
Predicting Defect Densities in Source Code Files with
Decision Tree Learners

Patrick Knab, Martin Pinzger, Abraham Bernstein
Department of Informatics

University of Zurich, Switzerland
{knab,pinzger,bernstein}@ifi.unizh.ch

ABSTRACT
With the advent of open source software repositories the data avail-
able for defect prediction in source files increased tremendously.
Although traditional statistics turned out to derive reasonable results
the sheer amount of data and the problem context of defect predic-
tion demand sophisticated analysis such as provided by current data
mining and machine learning techniques.

In this work we focus on defect density prediction and present
an approach that applies a decision tree learner on evolution data
extracted from the Mozilla open source web browser project. The
evolution data includes different source code, modification, and de-
fect measures computed from seven recent Mozilla releases. Among
the modification measures we also take into account the change cou-
pling, a measure for the number of change-dependencies between
source files. The main reason for choosing decision tree learners,
instead of for example neural nets, was the goal of finding underly-
ing rules which can be easily interpreted by humans. To find these
rules, we set up a number of experiments to test common hypotheses
regarding defects in software entities. Our experiments showed, that
a simple tree learner can produce good results with various sets of
input data.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and En-
hancement—Restructuring, reverse engineering, and reengineering

Keywords
Data Mining, Defect Prediction, Decision Tree Learner

General Terms
Measurement, Management, Reliability

1. INTRODUCTION
A successful software project manager knows how to direct his

resources into the areas with the highest impact on the bottom line.
Regarding the quality of a software system, the areas with great

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR’06, May 22–23, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005 ...$5.00.

impact are the parts of the code base with the highest defect density,
or even better, with the most future problem reports. Problem reports
obtainable from issue tracking systems (e.g., Bugzilla) can be used
to assess the perceived system quality with respect to defect rate
and density. The objective of such an assessment is to identify the
code parts (i.e., software modules) with the highest defect density.
Improving them will allow the software developers to reduce the
number of problem reports after delivery of a new system or an
update.

Our long term goal is to provide software project teams with
tools allowing a manager to invest resources proactively (rather
than reactively) to improve software quality before delivery. In
this paper we address the issue of predicting defect densities in
source code files. We present an approach that applies decision tree
learners to source code, modification, and defect measures of seven
recent source code releases of Mozilla’s content and layout modules.
Using this data mining technique we conduct a series of experiments
addressing the following hypotheses:

1. Hyp 1: We can derive defect-density from source code metrics
for one release.
This hypothese covers two sub hypotheses concerned with
code quality assessment.

• Hyp 1a: Large source code files have a higher number
of defects than small files.
This is a popular premiss with the underlying assump-
tion that large files are complex, hard to understand and
therefore more susceptible to defects. However, there is
little to gain here. Even if we assume a balanced distri-
bution of defects, larger files trivially have more defects.
More interesting is the defect-density, i.e., number of
problem reports per line of code. Which gives us:

• Hyp 1b: Larger files have a higher defect-density.

2. Hyp 2: We can predict future defect-density.
This is the holy grail of software project management. If we
can predict the files which will have the highest defect rate
in a future release, this would certainly help with ressource
allocation in a project.

3. Hyp 3: We can identify the factors leading to high defect-
density.
Knowing locations with highest defect density the next step
is concerned with gaining insights into the reasons that lead
to defects. These insights allow software developers to proac-
tively improve the system and reduce the number of post-
release defects.

4. Hyp 4a: Change couplings contain information about defect-
density in source files of a single release.

119

Change coupling has shown to provide valuable information
for analyzing change impact and propagation [13, 15]. In this
work we take into account the measure of the change coupling
strength and test its defect density predictive capability in a
single release and:

5. Hyp 4b: Change couplings contain predictive information
about the number of defects in future releases.

Our experiments showed, that a simple tree learner can produce
good results with various sets of input data. We found that common
rules of thumb, like lines of code are of little value for predicting
defect densities. On the other side, “yesterday’s weather“ [6], that
is, number of bug reports in the past, was one of the best predictors
for the future number of bug reports. We also saw, that when
we removed various attributes from the input data, the learning
algorithm was able to keep its performance, by selecting other, often
surprising, attributes.

The remainder of the paper is organized as follows: Related work
is presented in Section 2. Section 3 describes the data we used for
our experiments. The experiments including a discussion of the
results are presented in Section 4. Section 5 draws the conclusions
and indicates areas of future work.

2. RELATED WORK
The need for better guidance in software projects to proactively

improve software quality led to several related approaches. In this
work we concentrate on predicting defect density as well as the
number of defects.

A number of approaches concentrated on using code churn mea-
sures (i.e., amount of code changes taking place within a software
unit over time) for fault and defect density prediction. For instance,
Khoshgoftaar et al. [9] investigated the identification of fault prone
modules in a large software system for telecommunications. Soft-
ware modules are defined as fault-prone when the debug churn
measure (amount of lines of code added or changed for fixing bugs)
exceeds a given threshold. They applied discriminant analysis to
identify the fault-prone modules based on sixteen static product
metrics and the debug churn measure.

Most recently, Nagappan and Ball [12] presented a technique
for early prediction of system defect density based on code churn
measures. Their main hypothesis is that code that changes many
times pre-release will likely have more post-release defects than
code that changes less over the same period of time. Addressing this
hypothesis the authors showed in an experiment that their relative
(normalized) code churn measures are good predictors for defect
density while absolute code churn measures are not. In this paper
we also address the issue of total and relative metric values but
concentrate on different source code metrics of several releases
instead of code churn measures solely. Further we apply machine
learning techniques for our defect density prediction instead of using
statistical regression models.

Munson et al. [11] used discriminant analysis and focused on
the relationship between program complexity measures and pro-
gram faults which are found during development. Besides lines of
code and related metrics e.g., character count, they use Halstead’s
program length, Jensen’s estimator of program length, McCabe’s
cyclomatic complexity and Belady’s bandwidth metric. Due to the
high collinear relationship of these metrics, they mapped them with
a principle-components procedure in two distinct, orthogonal com-
plexity domains. They found that, although the detection of modules
with high potential for faults worked well, the produced models were
of limited value. In our work we use different metrics, especially

various coupling metrics (e.g., fan in and fan out). Additionally we
build our model from multiple releases with decision tree learners.

Fenton et al. [4] tested a range of basic software engineering hy-
potheses and found that a small number of modules contain most of
the faults discovered in pre-release testing and that a very small num-
ber of modules contain most of the faults discovered in operation.
However, they found, that in neither case it could be explained by
the size or complexity of the modules. They distinguished between
pre- and post-release fault discoveries, whereas we concentrate on
bug reports, which are mostly post-release. We can confirm the
findings of Fenton et al. regarding the relevance of module size (in
our case file size), and their observation concerning the distribution
of faults discovered in operation.

In addition to the complexity measures a number of objectori-
ented software metrics have been developed such as the ones from
Chidamber and Kemerer [3]. As with the complexity measures, the
results and opinions of the various investigations are different. An
early investigation of these metrics comes from Basili et al. [1]. They
have defined a number of hypotheses regarding the fault-proneness
of a class. To validate these hypotheses they conducted a student’s
project in which the students had to collect data about the faults
found in a program. Based on this data they used univariate logistic
regression to evaluate the relationship of each of the metrics in
isolation and fault-proneness and multivariate logistic regression to
evaluate the predictive capability. The results have shown that all
but one of these metrics are useful predictors of fault-proneness.

Ostrand et al. [2] used a negative binary regression model to
predict the location and number of faults in large software systems.
The variables for the regression model were selected using the
characteristics they identified as being associated with high fault
rates. They also found, that a simplified model only based on file
size was only marginally less accurate. We can support the finding
that lines of code is a good measure for number of faults, from our
research. However, this fact is of little help in the management of
the development process. To reduce the overall number of faults,
we have to reduce the fault density. The focus of our work is more
on the understanding of the factors that lead to faults than the actual
fault prediction.

Graves et al. [7] developed several statistical models to evaluate
which characteristics of a module’s change history were likely to
indicate that it would see large numbers of faults generated as it is
continued to be developed. Their best model, a weighted time damp
model, predicted fault potential using a sum of contributions from all
the changes to the module in its past. Their best generalized linear
model used numbers of changes to the module in the past together
with a measure of the module’s age. They found, that the number
of deltas, i.e., the number of changes was a successful predictor
of faults, which is also indicated by our experiments. They also
found, that change coupling is not a powerful predictor of faults,
which our results also support. By using decision trees we use all
available measures to build a model including past modification
reports, change couplings and various source code metrics.

Hassan and Holt [8] presented heuristics derived from caching
mechanisms to find the ten most fault susceptible subsystems which
they tested on several big open source projects. Their heuristics are
based on the subsystems that were most recently modified, most
frequently fixed, and most recently fixed. Although we did not dis-
tinguish between repairing modifications and general modifications,
most of the information is also contained in our metrics.

Finally, Mohagheghi et al. [10] concentrated on the influence of
code reuse on defect-density and stability. They found that reused
components have lower defect-density than not reused ones. They
did not observe any significant relation between the number of

120

defects, and component size. They neither found a relation between
defect-density and component size. Our results support the second
finding, but contradict the first.

3. EXPERIMENTAL SETUP
The data for our experiments stems from seven releases of the con-

tent and layout modules of the Mozilla open source project. 1 The
modules are: DOM, NewLayoutEngine, XPToolkit, NewHTML-
StyleSystem, MathML, XML, and XSLT. For more information on
these modules we refer the reader to the module owners web-site 2

of the Mozilla project. The selected releases and their release dates
are listed in Table 1.

Release Date
1 0.92 June, 2001
2 0.97 December, 2001
3 1.0 June, 2002
4 1.3a December, 2002
5 1.4 June, 2003
6 1.6 January, 2004
7 1.7 June, 2004

Table 1: Selected Mozilla releases.

In release 1.7 the seven content and layout modules comprise
around 1.300 C/C++ source and header files with a total of around
560,000 lines of code. From this set of files we selected 366 out of
504 *.cpp files. We skipped 138 files because they did not show a
complete history as is needed for our experiments (i.e., they were
added/removed during this time period). We also skipped the header
files (817 *.h files) because they are naturally connected with the
corresponding implementation files. So, there is nothing to gain
with respect to analyzing the change coupling and predicting the
defect density of these source files.

For this set of *.cpp source files per release we computed the
source code, modification, and defect report metrics as listed in
Table 2. For the source code metrics we parsed each source code
release using the Imagix-4D C/C++ analysis tool. 3 The modifi-
cation and defect report metrics were retrieved from the release
history database that we extracted from Mozilla’s CVS and Bugzilla
repositories as has been presented in our previous work with this
project [5].

The first three source code metrics listed in Table 2 quantify the
size of a *.cpp file according the lines of code (linesOfCode), the
number of defined global and local variables (nrVars), and the num-
ber of implemented functions/methods (nrFuncs). The following
four source code metrics quantify the strength of the static cou-
pling of a *.cpp file with other *.cpp files. For our experiments we
consider incoming (incomingCallRels) and outgoing function calls
(outgoingCallRels) as well as incoming (incomingVarAccessRels)
and outgoing variable accesses (outgoingVarAccessRels).

The remaining metrics are retrieved from the release history data-
base and computed for the time from the begin of the Mozilla project
to the selected release dates. They denote the number of checkins
of a *.cpp file (nrMRs), the number of times a file was checked in
together with other files (sharedMRs), and the number of reported
problems (nrPRs). For the latter metric we further detail the mea-
sures into additional categories denoting the different severity levels
of reported problems. These levels range from problem reports that

1http://www.mozilla.org/
2http://www.mozilla.org/owners.html
3http://www.imagix.com

Name Description
linesOfCode Lines of code
nrVars Number of variables
nrFuncs Number of functions
incomingCallRels Number of incoming calls
outgoingCallRels Number of outgoing calls
incomingVarAccessRels Number of incoming variable accesses
outgoingVarAccessRels Number of outgoing variable accesses
nrMRs Number of modification reports
sharedMRs Number of shared modification reports
nrPRs Number of problem reports
nrPRsNormal nrPRs with severity = normal
nrPRsTrivial nrPRs with severity = trivial
nrPRsMinor nrPRs with severity = minor
nrPRsMajor nrPRs with severity = major
nrPRsCritical nrPRs with severity = critical
nrPRsBlocker nrPRs with severity = blocker

Table 2: Base metrics computed for a C/C++ file.

are marked as trivial to system critical problem reports (i.e.,, system
crashes, loss of data). They allow us a more detailed classification
of the defects in source files.

The shared modification reports metric (sharedMRs) represents
the number of times a file has been checked into the CVS repository
together with other files. The reason for adding this metric is that the
defect density of a file is higher when modifications (e.g.,, bug fixes)
are spread over several files instead of being local to one source file.
This metric has been used several times in recent investigations to
assess the quality of software systems and their evolution (see for
example [13, 15]). In this paper we test its defect density predictive
capability (see Hyp 4a and Hyp 4b).

The metrics listed above are all computed for each selected re-
lease. For predicting the defect density of files we further added
trend and normalized values of these metrics. Trends are denoted
by the deltas of metric values between two subsequent releases. For
instance, the number of functions added/removed or the number
of critical problem reports reported from one release to the next.
Total as well as delta values are normalized with the size of a file
expressed in lines of code (linesOfCode). Such a normalization is a
key factor for predicting the defect density namely the number of
new defects per line of code.

Total and delta values as well as their normalized values form
the input to the experiments presented in the following sections.
Regarding the metric names used in the experiments we prefix each
metric name with the kind of value: total metrics with “static ”;
normalized metrics with “norm ”; and trend metrics with “delta ”.
Furthermore, the number indicating the release (see Table 1) is
added to each metric name. For instance, delta nrMRs 4 denotes
the number of modification reports added from release 1.0 to release
1.3a.

4. EXPERIMENTS
Before we go into our data mining experiments we conducted a

number of descriptive statistics analysis with the selected Mozilla
releases. Here we present an excerpt of the results we obtained
for the Mozilla release 1.0. Similar observations apply to the other
Mozilla releases. Concerning Hyp 1a and Hyp 1b the scatter plot
in Figure 1 shows that number of problem reports in release 1.0
display a strong linear correlation with lines of code. So big files
do not have a higher problem reports to lines of code ratio which
shows us that at least for Mozilla the popular belief that big files are

121

0 100 200 300 400 500 600
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

static!nrPRs

s
ta
ti
c
!
li
n
e
s
O
fC
o
d
e

Figure 1: lines of code vs number of problem reports

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

2

4

6

8

10

12

norm!nrPRs

n
o
rm
!
s
h
a
re
d
M
R
s

Figure 2: normalized shared modification reports versus nor-
malized problem reports

trouble files does not hold. The downside of this observation is that
lines of code does not make for a simple indicator to detect problem
files.

Our use of lines of code per file instead of, for example, lines of
code per class, results from the fact that most of our metrics like
shared modification reports or problem reports, are only calculated
for files. Lines of code per class might be of some significance when
assessing defect-density, however, this is, based on the research of
Fenton and Ohlsson [4], not the case. In the data mining experiments
we will further elaborate on the issue whether lines of code has any
predictive value.

To test Hyp 4a we analyze the correlation between the normalized
values of shared modification reports and problem reports. The scat-
ter plot for Mozilla release 1.0 is shown in Figure 2. The correlation
coefficient is 0.7234, which, in combination with the graphic, shows
a strong linear correlation between the two values. However, what
value, the normalized shared modification reports metric presents
for the prediction of future number of defects, remains to be seen.

The process for all data mining experiments is as follows: We
export the selected data to an arff file (i.e., a text based data file
readable by the WEKA [14] explorer), which is then loaded into
the WEKA explorer. We then run the five bins equal frequency
discretizer over our data to get the input for our classifier. The use

of equal frequency distribution in the discretizer means that the
prior probability for an instance falling into a given class is twenty
percent. The classifier is the J48 tree learning algorithm provided
by the WEKA tool. The accuracy is calculated with ten-fold cross
validation.

Exp 1: Problem reports from non PR metrics of the same re-
lease: In the first experiment we use all available data from release
four (1.3a) excluding problem report metrics (e.g., nrPRs 4, nrPRs-
Major 4, etc.) to predict the number of problem reports of release
four (nrPRs 4). Figure 3 depicts the top levels of the generated
decision tree. We can see, that the attribute with the most infor-
mation concerning the number of problem reports is the number
of modification reports, hence it appears at the root. Attributes on
the second level are: added number of modification reports since
release 3, shared modification reports, and lines of code. We got

Correctly Classified Instances 227 (62.0219 %)
Incorrectly Classified Instances 139 (37.9781 %)

which is good, given the prior probability of 0.2. Looking at the
confusion matrix

a b c d e <-- classified as
60 9 3 1 0 | a = ’(-inf-7.5]’
12 40 22 2 0 | b = ’(7.5-15.5]’
6 22 25 18 0 | c = ’(15.5-25.5]’
1 3 16 42 11 | d = ’(25.5-62.5]’
0 0 0 13 60 | e = ’(62.5-inf)’

we see the detailed performance for our five classes selected by
the discretizer. The top row of the confusion matrix shows the
labels of the predicted classes. On the right are the labels and the
corresponding intervals of the actual classes. Each cell of the matrix
denotes the number of instances (source files) classified as a, b, c, d,
or e. The matrix diagonal contains the exact matches. For instance,
the numbers in the bottom row state that 60 instances which are of
the actual class e (i.e., source files with more than 62.5 problem
reports), where classified correctly. 13 instances where wrongly
classified as d, none as c, b, or a.

Taking into account only the worst twenty percent, the algorithm
gets 82 percent right, and the other 18 percent are put into the second
worst class. From a management’s point of view, this presents a
valuable result. If the manager concentrates his ressources on the
files which were classified as e or d (i.e., the worst and second worst
class), he would have covered 100 percent of the worst files (i.e., the
files with the highest number of defects).

The connection between the number of modification reports and
problem reports is not that surprising. If there are many bugs, one
has to fix them, which generates modification reports. So what
happens if we take the modification reports away from our learning
algorithm?

Exp 2: Problem reports from non PR metrics of the same re-
lease without MR data: We do the same experiment as above using
the available metrics from release four (1.3a) excluding modification
report data (i.e., nrMRs, sharedMRs) and problem report metrics
(e.g., nrPRs 4, nrPRsMajor 4, etc.). With this data we predict num-
ber of problem reports per line of code (norm nrPRs 4) for release
four (1.3a). Normalized problem reports are better suited to assess
the badness of a file, because big files with a low defect-density are
rated better than small files stuffed with bugs.

Results are below:

Correctly Classified Instances 138 (37.7049%)
Incorrectly Classified Instances 228 (62.2951%)

122

static_nrMRs_4

delta_nrMRs_4 static_sharedMRs_4 static_sharedMRs_4 static_linesOfCode_4 delta_nrMRs_4

Figure 3: Top levels of decision tree resulting from Exp 1

static_linesOfCode_4

delta_outgoingCallRels_4 static_outgoingCallRels_4 static_outgoingCallRels_4 norm_outgoingCallRels_4 static_outgoingCallRels_4

Figure 4: Top levels of decision tree resulting from Exp 2

a b c d e <-- classified as
26 20 11 7 9 | a = ’(-inf-0.037225]’
19 20 19 4 11 | b = ’(0.037225-0.065399]’
9 22 22 10 10 | c = ’(0.065399-0.099327]’
9 12 9 34 10 | d = ’(0.099327-0.143163]’
5 15 9 8 36 | e = ’(0.143163-inf)’

The quality, although significantly above the prior probabilities,
is much worse. Still, by looking at the tree in Figure 4, we can
see that there is at least some information in the size of a file for
the prediction of the number of problem reports. Although, by
looking at the confusion matrix, we can see that the predictions are
heavily scattered which makes them hardly useful. For assessing
the importance of modification reports data we have to conduct
additional experiments.

Exp 3: Normalized problem reports from non PR metrics of
the same release: Here we derive the normalized number of prob-
lem reports from all, but problem report metrics. Thus repeating ex-
periment one with normalized problem reports as the target class. To
predict number of problem reports per line of code (norm nrPRs 4)
of release four (1.3a) we use all metrics from release four except PR
metrics (e.g., nrPRs 4, nrPRsMajor 4, etc.). We get:

Correctly Classified Instances 192 (52.459 %)
Incorrectly Classified Instances 174 (47.541 %)

for this experiment, which confirms the results of experiment one,
but differs in at least one important way. Lines of code is not present
in the top levels of the resulting tree as shown in Figure 5. In the
full tree lines of code is only used in one branch on the third level.
This confirms that lines of code is of marginal importance for the
prediction of defect-density and lets us reject 4 Hyp 1a, and Hyp 1b.

The confusion matrix illustrates the good performance of the
classifier. By looking at the diagonal we see moderate dispersion of
the values. If we count near misses, the prediction, especially for
class e, is excellent.

a b c d e <-- classified as
48 19 4 2 0 | a = ’(-inf-0.037225]’
14 33 15 7 4 | b = ’(0.037225-0.065399]’
6 16 33 13 5 | c = ’(0.065399-0.099327]’
3 8 7 35 21 | d = ’(0.099327-0.143163]’
1 2 7 20 43 | e = ’(0.143163-inf)’

4This is an informal rejection as we have not used any formal
hypotheses testing model such as T-test.

Exp 4: Normalized problem reports from non PR metrics
of the same release without sharedMR data: Here we exclude
shared modification report metrics thus using all metrics except PR
metrics (e.g., nrPRs 4, nrPRsMajor 4, etc.) and shared modification
report metrics (e.g., sharedMRs, norm sharedMRs) from release
four, to predict the number of problem reports per line of code
(norm nrPRs 4) of release four (1.3a).

Correctly Classified Instances 197 (53.8251 %)
Incorrectly Classified Instances 169 (46.1749 %)

a b c d e <-- classified as
49 17 3 4 0 | a = ’(-inf-0.037225]’
14 35 14 6 4 | b = ’(0.037225-0.065399]’
3 16 37 13 4 | c = ’(0.065399-0.099327]’
2 7 13 29 23 | d = ’(0.099327-0.143163]’
1 5 2 18 47 | e = ’(0.143163-inf)’

The error rate and the confusion matrix are almost identical to
experiment three. This is a strong sign, that the number of problem
reports does not depend on the amount of logical coupling a file has
with its surrounding.

But, taking a closer look at Figure 6 we can see that other coupling
metrics were used in the prediction of number of problem reports:
added normalized outgoing call relationships and incoming call
relationships.

The results of these first experiments show, that we can predict
defect densities (measured by number of problem reports) with
accuracies of more than 50% given a prior probability of 20%. So
we can accept Hyp 1. However, lines of code is not a good predictor
of defect-density so we have to reject Hyp 1a and Hyp 1b. At this
point, we cannot verify Hyp 4a fully. The classifier uses mainly
other modification report metrics for the prediction which indicates a
low importance of shared modification reports for defect prediction.

The next set of experiments are mainly concerned with Hyp 2 and
Hyp 4b.

Exp 5: Added problem reports of release 6 with data from
releases 3, 4, 5: For experiment four we use all available data
from releases 3, 4, and 5, e.g., lines of code in release three (linesOf-
Code 3), added modification reports in release four (delta nrMRs 4),
the number of added problem reports with severity major per lines
of code in release five (delta norm nrPRsMajor5) and predict the
number of added problem reports in release 6 (delta nrPRs 6).

The performance of the classifier is acceptable:

Correctly Classified Instances 186 (51.2397%)

123

norm_nrMRs_4

delta_nrom_nrMRs_4 delta_norm_outgoing
CallRels_4 delta_nrMRs_4 norm_sharedMRs_4 delta_sharedMRs_4

Figure 5: Top levels of decision tree resulting from Exp 3

norm_nrMRs_4

delta_nrom_nrMRs_4 delta_norm_outgoing
CallRels_4 delta_nrMRs_4 static_nrFuncs_4 norm_incomingCallRe

ls_4

Figure 6: Top levels of decision tree resulting from Exp 4

Incorrectly Classified Instances 177 (48.7603%)

a b c d e <-- classified as
104 11 12 9 2 | a = ’(-inf-0.5]’
26 16 2 4 0 | b = ’(0.5-1.5]’
25 4 23 11 4 | c = ’(1.5-3.5]’
12 3 14 12 15 | d = ’(3.5-6.5]’
3 0 4 16 31 | e = ’(6.5-inf)’

The confusion matrix shows a high accuracy for class a, lower
accuracy for the middle classes (b,c,d), and again a high accuracy
for class e if we count near misses.

In Figure 7 we see that the top node, added problem reports with
severity major from release 4, divides the data set the best regarding
added problem reports. The presence of change coupling metrics
only in a few lower branches shows that isolated, they are not very
valuable for the prediction of the future number of defects. Which
supports our finding, that there are no simple dependencies between
defect-density and other metrics.

Exp 6: Added problem reports of release 7 with data from
releases 3, 4, 5, 6: This experiment is a repetition of Exp 5 but
predicting for release seven (delta nrPRs 7) using input data from
releases three through six. As we can see, from the output below,
the performance is better and, more interesting, the top node has
changed to something, at least for us, surprising. In Figure 8 the top
node of the tree is static nrFuncs 6. At the second level, however,
mostly problem report metrics from earlier releases are used.

Correctly Classified Instances 215 (59.2287%)
Incorrectly Classified Instances 148 (40.7713%)

a b c d e <-- classified as
145 17 2 1 2 | a = ’(-inf-0.5]’
35 14 7 5 5 | b = ’(0.5-1.5]’
7 8 6 6 2 | c = ’(1.5-2.5]’
8 7 7 18 12 | d = ’(2.5-4.5]’
3 4 2 8 32 | e = ’(4.5-inf)’

Conducting the same experiment with normalized added problem
reports as target attribute, the performance degrades to:

Correctly Classified Instances 162 (44.6281%)
Incorrectly Classified Instances 201 (55.3719%)

This result supports our assumption that number of functions is
used as a measure for the length of the file. When we remove

number of functions from the input data of the initial experiment
static outgoingCallRels 6 is at the root of the resulting tree. This
suggests that number of functions is somehow related to outgoing
calls. However, such a conclusion is premature considering the
displayed complex dependencies between the various metrics.

In experiment four and five we showed, that it is possible to pre-
dict future defect-density with data mining techniques to an extend
that is useful for an engineer or the management. We therefore can
accept Hyp 2.

However, as we have seen in the other experiments, the relation-
ships between the various metrics are complex. The sheer amount
of data makes it impossible to intuitively understand the underlying
decisions of a classifier by just looking at a generated tree. This
leeds to the partly rejection of Hyp 3.

5. CONCLUSIONS AND FUTURE WORK
Our long term goal is to provide software project teams with

tools allowing a manager to invest resources proactively (rather than
reactively) to improve software quality before delivery. A key factor
of such tools is the capability to predict defect densities in software
modules such as source files or classes.

In this paper we specifically investigated the application of data
mining on a number of source code, modification, and defect mea-
sures to test their applicability for defect prediction. The focus of
our work is more on the understanding of the factors that lead to
defects than the actual defect prediction. For this we stated a set
of hypotheses that we addressed in a series of experiments with
data from seven releases of the content and layout modules of the
Mozilla open source project.

The data mining experiments showed, that a decision tree learner
(J48) can produce reasonable results with various sets of input data.
Regarding our hypotheses:

• We were able to predict defect densities with acceptable ac-
curacies with metrics from the same release and therefore
accepted Hyp 1.

• We found that lines of code has little predictive power with
regard to defect-density therefore rejected Hyp 1a and Hyp
1b. In general, size metrics such as number of functions are of
little value for predicting defect densities.

• We were able to predict defect-density with satisfactory ac-
curacy by using evolution data (e.g., number of modification
reports) therefore accepting Hyp 2.

124

delta_nrPRsMajor_4

static_linesOfCode_3 delta_norm_outgoing
CallRels_4

static_nrPRs_critical_
4 delta_nrPRsNomal_5 delta_outgoingCallRel

s_3

Figure 7: Top levels of decision tree resulting from Exp 5

static_nrFuncs_6

static_nrPRsBlocker_3 delta_nrPRsMajor_3 norm_nrPRsMinor_5 static_nrPRsMajor_4 delta_nrPRsNormal_4

Figure 8: Top levels of decision tree resulting from Exp 6

• Due to complex relationships between the various metrics
we could only partly identify factors that lead to high defect-
density. This resulted in the partly rejection of Hyp 3.

• We found that change couplings are of little value for the
prediction of defect-density therefore we rejected Hyp 4a and
Hyp 4b.

Future work is concerned with including detailed measures of
modifications (e.g., number of statements changed) and defects
(e.g., bug status information) in our experiments. In addition, we
also plan to take into account the various source code complexity
measures, such as McCabe’s cyclomatic complexity or the Halstead
complexity measures. With this additional information we can gain
deeper insights into the internals of the implementation as well as
the past defects and modifications that caused increase as decreases
of defect densities in source files and classes.

Another area of future work is to use other data mining techniques
and conduct our experiments with additional case studies from the
open source community as well as industrial software systems.

6. ACKNOWLEDGMENTS
We thank Harald Gall, Peter Vorburger, Beat Fluri and the anony-

mous reviewers for their valuable input. This work was supported
by the Swiss National Science Foundation.

7. REFERENCES
[1] V. R. Basili, L. C. Briand, and W. L. Melo. A validation of

object-oriented design metrics as quality indicators. IEEE
Trans. Softw. Eng., 22(10):751–761, 1996.

[2] R. M. Bell, T. J. Ostrand, and E. J. Weyuker. Predicting the
location and number of faults in large software systems. IEEE
Trans. Softw. Eng., 31(4):340–355, 2005.

[3] S. R. Chidamber and C. F. Kemerer. A metrics suite for object
oriented design. IEEE Trans. Softw. Eng., 20(6):476–493,
1994.

[4] N. E. Fenton and N. Ohlsson. Quantitative analysis of faults
and failures in a complex software system. IEEE Trans. Softw.
Eng., 26(8):797–814, 2000.

[5] M. Fischer, M. Pinzger, and H. Gall. Populating a release
history database from version control and bug tracking
systems. In Proceedings of the International Conference on
Software Maintenance, pages 23–32, Amsterdam,
Netherlands, September 2003. IEEE Computer Society Press.

[6] T. Girba, S. Ducasse, and M. Lanza. Yesterday’s weather:
Guiding early reverse engineering efforts by summarizing the
evolution of changes. In Proceedings of the 20th IEEE
International Conference on Software Maintenance, pages
40–49, Washington, DC, USA, 2004. IEEE Computer Society.

[7] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy. Predicting
fault incidence using software change history. IEEE Trans.
Softw. Eng., 26(7):653–661, 2000.

[8] A. E. Hassan and R. C. Holt. The top ten list: Dynamic fault
prediction. In Proceedings of the 21st IEEE International
Conference on Software Maintenance, pages 263–272,
Washington, DC, USA, 2005. IEEE Computer Society.

[9] T. M. Khoshgoftaar, E. B. Allen, N. Goel, A. Nandi, and
J. McMullan. Detection of software modules with high debug
code churn in a very large legacy system. In Proceedings of
the The Seventh International Symposium on Software
Reliability Engineering, page 364, Washington, DC, USA,
1996. IEEE Computer Society.

[10] P. Mohagheghi, R. Conradi, O. M. Killi, and H. Schwarz. An
empirical study of software reuse vs. defect-density and
stability. In Proceedings of the 26th International Conference
on Software Engineering, pages 282–292, Washington, DC,
USA, 2004. IEEE Computer Society.

[11] J. C. Munson and T. M. Khoshgoftaar. The detection of
fault-prone programs. IEEE Trans. Softw. Eng.,
18(5):423–433, 1992.

[12] N. Nagappan and T. Ball. Use of relative code churn measures
to predict system defect density. In Proceedings of the 27th
international conference on Software engineering, pages
284–292, New York, NY, USA, 2005. ACM Press.

[13] J. Ratzinger, M. Fischer, and H. Gall. Evolens: Lens-view
visualizations of evolution data. In Proceedings of the
International Workshop on Principles of Software Evolution,
pages 103–112, Lisbon, Portugal, September 2005. IEEE
Computer Society Press.

[14] I. H. Witten and E. Frank. Data Mining. Morgan Kaufmann
Publishers, 1999.

[15] T. Zimmermann, P. Weissgerber, S. Diehl, and A. Zeller.
Mining version histories to guide software changes. IEEE
Trans. Softw. Eng., 31(6):429–445, 2005.

125

