it is quite
long.”

Conclusions Spreadsheet users feel that Multiple Operations are more error prone than
shorter formulas. This is especially due to the fact that formulas that suffer from the Multi-
ple Operations smell are hard to quickly understand. Therefore, it is harder to spot an error
and hence these formulas are less likely be corrected when they are wrong. Multiple Oper-
ations are often the result of changes to the spreadsheets, and the refactoring of complex
formulas is not something that spreadsheet users commonly do.

10.3.3 Multiple References

Findings Experiences with Multiple References were similar to those with Multiple Opera-
tions; when confronted with the smelly cells, it took the nine subjects a considerable amount
of time, in the longest case even ten minutes, to explain the formula. This made them realize
that it would be very hard for others to understand and adapt the formula, especially since
locating the references can be a challenge. Excel supports users in locating the references
by coloring the referenced cells. However, if there are many references and colors users find
this feature to be more annoying than helpful as confirmed by nine of our participants. One
of the subjects stated, when looking at a formula that referred to no less than 17 ranges “this
formula is a real puzzle”.

In this case, as opposed to the Multiple Operations smell, some participants did not
immediately understand how to adapt this formula to make it less smelly. When asked,
one of the participants even stated “but I need all that input to make the calculation”.
Splitting the formula into different steps seemed more difficult than with the Multiple Oper-
ations. In that case the formulas consist of different operations, and the splitting would

@ Springer

Empir Software Eng

consist of separating the operations. In this case however, we encountered formulas like
SUM(A1:A5;B6;D7;E12), of which it was not immediately clear to the spreadsheet users
how to improve it. It can be split into multiple steps, but what steps are logical is not so easy
to determine for the user. We asked the nine participants to describe how they were going
to split the formula, and only one was able to formulate a strategy. The other hesitated, one
of them stated “I don’t know where I should start, because I don’t remember how I made
this formula”. As an alternative, cells could be moved, such that this formula will refer to
one range. This made the participants hesitate even more. They clearly felt that moving for-
mulas around was a tricky operation, since the effect of this move on other formulas is not
clear. One of the subjects that tried to lower the references said “if I move this, what will
happen to the other formulas? I would like to preview that”.

For this smell again, the risk maps are a good way of conveying this smell. Formulas
with many references were colored red, orange or yellow; and hence attracted the attention
of the spreadsheet users. Clicking the formula revealed easily that the formula had too many
references.

Conclusions Subjects found that formulas with many references are not easy to understand,
since finding all references can be difficult. Even though the risk was understood, subjects
found it hard to come up with the right refactoring to overcome this smell. This is partly
caused by the fact that a long list of references can indicate that the placement of formulas
is not optimal, and hence this smell can also reveal a weakness in the organization of the
spreadsheet.

Refactorings to the location of formulas were found especially hard for the subjects, and
support for this, like a preview, is definitely a promising avenue for future research.

Finally we found it interesting that Excel’s feature to color the cells referenced by a
formula is only helpful in cases with few references (typically above 6 it got confusing for
the participants). There is apparently a need for better support in locating references.

10.3.4 Duplicated Formula

Findings In the evaluation we found that the cases in which duplicated formulas are
detected can be divided into two distinct categories.

— Common Subformula Different formulas are simply sharing a subformula, and there is
an opportunity for refactoring.

— Rare Formulas: There is one formula that differs slightly from its neighbors, and
therefore shares a subtree with these neighbors.

Figures 6 and 7 illustrate the two categories. In Fig. 6 the highlighted formula (in cell
B13) shares the subformula SUM(B7: B11) with the formula in cell B12. The same subfor-
mula occurs twice, so it might be better to replace SUM(B7: B11) in B13 with a reference to
B12. In Fig. 7 however something different is happening. The selected formula (E4) shares
a subformula with the other formulas in the same row, each summing up the values of the
three cells above it.

However, there is a small difference with the other formulas, which is the ‘4-0.1°, denot-
ing the formula as rare, it is not like other formulas in the worksheet. Excel itself recognizes
the risk of this type of formulas. This is one of the possible errors that Excel marks with a
green triangle in case a formula in a row or column differs from its direct neighbors. Others
are the referencing of an empty cell, and numbers formatted as text.

@ Springer

Empir Software Eng

B13 ~ fe | =SUM(B2:B4)-SUM(B7:B11)
A B &
1 Profit and Loss 2011
2 Total Europe =Turnover!C7
3 Total Asia =Turnover!C15
4 Total USA =Turnover!C16
5 Total Turnover =SUM(B2:B4)
6 Costs 2011
7 Housing =Costs!C7
8 Equipment =Costs!C12
9 Salary director =Costs!C17
10 Salary employees =Costs!C18
11 Other =Costs!C20
12 Total Costs =SUM(B7:B11 < Duplicated Formula
14
15

Fig. 6 A formula with duplication

In our ten spreadsheets, we encountered two cases of a Rare Formula. In both of them,
a formula was marked as having a lot of duplication, turned out to differ from the other
formulas in its column, while the participants stated that this was actually wrong. Thus, the
smell indicated an actual error in the spreadsheet.

Note that Excel was able to mark only one of these cases as possibly dangerous: Excel
spots discrepancies between directly adjacent cells, whereas one of these errors involved
cells disconnected from each other.

Opinions differed on the six cases in which a common subformula were encountered.
Four of the subjects understood that having the references at one place made the structure
of the spreadsheets better. However the remaining two saw no harm in the duplication of
formulas. This is notable, since with source code many people agree that duplication should
be avoided.

With respect to the risk maps, we noticed that the current implementation of the pop up as
does not yet provide enough information: It only marks the formula that shares subformulas
with many formulas, but does not indicate with what cells the subformulas are shared. This
resulted in participants looking through formulas in the spreadsheet to find the formulas that
shared a subformula. A possible solution could be to include the list of sharing formulas in

- %=
A B C D E
1 Interest payable
2 -Group -20 -33.3 -28.9 -23.7
3 =—share of joint vent.-5.2 -7.2 -6.3 -3.7
4 Pprofit before taxation =SUM(B1:B3) =SUM(C1:C3) =SUM(D1:D3) =SUM(E1:E3)+0.1
5 Taxation -22.1 21 -14.7 -13.2
6 Taxation on exc. It. - - -
7 Profit after taxation =SUM(B4:B5) =SUM(C4:C5) =<SUM(D4:D5) =SUM(E4:E5)-0.1
8
9
10

Fig. 7 The formula in E4 is a ‘rare’ formula

@ Springer

Empir Software Eng

the pop up, or create an Excel plug in that highlights the sharing formulas when a formula
suffering form duplication is selected. We will address this in future work.

Conclusions Rare formulas can reveal true weaknesses and even errors in spreadsheets, and
spreadsheet users agree with that.

However, the refactoring of duplicate pieces of formulas—in source code refactoring
very common—is not considered to be an improvement to all spreadsheet users.

10.3.5 Long Calculation Chain

Findings This smell triggered most discussion with the five subjects whose spreadsheets
were diagnosed with this smell.

The main reason was the fact that the risk maps do not provide enough information to
understand this smell immediately. When a certain cell suffers from the Long Calculation
Chain smell at the 70 % level, this means that the path from this formula to the begin-
ning of the longest calculation chain is at least 5 steps. The cells that are included in this
calculation chain were not shown in the pop up. This led to spreadsheet users repeatedly
stepping through formulas to check whether a formula indeed had a long calculation chain;
and whether that was necessary.

Two of the subjects found that the calculation chain (in one case 10, in the other 17 steps)
was indeed long, and that some restructuring would improve readability. The other three
subjects found that, although the number of steps was high, this was necessary in order
to calculate the needed values. We did notice that it is easier to trace and understand the
different calculation steps when they are located in the same row or column. When we asked
the five subjects about this, they concurred. This means there is a need for an additional
metric based on the location of the cells involved in the calculation chain. We will look into
this in future research.

Furthermore there is the trade off between Multiple Operations and Multiple References
on one the hand, and Long Calculation Chain on the other. When discussing this phe-
nomenon with the five subjects, we learned that they felt in need of guidance where the right
balance is. Hence, better support for managing this trade off is needed. This might be done
with our risk maps or with other interfaces to help users to find the proper balance between
the formula smells.

Conclusions Long Calculation chains are relatively common, but are difficult to refactor for
spreadsheet users. Hence more support to help users to understand and refactor this smell is
necessary.

10.3.6 Conditional Complexity

Findings This metric was the least common in the case study, similar to the finding in the
evaluation of the EUSES corpus. In the two spreadsheets in which it was located, the risk
maps easily helped in locating the Conditional Complexity smell. When the users selected
the cells suffering from the smell, they learned from the pop up that nested conditionals
were found in the formula.

The two subjects understood and even apologized for the detected smell, stating “T know
this formula is too hard, I was trying to get something to work, and then it just remained
like that”. Both subjects were well aware of the fact that nesting more than two conditional
formulas was not such a good idea.

@ Springer

Empir Software Eng

Conclusions The Conditional Complexity smell is in fact already known to spreadsheet
users. Apparently there is some notion among the spreadsheet users that conditional oper-
ations are complex and should be handled with some care, probably explaining the low
occurrence of this smell.

11 Refactoring Evaluation
11.1 Goal

With this third evaluation, we want to obtain a preliminary understanding of the usefulness
of the generated spreadsheet refactoring suggestions. To that end, the authors of the paper
have re-analyzed the ten spreadsheets of Robeco and specifically investigated how smells
could be refactored.

11.2 Setup

We use the Breviz tool to analyze the ten industrial spreadsheets of the previous evaluation
and generate suggested refactorings for all smelly formulas. Subsequently, we inspected
those suggestions manually for all smelly formulas. We determined whether the suggested
refactoring would resolve the smell and what other impact it would have, specifically
whether executing the refactoring would create new smells.

11.3 Results

Table 4 shows which of the six refactorings—Extract Common Subformula (ECS), Extract
Subformula (ES), Group References (GR), Move References (MR), Merge Branches (MB)
and Merge Formulas (MF)—could be applied to the smelly formulas in the test set, for each
of the five smells. A dash (-) indicates a given refactoring can not be applied to remove that
smell. Table 5 lists, for each of the smells, what refactorings need to be executed to relieve
the smell.

11.3.1 Multiple Operations

In 81 of the 202 formulas suffering from the Multiple Operations, the Extract Common
Subformula could be applied. This number is quite high; one would expect that a simple
refactoring like replacing a common subformula would be something that users would per-
form themselves. However, we learned from the previous evaluation that improving quality
of spreadsheets is not a priority. The fact that even such an obvious refactoring is not applied

Table 4 Applicable refactorings for each of the smells, on the ten spreadsheets of the second evaluation

Smell Smelly formulas ECS ES GR MR MB MF
Multiple operations 202 81 202 - - - -
Multiple references 159 - 159 63 18 - -
Duplicated formula 71 - 71 - - - -
Long calculation chain 30 - 30 - - - -
Conditional complexity 25 7 25 - - 12 -

@ Springer

Empir Software Eng

Table 5 Applicable refactorings

for each of the smells, on the ten Smell Refactoring sequence needed # cells
spreadsheets of the second to non-smelly
evaluation
Multiple operations ECS 67
ECS, ES 10
ECS, ESx2 4
ES 47
ESx2 41
ESx3 22
ESx4 11
Total 202
Multiple references GR 49
GR, EF 14
MR 18
EF 35
EFx2 23
EFx3 20
Total 159
Duplicated formula EF 69
Unable to refactor 2
Total 71
Long calculation chain MF 5
Unable to refactor 25
Total 30
Conditional complexity MB 5
MB,ECS 7
ES 9
ESx2 4
Total 25

structurally confirms this. Of the 81 formulas, 67 were non-smelly after this refactoring, the
other 14 needed additional treatment with the Extract Subformula refactoring.

11.3.2 Multiple References

In 63 formulas with the Multiple References smell, the references could be grouped within
the formula with the Group References refactoring. In 49 of those formulas, performing
this refactoring caused the formula to drop below the 70 % threshold for smelliness. So this
simple refactoring is quite effective. One of the possible reasons for this, is the option that
Excel provides to click references while editing a formula, instead of typing their location
in the formula bar. While this is a very user friendly function for people who prefer to work
with the mouse, it might be the reason that individual cells are referenced instead of adjacent
groups.

@ Springer

Empir Software Eng

In the remaining 96 smelly cells, 18 times the Move References refactoring was applica-
ble. This means some of the referenced cells were exclusively used by the smelly formula
and therefore the references could be moved without interfering with other formulas. As
noted in the previous evaluation, this is actually a smell in the structure of the worksheet
than in the formula itself: those references were placed a location that caused the formula
to be smelly.

On the last 78 formulas we manually applied Extract Formula refactoring, causing 43
formulas to remain smelly after one step. These formulas needed two (23) or three (20)
additional Extract Formula refactorings to drop below the threshold.

11.3.3 Duplicated Formula

The Duplicated Formula smell can only be refactored with the Extract Subformula refactor-
ing, but the interesting fact here is that this refactoring will always impact other cells too, as
there must be other cells sharing a subformula. otherwise the formula would not suffer from
the Duplicated Formula smell. As described above, there are two different cases in which
this smell occurs: Common Subformula and Rare Formula. In the case of a Rare Formula,
the Extract Subformula does not help, since in that case the formula was never supposed to
share a subformula. In the other cases, applying Extract Subformula will always relieve the
smell.

11.3.4 Long Calculation Chain

In the second evaluation, we saw that the Long Calculation Chain smell is the hardest smell
to understand, as it does not occur in one formula only, but rather concerns a group of cells.
Of the 30 formulas in which this smell occurred, in only 7 of them, we could apply the
Merge Formulas refactoring, as the formulas in the chain did not occur in other chains. In
5 of those 7, the refactoring could be applied without going over the threshold for Multiple
References or Multiple Operations. In these cases, the trade off seemed to be not present.
This is due to the fact that since these formulas only occurred in one chain, the impact of
the refactoring was low. For the remaining 25 cases however, we would need additional
interface support to help the user refactor formulas that occur in multiple chains. This is an
interesting direction for future work.

11.3.5 Conditional Complexity

In 12 of the 25 formulas with the Conditional Complexity smell, branches could be merged,
i.e. the Merge Branches refactoring was applicable. After the merging of those branches, in
7 cases, common subformulas could be extracted, either in the condition or in the branches.
This observation also gives additional credibility to the hypothesis that such complex for-
mulas are not created at once. If the entire conditions would be known, the spreadsheet user
could have put it in one branch at creation of the formula. When multiple branches result in
the same value, it seems likely some branches were added at a later time. This is corrobo-
rated by the statement of the creator of one of those formulas, who stated: “I was trying to
get this formula to work”. In the 13 cases on which Merge Branches could not be applied,
this was the case because there were no multiple branches resulting in the same value. In
that case, the smell can only be relieved by applying the Extract Subformula refactoring. In
9 of the 13 cases, the smell could be resolved with one application of Extract Subformula,
in the other 4 cases, two applications were needed.

@ Springer

Empir Software Eng

12 Answers to Research Questions

With the results of the EUSES analysis and the case studies, we revisit the research
questions.

Ry What spreadsheet smells are most common, and why? In the first two evaluations we
have seen that Multiple Operations and Multiple References are the most common smells,
and from the second evaluation we have learned that this is often caused by the modifica-
tion of a spreadsheet, sometimes under time pressure. Since there is little awareness of the
risks of Multiple Operations, spreadsheet users seem not to be concerned too much about
understandability and maintainability of formulas. They keep extending formulas with more
operations and more references, causing formulas to become long and complicated.

Ry To what extent do formula smells expose threats to spreadsheet quality? We found two
actual faults in a spreadsheet by looking at the Duplication Smell. With respect to the other
smells, the concern caught is lack of understandability. Spreadsheet users found that our
current smell detection strategies reveal the formulas that are the least maintainable. These
formulas will be time consuming to change, and changes made will be more error prone.

R3 To what extent are risk maps an appropriate way to visualize spreadsheet smells? The
strengths of risk maps include their simplicity and the fact that the visualization is shown
within the context of the spreadsheet. Seven subjects explicitly stated they liked the risk
maps, posing statements like “these colors draw my attentions to the formulas that deserve
a second check”. Users furthermore appreciated the different levels of the smells, allowing
them to inspect the worst formulas first. For the Long Calculation smell, however, additional
interface elements are needed, in order to help spreadsheet users understand the cause of
the smell.

In addition to the risk maps, three of the subjects asked for a general score of the quality
of their spreadsheet. Although we could provide them with the number of smells and their
severity by looking into our database, an aggregation of the metrics is not provided by the
current prototype. This could, for instance, be added by generating an extra worksheet in
the spreadsheet in which overviews of all metrics are shown, for instance similar to the star
ranking system of Cunha et al. (2012).

R4 To what extent can formula smells be refactored by generated refactoring sugges-
tions? In our third evaluation, we found that some smells can be refactored using the
suggestions we generate. For instance the Multiple Operations smell and the Multiple Ref-
erences smell, especially in the case where the Group References refactoring can be applied.
This refactoring does not impact other cells and is quite easy to perform. However, it might
be hard for spreadsheet users themselves to perform these refactorings. In future work, we
plan to investigate the possibility of automating the execution of the refactorings, especially
for smells like the Long Calculation Chain that are harder to perform and balance.

13 Discussion
13.1 Better Calibration of Thresholds

In this paper, we have calibrated the thresholds based on a large set of diverse spreadsheets.
However, this set stems from 2005 and the standards of spreadsheet use might have changed
or could change in the future. Hence, it might be better to select a set of spreadsheets
and continuously monitor their smell levels and calibrate based on that. Alternatively, we
could use a smaller, more specific set, resulting in more focused guidelines. For instance,

@ Springer

Empir Software Eng

calibrating the metrics for a given domain or even company might improve the results, as
spreadsheet formulas in different settings might have styles for formulas.

13.2 Interacting Smells and Refactorings

As mentioned above, some smells are related to each other, like Multiple Operations and
Multiple References. Refactoring the one might also solve the other. Some other smells are
inversely related like Long Calculation Chain with Multiple Operations; refactoring one
might actually cause the other. In future versions of our tool, we want to take this effect into
account, for instance for prioritizing the suggested refactorings.

13.3 Named Ranges

In the current set of smells we have not taken into account named ranges, a spreadsheet fea-
ture allowing users to assign a name to a number of cells. We encountered named ranges in
one of the case studies, where a formula that summed a named range, SUM(NamedRange),
was marked as having the Many Reference smells. Initially the subject did not understand
why it was marked as referring to many different ranges, since there was only one refer-
ence. The named range itself however consisted of several separate ranges. This raises the
question whether we think this is smelly, and why. Note that the smell is in fact related to
the named range itself—it is probably not a good idea to create a named range consisting of
multiple ranges—rather than to the formula referencing the named range.

13.4 Applicability of the Risk Maps

Our risk map visualization exhibits limitations if the smell in question addresses concerns
not exclusively contained in the smelly formula itself. This explains why some subjects
were dissatisfied with the pop-ups of Long Calculation Chain and Duplicated Formulas,
which essentially require information from cells outside the smelly formula itself. In future
research we will explore how to present smells at different levels of abstraction in one
integrated view.

13.5 Spreadsheet Evolution

While performing the case study, subjects shared that spreadsheets tend to undergo many
changes during their life time (an observation also made in Hermans et al. (2012a)) and that
these changes can lead to a degradation of formula quality. This is an issue that warrants
further investigation, calling for a longitudinal study of spreadsheet quality in which we
could study different versions of one single spreadsheet to understand to a deeper extent
how formulas become smelly.

13.6 Threats to Validity

A threat to the external validity of our quantitative evaluation concerns the representative-
ness of the EUSES Corpus spreadsheet set. This set, however, consists of 4223 spreadsheets
covering 11 different domains. Furthermore, it has been used in many other studies and is
collected from practice.

A threat to the external validity of our qualitative evaluation concerns the representa-
tiveness of the selected set of employees of Robeco and their spreadsheets. However other

@ Springer

Empir Software Eng

papers (Hendry and Green 1994; Panko 2006) report on industrial spreadsheet stories sim-
ilar to the ones we found at Robeco, so their practice seems representative. Further studies
are however needed to generalize our findings.

With respect to internal validity, one of the threats is the fact that we did not pick a
random sample of people. This effect can be decreased by using a larger test group in future
experiments. We however believe the current test group serves as a good reference group, as
the persons varied in age, function and daily tasks with spreadsheets. Another threat is the
fact that subjects might have cleaned up their spreadsheets before participating in the study.
However, given the large number of smells we found, this does seem the case.

14 Related Work

Efforts related to our research include work on code smells, starting with the canonical work
by Fowler (1999). His book gives an overview of code smells and corresponding refac-
torings. Recent efforts focused on the automatic identification of code smells by means
of metrics. Marinescu (2001) for instance, uses metrics to identify suspect classes, those
classes that might have design flaws. Lanza et al. (2005) explain this methodology in more
detail. Alves et al. (2010) focus on a strategy to obtain thresholds for metrics from a bench-
mark. Olbrich et al. furthermore investigates the changes in smells over time, and discusses
their impact (Olbrich et al. 2009). Moha et al. (2010) goes a step further and designed
the DECOR method to automatically generate their code smell detection algorithms from
specification. The CCFinder tool (Kamiya et al. 2002) specially aims at detecting clones
in source code, which have similarity to our Duplicated Formula smell. The CodeCity sys-
tem (Wettel and Lanza 2008; Wettel et al. 2011) presents a new technique to visualize code
smells by using a 3D visualization technique, based on the metaphor of a city.

Other work related to ours include papers that provide spreadsheet design guidelines.
Raffensperger (2009), for instance advises to merge references that occur only once. He
furthermore states that unnecessary complex formulas with many operations and parenthesis
should be avoided. Rajalingham et al. (2000) also propose guidelines to improve spreadsheet
quality, which they base on principles of software engineering.

Secondly, there are papers that address common errors in spreadsheets, like (Ayalew et al.
2000; Panko 1998), together with their causes. Powell et al. for instance (Powell et al. 2009)
names conditional formulas (which is one of our smells) among the top three of commonly
occurring spreadsheet error categories.

Furthermore there is related work on finding anomalies on spreadsheets, for instance the
work on the UCheck tool (Abraham and Erwig 2007; Chambers and Erwig 2009; Erwig
2009). UCheck determines the type of cells, and locates possible anomalies based on this
type system. UCheck uses a similar visualization, with colors in the spreadsheet, to indicate
found anomalies. Their follow up system UFix (Abraham and Erwig 2005) adds popup
messages to explain details on the found errors.

Finally, there are papers on spreadsheet metrics, which are also aimed at locating weak
points in spreadsheets. In 2004, Bregar published a paper presenting a list of spreadsheet
metrics based on software metrics (Bregar 2004). He however does not provide any justi-
fication of the metrics, nor did he present an evaluation. Hodnigg and Mittermeir (2008)
propose several spreadsheet metrics of which some are similar to Bregar’s. Their metrics
are divided into three categories: general metrics, such as the number of formulas and the
number of distinct formulas; formula complexity metrics, such as the number of references
per formula, and the length of the longest calculation chain; and finally metrics, such as the

@ Springer

Empir Software Eng

presence of scripts in, e.g., Visual Basic for Applications (VBA), user defined functions and
external sources. Besides the metrics, the authors also pose the interesting suggestion to use
different types of visualizations for cells with different values for the metrics. Hole et al.
(2009) propose an interesting approach to analyze spreadsheets in terms of basic spreadsheet
metrics, such as the number of functions used, the presence of charts and the complexity of
program code constructs to predict the level of the spreadsheet creator.

We ourselves have worked on spreadsheet smells in previous work (Hermans et al.
2012a). In that paper we focused on detecting smells between worksheets, like high cou-
pling. That paper followed our earlier work, in which we worked on the visualization of
spreadsheets by means of class diagrams (Hermans et al. 2010) and dataflow diagrams
(Hermans et al. 2012a).

This paper differs from our previous work by focusing on detecting smells in spreadsheet
formulas. Recently, other work on spreadsheet smells has been published (Cunha et al.
2012), that aims at smells in values, such as typographical errors and values that do not
follow the normal distribution. Other recent work by Badame and Dig (2012) suggests an
approach to support spreadsheet users in removing formula smells by refactoring. Their
refactorings are, however, not based on smells.

15 Concluding Remarks

The goal of this paper is to investigate the applicability of code smells to spreadsheet
formulas as a means to asses and improve spreadsheet quality.

To that end we have created a list of formula smells, based on our experiences with
spreadsheets, related work in spreadsheet guidelines and literature on code smells. We
subsequently defined a set of metrics for detecting five formula smells and presented the
visualization of these smells with the spreadsheet risk map. We have evaluated the metrics
and the risk map with a qualitative and quantitative evaluation. The quantitative evaluation
was performed on the spreadsheets from the EUSES corpus. The qualitative evaluation was
with spreadsheets from ten professional spreadsheet users from industry.

The key contributions of this paper are as follows:

— A catalog of spreadsheet formula smells, based on code smells

— A refactoring corresponding to each smell

— A method to automatically detect these smells and suggest refactorings

— An evaluation of the formula smells on the EUSES corpus

— An evaluation of the formula smells and their refactorings on ten professional
spreadsheets.

We have found that spreadsheet formula smells occur frequently, and can pose a real
threat to spreadsheet understandability, and can even detect actual errors. Spreadsheet users
in our qualitative evaluation found that the risk maps were a good way of indicating for-
mula smells, and that the three thresholds helped them get a feeling of the importance of
the located smells. The third evaluation showed that refactoring suggestions could resolve
the detected smells with one refactoring in 59 % of the cases and with no more than 4
refactorings in 95 % of the cases.

The current research gives rise to several directions for future work. Firstly, the defini-
tions of the current set of metrics could be refined; as mentioned in the evaluation section,
we could split the duplication metric, and add a metric for the location of cells in a long

@ Springer

Empir Software Eng

calculation chain. Secondly, some smells ask for a more elaborate visualization, for instance
to indicate the balance between Multiple Operations and Long Calculation Chain. Finally,
more support for formula refactoring is needed.

References

Abraham R, Erwig M (2005) How to communicate unit error messages in spreadsheets. In: Proceedings of
WEUSE 05, pp 1-5

Abraham R, Erwig M (2006) Inferring templates from spreadsheets. In: Proceedings of ICSE *06, pp 182-191

Abraham R, Erwig M (2007) Ucheck: a spreadsheet type checker for end users. J Vis Lang Comput 18:71—
95. doi:10.1016/j.jv1c.2006.06.001

Alves TL, Ypma C, Visser J (2010) Deriving metric thresholds from benchmark data. In: Proceedings of
ICSM ’10. IEEE Computer Society, pp 1-10

Ayalew Y, Clermont M, Mittermeir RT (2000) Detecting errors in spreadsheets. In: Proceedings of
EuSpRIG 00, pp 51-62

Badame S, Dig D (2012) Refactoring meets spreadsheet formulas. In: Proceedings of ICSM 12, pp 399-409

Bregar A (2004) Complexity metrics for spreadsheet models. In: Proceedings of EuSpRIG *04, p 9

Chambers C, Erwig M (2009) Automatic detection of dimension errors in spreadsheets. J Vis Lang Comput
20:269-283

Cunha J, Fernandes JP, Mendes J, Hugo Pacheco JS (2012) Towards a catalog of spreadsheet smells. In:
Proceeding of ICCSA’12. LNCS

Cunha J, Fernandes JP, Peixoto C, Saraiva J (2012) A quality model for spreadsheets. In: Proceedings of
QUATIC ’12, pp 231-236

Cunha J, Saraiva J, Visser J (2009) Discovery-based edit assistance for spreadsheets. In: Proceedings of
VL/HCC ’09, pp 233-237. IEEE

Erwig M (2009) Software engineering for spreadsheets. IEEE Softw 26:25-30. doi:10.1109/MS.2009.140

Fisher M, Rothermel G (2005) The EUSES spreadsheet corpus: a shared resource for supporting experimen-
tation with spreadsheet dependability mechanisms. In: Proceedings of WEUSE 05, pp 47-51

Fowler M (1999) Refactoring: improving the design of existing code. Addison-Wesley Longman Publishing
Co., Inc., Boston

Hendry DG, Green TRG (1994) Creating, comprehending and explaining spreadsheets: a cognitive inter-
pretation of what discretionary users think of the spreadsheet model. Int J Human-Computer Stud
40(6):1033-1065

Hermans F, Pinzger M, van Deursen A (2010) Automatically extracting class diagrams from spreadsheets.
In: Proceedings of ECOOP ’10, pp 52-75

Hermans F, Pinzger M, van Deursen A (2011) Breviz: spreadsheet visualization and quality analysis. In:
Proceedings of EuSpRIG 11, pp 63-72

Hermans F, Pinzger M, van Deursen A (2012a) Detecting and visualizing inter-worksheet smells in
spreadsheets. In: Proceedings of ICSE 12, pp 441451

Hermans F, Pinzger M, van Deursen A (2012b) Detecting code smells in spreadsheet formulas. In:
Proceedings of ICSM ’12, pp 409-418

Hermans F, Pinzger M, van Deursen A (2012c) Measuring spreadsheet formula understandability. In:
Proceedings of EuSpRIG 12

Hodnigg K, Mittermeir R (2008) Metrics-based spreadsheet visualization: support for focused maintenance.
In: Proceedings of EuSpRIG 08, p 16

Hole S, McPhee D, Lohfink A (2009) Mining spreadsheet complexity data to classify end user developers.
In: Proceedings of ICDM ’09. CSREA Press, pp 573-579

Kamiya T, Kusumoto S, Inoue K (2002) Ccfinder: a multilinguistic token-based code clone detection system
for large scale source code. TSE 28(7):654-670

Lanza M, Marinescu R, Ducasse S (2005) Object-oriented metrics in practice. Springer-Verlag, New York,
Inc., Secaucus

Marinescu R (2001) Detecting design flaws via metrics in object-oriented systems. In: Proceedings of
TOOLS ’01. IEEE Computer Society, pp 173-182

Moha N, Gueheneuc YG, Duchien L, Le Meur AF (2010) Decor: a method for the specification and detection
of code and design smells. TSE 36(1):20-36

Nardi B, Miller J (1990) The spreadsheet interface: a basis for end user programming. In: Proceeding of the
IFIP conference on human-computer interaction (INTERACT). North-Holland, pp 977-983

Olbrich S, Cruzes DS, Basili V, Zazworka N (2009) The evolution and impact of code smells: a case study
of two open source systems. In: Proceedings of ESEM °09, pp 390—-400

@ Springer

http://dx.doi.org/10.1016/j.jvlc.2006.06.001
http://dx.doi.org/10.1109/MS.2009.140

Empir Software Eng

Panko R (2006) Facing the problem of spreadsheet errors. Decis Line 37(5):8-10

Panko RR (1998) What we know about spreadsheet errors. J End User Comput 10(2):15-21

Powell S, Baker K, Lawson B (2009) Errors in operational spreadsheets: a review of the state of the art. In:
Proceedings of HICCS *09. IEEE Computer Society, pp 1-8

Raffensperger J (2009) New guidelines for spreadsheets. Int J Bus Econ 2:141-154

Rajalingham K, Chadwick D, Knight B, Edwards D (2000) Quality control in spreadsheets: a software
engineering-based approach to spreadsheet development. In: Proceedings HICSS *00, pp 133-143

Wettel R, Lanza M (2008) Visually localizing design problems with disharmony maps. In: Proceedings of
SoftVis "08, pp 155-164

Wettel R, Lanza M, Robbes R (2011) Software systems as cities: a controlled experiment. In: Proceedings of
ICSE ’11, pp 551-560

Winston W (2001) Executive education opportunities. OR/MS Today 28(4)

Rl

Felienne Hermans is an assistant professor at the Delft University of Technology. In January 2013, she
defended her PhD thesis that centers around applying techniques for software to spreadsheets, in order to
understand, visualize and improve them. In 2010 Felienne founded Infotron, a startup that uses the algorithms
developed during the PhD project to analyze spreadsheet quality for large companies. In her spare time,
Felienne volunteers as a referee for the First Lego League, a world wide technology competition for kids.

Martin Pinzger is a full professor of Software Engineering and the head of the Software Engineering
Research Group at the University of Klagenfurt, Austria. His research interests are in software engineering
with focus on software evolution, software design, software quality analysis, collaborative software engi-
neering, software repository mining, software visualization, and empirical studies in software engineering.
He received a PhD in informatics from the Vienna University of Technology in 2005. He was a Postdoc at
the University of Zurich and an Assistant Professor at the Delft University of Technology from which he
received tenure in 2012. In 2012, he won an NWO Vidi grant, one of the most prestigious Dutch individ-
ual research grants. In 2013, he received an ICSE 2013 ACM SIGSOFT distinguished paper award and the
ICSM 2013 Most Influential Paper award.

@ Springer

Empir Software Eng

Arie van Deursen is a professor at Delft University of Technology where he is head of the Software Engi-
neering Research Group. His research interests include software testing, software architecture, program
comprehension, and end user programming.

@ Springer

	Empir Software Eng
	Abstract
	Introduction
	Formula Smells
	Multiple Operations
	Multiple References
	Conditional Complexity
	Long Calculation Chain
	Duplicated Formulas

	Formula Smell Metrics
	Refactorings Corresponding to Smells
	Multiple Operations
	Multiple References
	Conditional Complexity
	Long Calculation Chain
	Duplicated Formulas

	Determining Smell Thresholds
	Risk Maps
	Smells
	Refactoring

	Implementation
	Evaluation
	Smell Occurrences in the EUSES Corpus
	Goal
	Setup
	Results

	Formula Smells in an Industrial Case Study
	Goal
	Setup
	Results
	General Observations
	Multiple Operations
	Findings
	Conclusions

	Multiple References
	Findings
	Conclusions

	Duplicated Formula
	Findings
	Conclusions

	Long Calculation Chain
	Findings
	Conclusions

	Conditional Complexity
	Findings
	Conclusions

	Refactoring Evaluation
	Goal
	Setup
	Results
	Multiple Operations
	Multiple References
	Duplicated Formula
	Long Calculation Chain
	Conditional Complexity

	Answers to Research Questions
	Discussion
	Better Calibration of Thresholds
	Interacting Smells and Refactorings
	Named Ranges
	Applicability of the Risk Maps
	Spreadsheet Evolution
	Threats to Validity

	Related Work
	Concluding Remarks
	References

