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Editor’s notes:
With increasing complexity, connectivity, and programmability of 
embedded CPS devices, the potential cyber-attack surface has also 
been increasing making the study of related cyber-security issues 
highly relevant and timely.  This article provides an efficient verification 
method for runtime applications with tight performance specifications. By 
considering classification and the declarative and definitive properties of 
different types of attacks, it is shown that a runtime security monitor can be 
generated to assure the security of application execution against known 
threats given the performance requirements. The methodology is applied 
in a healthcare application of insulin pump to regulate blood sugar level. 

—Farshad Khorrami, New York University

 Conventional runtime verification-based secu-
rity monitors assure that the execution of application 
is consistent with the functional specification of the 
application and raise an alarm when some incon-
sistency is detected [1]. To meet strict performance 
requirements of real-time applications, such verification 
methods either compute execution time bounds [e.g., 
worst-case execution time (WCET), best-case execu-
tion time (BCET), and average-case execution time 
(ACET)] of the applications and argue that monitoring 
overhead along with the execution bounds meets the 
performance requirements [2], [3] or propose such 
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formalism for specification that can be 
translated into efficient and parallel hard-
ware blocks, whose execution meets the 
performance requirements [4]. However, 
despite considerable progress achieved in 
the past [3], such verification methods are 
not directly applicable to real-time control 
applications mainly because they employ 
malware and intrusion detection mecha-
nisms which suffer from high rate of false 
alarms, on the one hand, and do not con-
sider cyber–physical process information 
to detect threats, on the other hand [5]. 
Such methods do not rigorously compare 

application execution with the known threats (which 
are approx. 600 attacks as reported by CAPEC—https://
capec.mitre.org). Obviously, on-the-fly comparison of 
the execution of application with these threats in addi-
tion to the functional specification requires significant 
verification time, which may violate the real-time per-
formance requirements of the application resulting in 
serious damages.

More recently, runtime verification performance 
has been improved by reducing the number of attacks 
to be monitored at runtime by considering runtime 
particularities of the application. For instance, devel-
oping an application in some language that assures 
security by design, that is, the program is free of cer-
tain class of vulnerabilities and threats, for example, 
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developing web applications in the UrWeb language 
[6] assures that the application is free from code injec-
tion attacks and invalid HTML returns, to name a few. 
Furthermore, compiler operations have also been 
verified that assure that the compilation is free from 
being vulnerable, for instance, the C compiler (Comp-
Cert) [7]. Finally, verification of an implementation of 
various processor operations also assures the absence 
of some security threats, for instance, ARM [8]. All 
these developments assure the absence of certain 
class of vulnerabilities and security threats in appli-
cation implementations, which significantly reduces 
runtime verification overhead. However, these results 
are application-, language-, and platform-specific, on 
the one hand, and consider specific software vulnera-
bilities, on the other hand. These results, however, are 
not sensitive to attacks to applications, for example, 
stealthy and insider attacks. Therefore, they cannot be 
adapted to critical control applications, for example, 
healthcare control applications, due to their strict per-
formance and characteristics of their critical function-
ality and known attacks.

A critical application domain for real-time control 
applications with strict performance requirements is 
healthcare control systems [5]. Recent developments 
in wearable medical devices have improved diagno-
sis, monitoring, and therapy for a variety of medical 
conditions. In contrast to typical control systems, secu-
rity threats to these devices have severe consequences 
and, therefore, require to be monitored and prevented 
with high assurance without compromising their per-
formance. For instance, glucose monitoring and insulin 
pump are used for the treatment of diabetes. The com-
ponents of such systems are wirelessly connected, e.g., 
the glucose monitor, insulin pump, and remote control, 
forming a real-time monitoring and feedback loop. 

Such systems are highly vulnerable due to wireless and 
sensor-based communication. An adversary can easily 
launch attacks to such control systems that can threaten 
the life of the patient, for instance, by sending incorrect 
blood glucose results to the insulin pump wirelessly, 
by compromising the command to the insulin pump 
remotely that stops the insulin injection, or by injecting 
insulin with undesired (i.e., very high) dose.

A security monitor for insulin pump [9] has been 
developed that focuses on handling threats arising from 
wireless communication of the pump. In another effort, 
Klonoff [10] has developed a security monitor that han-
dles unauthorized access to the insulin pump. In contrast 
to the aforementioned detection mechanisms, we intro-
duce a design methodology for monitoring real-time 
control applications based on the process (application) 
behavior and known attacks. The behavior of the appli-
cation is the set of functional and nonfunctional (e.g., 
security and performance) characteristics of both the 
cyber and the physical components of the control pro-
cess [11]. In addition to the behavior, the methodology 
also allows to specify a set of known threats to the appli-
cation as shown in Figure 1. On the basis of ARMET [11], 
we assure that the design of critical control application 
is free of certain class of attacks and vulnerabilities. Fur-
thermore, to assure that on-the-fly verification meets the 
performance requirements, we first classify the known 
attacks into computational, data integrity, and commu-
nication attacks. Then, we model declarative and defini-
tive properties of each class. The former can be specified 
as a one big-step relation between initial (also known 
as preconditions) and final states (also known as post-
conditions). Finally, from the specification of declarative 
properties, we generate security monitor to ensure that 
the application execution is protected against known 
attacks respecting real-time performance requirements. 

Figure 1. Full program view for CyberSecurity.
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We have implemented a prototype monitor and demon-
strate its efficient detection of declarative properties as 
compared to definitive properties.

Modeling known threats
Modeling the behavior of cyber–physical system 

applications and known threats models is complex 
due to fundamentally different characteristics of 
cyber and physical components. The complexity 
of the involved models significantly increases the 
runtime verification time. Therefore, to manage the 
complexity, we simplify the complex models by 
describing them at desired but pragmatic levels of 
abstraction which can be verified efficiently.

To model such threats (see Figure 2), we do the 
following:

• First, we classify the known attacks into

˚ computational attacks that may change 
instructions or internal data of an applica-
tion execution;

˚ data integrity attacks that may modify the 
external input data to the system;

˚ communication attacks that may access 
(respectively use) network resources by illegit-
imate means.

• Then, we model each attack class into its

˚ declarative properties that specify suffi-
cient conditions of an attack class as one 

big-step relation between an initial state and  
final state without considering the interme-
diate details;

˚ definitive properties that specify each attack 
in the class uniquely as a composition of a 
sequence of small-step relations which cor-
responds to all intermediate states between 
initial and final states.

These properties can be viewed as big-step and 
small-step operational semantics of languages, 
respectively, where big-step is a unified model of 
the behavior of semantically similar language con-
structs, whereas small-step is a collection of models 
of the behavior of each construct. Furthermore, the 
declarative properties can be seen as a quick filter 
for attacks, whereas the definitive properties can be 
seen as a diagnostic engine [11]. In detail, declar-
ative properties ensure the presence of an attack 
as efficient as real-time performance constraints 
of the application without considering intermedi-
ate details. Once identified, the system goes into a 
safe-operational mode and meanwhile the definitive 
properties diagnose the exact attack considering all 
intermediate details revealing all associated com-
promises of the attack.

We demonstrate the concept of declarative and 
definitive properties by modeling an insulin pump 
for managing sugar levels of diabetics.

Example
Consider a healthcare control application, 

which has a sensor that monitors glucose and an 
insulin (control) pump that receives and issues 
commands for the management of glucose moni-
tor and insulin pump. The main task of an insulin 
pump is to inject an appropriate amount of insulin 
automatically as per the following algorithm:

1) Read the new glucose level through sensor (lt at 
time t).

2) Compute the rate of glucose (rt) based on
new glucose level (lt) and some previous level 
(say k) values (L = {lt–k, lt–k–1, . . . , lt–1}).

3) Compute the new insulin dose (dt) based on
computed glucose rate (rt), current glucose level 
(lt), and previous (say k) injected insulin values 
(D = {dt–k, dt–k–1, . . . , dt–1 }).

4) Inject the computed dose (dt).

Figure 2. Attack model—command modification 
attack.
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Each step of the algorithm has a corresponding 

function in the control application, which is speci-

fied as precondition, postcondition, and invariant. 

However, execution of the application has to be pro-

tected against variants of a command manipulation 

attack [5], which is classified as a computational 

attack. Launching a typical command manipulation 

attack requires the following steps (which corre-

spond to high-level intermediate states):

• illegitimate access to the relevant resources;

• modify a command (i.e., instructions that implement 

the algorithmic steps) to achieve the malicious goal.

For a particular case, we consider the command 

that computes the new dose of insulin as per step 3 

of the algorithm mentioned above. Now, we formal-

ize this attack into declaration and definitive proper-

ties in the following sections.

1) Declarative properties: The declarative proper-

ties can be formalized as follows:

〈⟦c ⟧, s, r〉 ↷ 〈α, s ¢, r¢〉

which says that an application (i.e., command 

sequence) execution ⟦c ⟧ with the given state s, runt-

ime environment r may yield a state s ¢, and environ-

ment r¢ with an attack α in a single step. Here, s is a 

memory store (i.e., a set of pairs of variables and its 

values), r is a runtime environment (i.e., a set of pairs 

of identifier and its types).

On the basis of the above descriptions, we formalize 

the example command manipulation attack as follows:

dt = computeDose(rt, lt, D)

α == ”A” ⇔ ¬safe(dt)

〈computeDose(rt , lt , D), s, re〉 ↷ 〈α, s¢, re¢〉

where

safe(dt) ⇔ dt ≤ max_single_dose ∧
today_doses + dt ≤ max_day_dose ∧
lt > = min_safe_lvl.

The rule states that execution of an application com-

ponent (computeDose(rt , lt , D)) in state s (and envi-

ronment re) may yields state s¢ (and environment 

re¢) with an attack class α(A) iff the critical condi-

tions (safe) are violated, namely when

1) new computed insulin dose is greater than the 

maximum allowed single dose;

2) or sum of new computed insulin dose and cumu-

lative dose for today is greater than the maximum 

allowed dose in a single day; or

3) when measured glucose level is critically low; this 

property can be both safety and security threat, 

however, we handle it as security threat.

The formalization assures that there is an attack 

without considering intermediate steps of the attack, 

namely either the output value dt has updated or 

implementation of step 3 has been modified. This 

allows to verify within real-time constraints, if the 

application is under attack, if attack is detected, the 

application goes in a safe-operation mode and tries 

to investigate the exact attack The attack presented 

is simple and occurs only in one state, which implies 

that its initial and final states are the same.

2) Definitive properties: The goal of formalization 

of definitive properties is to identify exact attack of 

the class (as identified by declarative properties). The 

definitive properties can be formalized as follows:

〈⟦c ⟧, s, r〉 ↷* 〈α, s ¢, r¢〉

which says that an application (i.e., command 

sequence) execution ⟦c ⟧ with the given state s, runt-

ime environment r may yield a state s ¢, and environ-

ment r¢ with an attack α in many small-steps.

Based on the above descriptions, we formalize 

the variants of example command manipulation 

attack as follows:

dt = computeDose(rt, lt, D) 

p = diagnose(computeDose(rt, lt, D), inv(dt  ))

IF p == START THEN α = ”A1”

ELSE IF p == END THEN α = ”A3” ELSE α = ”A2” 

〈computeDose(rt , lt , D), s, re〉 ↷* 〈α, s¢, re¢〉

where

diagnose(cmd, cnd  ) : INSTRUCTION ∪ START ∪ END

inv(dt) ⇔ ¬safe(dt)

returns the point in a program (cmd  ) where the 

given condition (cnd  ) is violated. This point can be 

START, i.e., just before the method (body), END, i.e., just 

after the method (body) or any INSTRUCTION of the 

method body.

The rule states that an application execution 

computeDose(rt , lt , D) in state s (and environment 

re) may yield state s¢ (and environment re¢) with an 

exact attack α s.t.

Authorized licensed use limited to: Universitaet Klagenfurt. Downloaded on November 30,2020 at 07:52:27 UTC from IEEE Xplore.  Restrictions apply. 



92 IEEE Design&Test

General Interest

• if α is A1, then measured glucose level has been 
compromised or threatened;

• if α is A2, then result of the function (shared 
through sensor) has been compromised only;

• if α is A3, then some instruction has been compro-
mised/modified.

Note that if the invariant is violated at START, it also 
means that the input data sent to the pump via com-
mand signal has been compromised. If the invariant 
at any intermediate point (INSTRUCTION) of the exe-
cution is violated, this means that the value has been 
incorrectly modified by the execution of the program 
either by an attacker or due to an implementation 
error. If the invariant is violated at the END of the pro-
gram, this also means that the program has computed 
incorrect value and returning an incorrect doze.

On the basis of the formalization mentioned 
above, we generate runtime security monitor, which 
is discussed in the following section.

Security monitor
The goal of the security monitor is to ensure that 

the healthcare control application is secure against 
known attacks (e.g., command manipulation) at runt-
ime without hindering its performance requirement 
so as to ensure good health of the patient. To develop 
such an efficient security monitor, we have first for-
malized attacks at two different but practical levels 
of abstraction. Clearly, monitoring declarative prop-
erties consumes less amount of time since monitor 
only verifies initial state (i.e., preconditions) and final 
state (i.e., postconditions) of an attack class. While 
monitoring definitive properties consumes more time 
because it requires verification of all intermediate 
states (i.e., invariant) in addition to initial (i.e., pre-
conditions) and final state (i.e., postconditions).

On the basis of deductive synthesis [11], 
[12], we derive security monitor through inter-
active step-wise refinement of the attack mod-
els (i.e., declarative properties) with respect to 
application specification. We start with an initial 
nondeterministic attack model with concealed 
performance requirements, that is, efficiency. 
Then, the model is synthesized through step-wise 
refinements, where each refinement optimizes 
some model statements at least such that no extra 
behavior is introduced that is beyond that of the 
optimized statements, on the one hand, and none 
of the security properties are violated, on the other 

Listing 1. Insulin pump controller + attack 
specification.
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Listing 2. Insulin pump controller code.

hand. As a final step, the model is refined into a 
fully deterministic implementation of a moni-
tor that is not only correct with respect to attack 
class specification but is also obviously secure 
and efficient, respecting real-time performance 
constraints by employing efficient representations 
and algorithms as demonstrated in [11].

Example
To demonstrate our approach, we generate a secu-

rity monitor for our running example of insulin control 
pump. For simplicity, we generate monitor in a familiar 
notation, that is, Javalike syntax as shown in Listing 3.

For our example, insulin pump controller specifi-
cation (Listing 1), in each specific period of time (say 
10 minutes), reads glucose level of the patient (see 
l.12) and then either the pump INJECTs some amount 
of insulin to the patient (see l.70), or does NOTHING 
(see l.71). Initially, the glucose level is undefined  
(see l.6). At any specific interval, the new glucose level 
is read, if the glucose level (i.e., reading) is in the range 
of sensor accuracy (see l.13), then we either accept the 
value or any value (see l.15). After each specific interval 
of time (see l.69), the insulin pump controller either

• INJECTs insulin, that is, the controller first com-
putes the appropriate amount of insulin such that 
glucose level becomes safe (see l.45–58) and 
then injects the desired amount of insulin to the 
patient (see l.70);

• or does NOTHING, that is, the controller con-
cludes that the glucose level of the patient does 
not require any more insulin (see l.45–58) and 
thus does NOTHING (see l.71).

Considering the command manipulation attack, 
the specification describes the following two possi-
ble attack scenarios:

• Data integrity attacks (case A1)—in which the 
command parameter is compromised or is crit-
ically low, that is, the insulin (sensor) dose gets 
compromised (see l.68) and (case A2)—in which 
the sensor-based measured glucose level is com-
promised (see l.42).

• Computational attack (case A3)—in which the 
command computational code is compromised, 
that is, the instruction(s) in the implementation is 
modified (see l.62) such that they now compute 
insulin values, which are either undesired for the 
patient or life threatening to her.

Based on the design decisions and synthesizing 
the specification (Listing 1), we derive the Java 
implementation for the controller (Listing 2) and for 
the corresponding security monitor (Listing 3).

The controller implementation corresponds to 
the controller specification. Additionally, the control-
ler implementation (Listing 2) has calls (see l.60 and 
l.53) to monitor (Listing 3) which eventually enables 
the security monitor to detect data attacks—A1 and A2 
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(see l.7 and l.23) and a computational attack—A2 (see 
l.14). The deductive synthesis assures that the control-
ler implementation is correct and secure by construc-
tion with respect to the specification of controller and 
attacks. Clearly, the monitor is capable of rigorously 
detecting any arbitrary data and computational attack 
in embedded software-based controllers and thus 
highly assuring the safety and security of patients.

Simulation and results
We have implemented a prototype simulation in 

Java 9 on a MacBook Pro with a 2.6-GHz Intel Core 
i7 processor. In an actual deployment, the controller 
algorithm would typically run in an automatic pump 
while the monitor would run in a separate monitoring 
machine. This would incur more overhead since runt-
ime observation (i.e., parameters values) would need 
to be exchanged from the controller to the monitor.

For demonstration, we assume that the controller 
conducts a control cycle on the insulin pump every 
0.1 s (which is much faster than necessary for an actual 
insulin injection system in particular and for any such 

Listing 3. Security monitor code.

physical system in general). We have simulated system 
based on three different input files demonstrating three 
attack scenarios. For simplicity, we have simulated 
declarative and definitive properties of each attack sce-
nario separately. The monitor was successful in detect-
ing declarative properties (based attacks) approx. 1.16 × 
10−5 faster than detecting their corresponding definitive 
properties, which is performance efficient indeed being 
compared to 0.1 per control cycle, on the one hand, 
and also demonstrates efficient detection of declara-
tive properties as compared to declarative properties, 
on the other hand. In Figure 3, we show the overhead 
for CPU time and real-time of simulation for each of the 
attack scenarios described in declarative and definitive 
properties.

Though current results show the proficiency of 
the approach yet an approach needs to be tested 
against various practical challenges. For instance, 
to achieve higher scalability a careful investigation 
of relationship among declarative and definitive 
properties of those attacks is required that have 
distinctive effect in definitive properties. Moreover, 
the approach needs to support modeling of various 
emerging threats, for example, privacy and human-
in-the-loop-based attacks. Furthermore, current 
approach assumes that the apparatus for the insu-
lin pump (e.g., clock) works as desired. Current 
implementation also assumes that the monitor runs 
securely and remotely with negligible communica-
tion overhead because industrial control systems 
typically have dedicated internal networks.

the effiCienCy of runtime verification of an appli-
cation execution w.r.t. the application model (also 
known as application’s behavioral specification and 
associated known threats) depends on the complex-
ity of the models. To make runtime verification more 
efficient, we have presented a method that reduces 
the complexity of threat models by describing them 
at pragmatic but different levels of abstraction that 
can be verified in significantly smaller amount of 
time. Furthermore, we have argued that our pro-
posed attack models can be synthesized into runt-
ime security monitor that can assure the security of 

Figure 3. Performance evaluation of the monitor.
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application execution against known threats (i.e., 

data integrity or false data injection and insider 

attacks) strictly respecting application’s efficiency 

requirements. We have demonstrated that declarative 

properties can be efficiently verified at runtime as 

compared to definitive properties. In future, we plan 

to build verification methods to detect unknown 

(i.e., hypothetical) attacks to critical control applica-

tions to assure more accurate medical diagnosis and 

other operations. 
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