
XVIZIT: Visualizing Cognitive Units in
Spreadsheets

Karin Hodnigg
Software Engineering Research Group

University of Klagenfurt, Austria
Email: karin.hodnigg@gmail.com

Martin Pinzger
Software Engineering Research Group

University of Klagenfurt, Austria
Email: martin.pinzger@aau.at

Abstract—Spreadsheets can be large and complex and their
maintenance and comprehension difficult to end-users. Large
numbers of cells, complex formulae and missing documentation
can impede the understanding of a spreadsheet. Comprehension
assesses different levels of a spreadsheet according to a specific
maintenance task, ranging from single formulae over sets of
cells to complex structural patterns. These levels of abstraction
are subsumed under the term cognitive unit. XVIZIT helps
end-users in maintaining and comprehending spreadsheets. It
guides them through a spreadsheet model: Roles of cells and
sheets, similar patterns and various concepts of modularity
can be explored. It uses modularization algorithms to provide
conceptional decompositions of a spreadsheet model, such as
equivalence classes or data modules. XVIZIT’s slice visualizations
ease the evaluation of corrective modifications by showing the
dependant cells. Furthermore, XVIZIT provides a number of
complexity measures allowing end-users to estimate the effort to
comprehend and maintain a spreadsheet.

I. INTRODUCTION

Creating a spreadsheet is in fact programming. This is
already widely accepted among the end-user community. But
while the requirements on quality and towards longevity
of a spreadsheet are similar to common software built by
professionals, the training of the end-user is not. End-users
are domain experts, specialists in their fields, who are able to
express their complex domain models. But, often they have
only little knowledge in testing, quality assurance, or the
software maintenance process itself - their core competencies
are different by nature. Supporting them in their enterprise to
understand and maintain often huge spreadsheet models must
thus refrain from being ”academic” or too technical.

Approaching the task of maintaining and extending ex-
isting and often huge spreadsheets, multiple factors have to
be considered. Generally, complexity of a software directly
affects the effort to comprehend it (a), the paradigm influences
how problems can be solved and represented (b) and (c)
the expertise of the end-user is important when it comes to
estimating the effort put into full comprehension of a given
sheet.

Understanding thousands of cells and formulae individually
is not feasible - and current tools, such as Excel and Numbers,
provide only insufficient means to assess some kind of ab-
straction in spreadsheets. However, spreadsheet creation works
in favour of abstraction: Repetition and copying formulae
is an inherent part of spreadsheet generation, resulting in

patterns of formulae [1]. Data dependencies allow a different
analysis isolating independent or interdependent computations.
Using these (and other) premises, we can find structures in a
spreadsheet, and by sophisticated aggregation provide different
levels of abstractions [2].

Starting from a global level, a workbook consists of different
worksheets. A worksheet is a matrix consisting of cells, every
cell can contain either a value or a formula. These levels are
superimposed by the mental model in the spreadsheet, reused
formulae, tabular organisations, layout information - they form
another, more accessible hierarchy of abstractions. The term
cognitive unit is coined to express the level of abstraction
the user tries to understand - be it on a cell level, trying to
comprehend the formula, or a larger level, trying to understand
repetitive patterns or generic modules in a spreadsheet model.
Users seamlessly switch between different levels of abstraction
in an opportunistic, ”as-needed” approach [3]. Understanding
the meaning of a formula, then the meaning of its repetitive
use in a worksheet are examples for such levels.

XVIZIT addresses the issue of missing abstraction and
hidden model information and supports the spreadsheet user
in providing answers to the following questions:

• [Q1] What are label, input or output cells?
• [Q2] Are there similar formulae? Are there modules or

self-contained computations?
• [Q3] Where does the data for this particular cell come

from? If I were to change a cell, what would be affected?
• [Q4] How complex is the model? How complex are single

formulae?
XVIZIT uses a spreadsheet-like view to show our visual-

izations. In the following, we present several usage scenarios
in which our tool is used to provide answers to the questions
stated before.

II. USAGE SCENARIO

When it comes to spreadsheets and their maintenance, com-
mon questions are: ”The quarterly results in Summary!D14
seems odd, can you take a look a that?”, ”Oh, we need another
monthly report showing the results in $ rather than percent in
our company report model - can you add that?”, ”I am afraid,
no-one understands Alice’s grading sheet, can you prepare a
short demo on how to use it for the other teachers?”.

978-1-4673-7526-9/15/$31.00 c© 2015 IEEE VISSOFT 2015, Bremen, Germany

52

210

Fig. 1. XVIZIT - highlighting equivalence formulae and showing basic size and complexity metrics for cognitive units.

These questions all target different levels of comprehension
and maintenance: the first one implies a data dependency
inspection (where does the data come from?), the second
requires a deep understanding of worksheet structures and
data knowledge, and the third is the most advanced (so that
replication and extension does not break the model’s design)
requiring the provision of documentation and instructions on
a legacy spreadsheet.

There is a difference whether a user performs perfective or
corrective maintenance tasks. While the latter is likely to be
precise and local, the first will need a deeper understanding of
the spreadsheet’s global structure and already available (inter-
mediate) results in order not to break the already established
model. To support both localized and global assessment of
spreadsheet models is the goal of XVIZIT.

Fig. 2. XVIZIT wizard

XVIZIT offers a guided process in form of a wizard to
analyze a spreadsheet. This guidance allows the explanation
of every single process step and the interaction on different

cognitive levels as seen in Fig. 2 (this is why Open and
Analyze are separated).

With Open the spreadsheet in question is opened and a pri-
mary analysis (parsing the sheet and mapping it to XVIZIT’s
internal data structures) is performed. If there are issues
opening the spreadsheet, the status window provides detailed
feedback. If the spreadsheet can be opened successfully, the
spreadsheet’s representation is rendered in the main window
as depicted in Fig. 1. XVIZIT offers a mini-spreadsheet
environment native to the user and more likely to be accepted.1

After the spreadsheet is successfully loaded, a fundamental
analysis can be performed with Analyze. This analysis
includes computation of complexity metrics, fundamental roles
of cells, and the similarity of formulae. Visualize opens a
preliminary and limited data dependency graph, that intends
to show the complexity and connected components.

A. [Q1] Fundamental Analysis

Let us assume, Bob, a novice in spreadsheet modeling, is
assigned to comprehend and document Alice’s spreadsheet
depicted in Fig. 1. He is required to understand what is
computed, where and what the model looks like. XVIZIT helps
Bob to approach such a fundamental analysis, by highlighting

1At the moment, this is our definition of seamless. When the prototype
proves to be helpful, a truly seamless integration into a spreadsheet environ-
ment will be performed.

211

all formula cells and value cells separately. Value cells, how-
ever, can serve two purposes - either descriptions or real input
data.

Currently, XVIZIT distinguishes between the following cell
types:

• Input All cells that are referenced, but contain no depen-
dencies (might also be self-contained formula cells)

• Formula All cells that contain a formula.
• Output All cells that contain a formula but are not

referenced (formula cells)
• Label Cells that are not referenced and do not contain a

formula (value cells)
Fig. 1 shows the corresponding buttons (Input, Formula,

Output, Label) to highlight these cells. By selecting them,
XVIZIT highlights the corresponding cells in different colors
in the main spreadsheet table. This allows Bob to distinguish
label from data from formula cells and answer the first
question stated in the introduction.

Moreover, switching between value and formula view is
made very easy in XVIZIT. Choosing the corresponding value
in the combo box below the wizard toolbar in Fig. 1 leads to an
immediate update of the cell contents in the spreadsheet table.
Users are thus encouraged to switch between these views in a
maintenance process - allowing them to stay focused while
navigating the spreadsheet model. Having identified output
cells with XVIZIT, Bob now would like to know what the
formulas are, if there are many different ones or if there are
complex computations.

B. [Q2] Formula Patterns

Spreadsheet creation is inherently and massively based
on repetition and copying formulae, resulting in patterns of
formula reuse. This often indicates a common computational
idea that can be identified; and provides a first abstraction to
the potentially huge number of formula cells. Formulae that
are equal (or similar) can be seen as one cognitive unit.

According to Mittermeir and Clermont’s definition [1],
[4] the concept of equivalence can have varying degrees of
stringency, ranging from equality over similarity to some kind
of relatedness. The one equivalence, that we (and Bob) are
mainly interested in, is the equality - formulae resulting from
click-and-drag operations during spreadsheet creation. With
the Equivalence buttons, Bob can highlight similar (or
equal) cells in one color. He then can have a look at the
formula itself by switching from the value to the formula view.

Interestingly, a visual assessment can highlight issues in
the spreadsheet model - disruptions in an otherwise even
color pattern indicate disruptions in the spreadsheet model.
Otherwise, the pattern highlights cells that convey the same
computation in the same color.

C. [Q3] Slices and Dynamic Analysis

The two most important questions that arise during correc-
tive maintenance are, ”where does my data come from?” and
”what does my change impact?”. With that, we leave a more
global view of spreadsheet analysis and move into localized

visualizations that focus on the vicinity of a cell (or a module)
in question.

Hidden models and dependencies are the main obstacle
in spreadsheet comprehension. In [5], Ko states that syntax
has long been a significant learning barrier . . . [, largely
because of the difficulty of understanding and remembering
the hidden and complex rules encoded in language grammars].
Furthermore, the simplicity of the spreadsheet generation (im-
mediate evaluation of formulae, hidden dependencies, copy-
and-paste) causes additional cognitive load when trying to
revert the process and extract the cognitive model behind the
spreadsheet numbers. With Walenstein’s observation, that the
dimension of hidden dependencies suggests that if important
dependencies are not made explicit, by the system, then they
can be missed, creating errors during modification [6], we
learn that precautions must be taken.

Eve needs to analyze a given (for the sake of space clearly
arranged) spreadsheet model and see if the invoice value is
correct. Using XVIZIT, she selects the corresponding cell in
Fig. 3 and selects the slice visualization in the wizard toolbar.
Starting from E8, all cells that lead to the result are highlighted
in red. We use different shades of reds to indicate the different
levels in the computed slice.

Fig. 3. XVIZIT slice representation of cell E8

Respectively, impact analysis can be done with the impact
slice: if Eve would change a formula or input data, XVIZIT
helps her in highlighting dependent cells as represented with
the blue cells in Fig. 4.

The visualization of hidden dependencies has been proven to
be very useful, with Excel offering handy tracing mechanisms.
Yet, they suffer from some limitations, as they discontinue
tracing precedents beyond the active worksheet. In that case,
only a dialog with the direct precedents on other worksheets
is shown while transitive dependencies are not indicated fur-
ther. Here, XVIZIT’s slicing visualization allows the user to
switch between sheets and analyze the impact or dependencies
uninterruptedly. This is especially important when it comes
to comprehending impact in large spreadsheets. Coloring de-
pendant or contributing cells is a powerful visualization that
allows the user to specifically focus on relevant cells.

212

Fig. 4. XVIZIT impact slice represenation of cell A4

D. [Q4] Complexity Assessment

Another important question when it comes to maintain
spreadsheets is ”how long will a given maintenance task
take?”. Although the experience of the spreadsheet user in-
fluences the answer, common metrics such as the size of
the spreadsheet (number of formulae, number of input and
output cells) or its complexity (formula complexity, number
of similar formulae and possible modularization) are useful
indicators. These metrics are based on previous work discussed
in [3]. Although the complexity of formulae is difficult for end-
users to assess and depends on their individual experience as
Hermans showed in [7], it is crucial in estimating efforts.

XVIZIT offers complexity metrics on different abstraction
levels - when a cell, a worksheet or any cognitive unit
is selected, the respective complexity assessment is shown
in an information panel. Fig. 1 shows examples of general
complexity measures (size, labels, sinks) that describe the
model’s general complexity. Selecting a cell (F19) in the table
results in highlighting the internal complexity measures and
their presentation in the right information panel.

III. ARCHITECTURE AND DESIGN

An overview of XVIZIT’s architecture is depicted in Fig-
ure 52. The basic information is generated in a module XSEED
that takes care of the internal representation of the spreadsheet
model. First, the three dimensional matrix representation is
parsed and filled, the first formula complexity metrics are
evaluated, then the representation as hypergraph is deduced
from an analysis of the given references. The hypergraph rep-
resentation allows the application of common graph algorithms

2XVIZIT has been implemented in JAVA 8, using JAVAFX 8 and CON-
TROLS FX 8.20.8 to render the GUI [http://fxexperience.com/controlsfx/,
2015-06-20]. Parsing capabilities are included with the APACHE POI 3.10.1
library, that conveniently allows opening spreadsheets [https://poi.apache.org/,
2015-06-20]. As XVIZIT needs a less rich, more fundamental representation
to comfortably compute metrics or generate visual representations, the POI
framework is solely used to parse the model into internal data structures.
A simple graph visualization is implemented using GRAPHSTREAM 1.3
[http://graphstream-project.org/, 2015-06-20] GraphStream is a library offer-
ing fundamental graph algorithms and comes with an easy-to-use viewer.
However, GraphStream is not capable of handling hypergraph structures as
are needed in XVIZIT, so we provided our own generic implementation of a
hypergraph.

and a further evaluation of the spreadsheet model complexity.
With these representations, cognitive unit abstractions can be
determined. Fundamentals include the input, output, formula
and label cell highlighting. Different cognitive unit models
result in different decompositions of the spreadsheet.

The GUI is based on the MVP-Pattern (model-view-
presenter), that allows a generic, yet distinct and maintainable
layer of implementation. If the representation needs to be
extended or changed, new visualizations should be introduced,
the MVP implementation provides a stable framework for that.

Because XVIZIT is an early prototype with a considerable
number of planned extensions, a lot of thought has been
put into the extensibility of the application. The central
spreadsheet model (”Internal Representation”) is represented
as and can be accessed two-fold, (a) as a matrix and (b) as
a hypergraph. This design facilitates the future extension with
new metrics, slicing algorithms, and visualizations.

xViZiT (GUI)

ModelPresenterView

xSeed
(Apache POI)

PARSER

Internal Data Structure

METRICS

HyperGraph

Cognitve Units
(Abstractions)

Matrix

XTable InfoWizard Status

Internal
Representation Fundamentals

Equivalence

Slicing

Complexity

Fig. 5. Modular architecture and basic data flow of XVIZIT

We maintain a blog concerning our progress on spreadsheet
visualization3 where XVIZIT can be downloaded. Feedback
and bug reports are very welcome.

3https://xvizit.wordpress.com/

213

IV. KEY RELATED WORK

We based the tool on various observations and want to
start a journey in experimenting and studying structural vi-
sualizations of spreadsheet abstractions. Thus, the work of
Igaraishi and Tukiainen is fundamental to us. In 1998, Igarashi
proposed animated visualizations of spreadsheet dependencies
[8]. Tukiainen tested different conceptual levels against error
proneness in novice users’ models [9]. His conclusion that a
low conceptual level correlated with high error rates formed
the basis for our abstraction model. These abstractions are
based on semantic classes and data modules [4], [1], but are
extended by the visualizations in [3]. Hermans discussed the
advantages and pitfalls of data flow visualization in [10], where
she used different forms of abstractions and dataflow between
these modules to represent a high level representation of a
spreadsheet model. With an approach of finding data clones,
she goes beyond a mere structural approach and inspects the
risks of duplication of data in spreadsheets [11].

Although Vemuri found data dependency diagrams to be
ineffective in end-user support [12] due to a cognitive gap
between the dataflow and the spreadsheet model, a more
immediate dependency based slicing is a promising approach.
Slicing and comprehension, as discussed by Rilling in [13], is
translated into a spreadsheet world. The concept of complexity
is introduced to highlight potential pitfalls, or hot-spots, in a
model. Here Bregar’s complexities [14] have been influential,
though were extended in [3]. In [7], Hermans addressed the
specific issue of formula complexity in a study.

Further relevant tool research can be found in [5], [15],
where Ko et.al. provide an overview of state-of-the-art tool
support for end-users.

V. CAVEATS AND MAJOR LIMITATIONS

Our spreadsheet visualization approach is - at the moment
- purely based on fundamental spreadsheet structures. Pro-
cedural extensions, such as VBA, are currently left out. We
are aware that this might be an issue due to the extensive
use of macros in spreadsheets, however with macros we
leave the spreadsheet paradigm and enter a procedural world.
We assume that for such spreadsheets containing macros the
maintenance is executed by programming experts that are
already familiar with other software engineering techniques.
Regarding the structural analysis of spreadsheets, Apache POI
and consequently XVIZIT currently cannot handle matrix
formulae that are defined as "{=SUM...}". Furthermore,
XVIZIT currently is a read-only visualization tool: spread-
sheets cannot be edited in the tool environment.

VI. CONCLUSION AND OUTLOOK

We presented a simple, yet powerful static and dynamic
visual representations with XVIZIT to ease and guide the end
user during an extensive comprehension and maintenance pro-
cess. Although it is difficult to reconstruct the original mental
model, it is possible to allow the user a guided tour through the
spreadsheet program when maintaining it. XVIZIT provides
different abstractions (cognitive units) on different levels of

comprehension. Opportunistic approaches are supported by
providing appropriate levels of abstraction and providing the
apt view onto the spreadsheet. Complexity visualization allows
the user to understand how much effort is to be expected when
maintaining and understanding spreadsheets.

One of the main obstacles to spreadsheet comprehension
is the worksheet barrier - visualizations often rely on one
worksheet and then require the user to switch to another sheet.
To address this issue, we plan to investigate three-dimensional
visualizations of the internal model, such as a spreadsheet
city [3]. XVIZIT is a work in progress. In case you want
to follow the implementation process, please feel free to visit
the XVIZIT blog at https://xvizit.wordpress.com/.

REFERENCES

[1] M. Clermont, “A scalable approach to spreadsheet visualization,” Ph.D.
dissertation, University of Klagenfurt, 2003.

[2] K. Hodnigg, M. Clermont, and R. Mittermeir, “Computational
models of spreadsheet devlopment: Basis for educational approaches,”
Proceedings of the EuSpRIG Annual Conference: ”Risk Reduction in
End User Computing”, vol. 5, pp. p.153–168, 2004.

[3] K. Hodnigg and R. T. Mittermeir, “Metrics-based spreadsheet
visualization: Support for focused maintenance,” Proceedings of the
EuSpRIG Annual Conference: ”Enterprise Spreadsheet Management:
A necessary Evil?”, vol. 9, pp. 79 – 94, 2008.

[4] R. Mittermeir and M. Clermont, “Finding high-level structures in
spreadsheet programs,” Proceedings of the Ninth Working Conference
on Reverse Engineering (WCRE’02), pp. 221 – 232, 2002.

[5] A. J. Ko, B. A. Myers, M. L. Coblenz, and J. Stylos, “End-user
programming productivity tools,” The Next Step: From End-User
Programming to End-User Software Engineering, Proceedings of the
WEUSE II Workshop at CHI, pp. 30 – 32, 2006.

[6] A. Walenstein, “Developing the designer’s toolkit with software
comprehension models,” In Proceedings of the 13th IEEE International
Conference on Automated Software Engineering, pp. 310–313, 1998.

[7] F. Hermans, M. Pinzger, and A. van Deursen, “Measuring spreadsheet
formula understandability,” Proceedings of the 2012 Annual Conference:
”The Science of Spreadsheet Risk Management”, pp. 77 – 96, 2012.

[8] T. Igarashi, J. Mackinlay, B.-W. Chang, and P. Zellweger, “Fluid
visualization of spreadsheet structures,” Proceedings of the 1998 IEEE
Symposium on Visual Languages, pp. 118 – 125, 1998.

[9] M. Tukiainen, “Comparing two spreadsheet calculation paradigms:
An empirical study with novice users,” Interacting with Computers
(Elsevier), vol. 13, pp. 427 – 446, 2001.

[10] F. Hermans, M. Pinzger, and A. van Deursen, “Breviz: Visualizing
spreadsheets using dataflow diagrams,” Proceedings of the EuSpRIG
2011 Annual Conference: ”Spreadsheet Governance - Policy and
Practice”, 2011.

[11] F. Hermans, B. Sedee, M. Pinzger, and A. v. Deursen, “Data clone
detection and visualization in spreadsheets,” Proceedings of the 2013
International Conference on Software Engineering, pp. 292–301, 2013.

[12] S. Vemuri, S. Sengupta, and J. S. Davis, “Data dependency diagrams
for spreadsheet applications,” Proceedings of the 30th annual Southeast
regional conference, pp. 467–470, 1992.

[13] J. Rilling and T. Klemola, “Identifying comprehension bottlenecks
using program slicing and cognitive complexity metrics,” 11th IEEE
International Workshop on Program Comprehension, pp. 115–124, May
2003.

[14] A. Bregar, “Complexity metrics for spreadsheet models,” in Proceedings
of the EuSpRIG Annual Conference: ”Risk Reduction in End User
Computing”, vol. 5, 2004.

[15] A. J. Ko, R. Abraham, L. Beckwith, A. Blackwell, M. Burnett,
M. Erwig, C. Scaffidi, J. Lawrance, H. Lieberman, B. Myers, M. B.
Rosson, G. Rothermel, M. Shaw, and S. Wiedenbeck, “The state of
the art in end-user software engineering,” ACM Comput. Surv., vol. 43,
no. 3, pp. 21:1–21:44, Apr. 2011.

214

