Interactive Views for Analyzing Problem Reports

Patrick Knab, Beat Fluri, Harald C. Gall
Dep. of Informatics, Univ. of Zurich, Switzerland
{knab,fluri,gall} @ifi.uzh.ch

Martin Pinzger
Dep. of Software Technology, Delft Univ. of Tech., The Netherlands
{m.pinzger @tudelft.nl}

Abstract

Issue tracking repositories contain a wealth of informa-
tion for reasoning about various aspects of software develop-
ment processes. In this paper, we focus on bug triaging and
provide visual means to explore the effort estimation quality
and the bug life-cycle of reported problems.

Our approach follows the Micro/Macro reading technique
and uses a combination of graphical views to investigate de-
tails of individual problem reports while maintaining the
context provided by the surrounding data population. This
enables the detection and detailed analysis of hidden pat-
terns and facilitates the analysis of problem report outliers.

In an industrial study, we use our approach in various
problem report analysis scenarios and answer questions
related to effort estimation and resource planning.

1. Introduction

In the EUREKA/ITEA! SERIOUS? project we worked
together with industrial partners to Investigate means to
improve the planning and resource allocation in a software
project by analysing change request and problem report
data.

We were given access to an issue tracking repository con-
taining thousands of problem reports (PR) from a multi-year,
multi-site software development project in the consumer
electronics domain.

Since the statistical analysis of the data showed ambigu-
ous results, mainly due to a strong presence of outliers and
a heavily right-skewed data distribution, we developed a
flexible interactive visualization approach which we present
in this paper. The approach is based on the Micro/Macro

Uhttp://www.itea2.org/
2Software Evolution, Refactoring, Improvement of Operational & Us-
able Systems

527

978-1-4244-4828-9/09/$25.00 2009 IEEE

Reading idea from Tufte [6] and provides a combination
of Overview and Details-on-demand. It currently comprises
four simple and easy to understand views which can be
linked in various ways. This integration enables sophisti-
cated analyses by drilling down to details while preserving
the big picture.

With this approach, we can answer questions such as:
What is the overall quality of effort estimates? Are there
more and less accurate analyzers? What are the patterns of
the less accurate analyzers? Do deviations from the main
process path have an effect on the quality of the estimates?
Which process steps take the most time? What is the influ-
ence of priority on the duration of the process steps?

To answer these questions we used problem report in-
formation from our industrial data set. Out of the many
attributes associated with a problem report we focus mainly
on the following six:

estimatedEffort The estimated total effort in person
hours to fix the problem

actualEffort The actual total effort in person hours

analyzer The person responsible to analyze the
problem and estimate the effort

owner The manager responsible for this prob-
lem report

priority The priority assigned to the problem,
possible values are: low, medium, high,
and top

severity The severity assigned to the problem,

possible values are: A, B, C, or D. A
means that the customer does not ac-
cept the product and D means that the
customer does not notice the problem.

The estimatedEffort is an estimate done by the analyzer
who can be either a specially assigned person or the problem
report owner himself. The actualEffort is the total effort
actually used to fix the problem. It includes the analysis, the

Proc. ICSM 2009, Edmonton, Canada

resolution as well as the evaluation effort.

In addition to the problem report attributes, we also ex-
tracted PR life-cycle data from the log files. The log files con-
tain all changes to all the PR fields including status changes,
e.g., a PR is changed from submitted to in_analysis. All the
PR (problem report) life-cycle states are shown in Figure 3.

2. Visualization Building Blocks

In this section, we present our visualization approach
which integrates multiple views that can be combined in
various ways.

For the visualization of effort measures, we use Poly-
metric Views [5]. In Figure 1 the basic concepts of our
visualization are shown: the width of the boxes is deter-
mined by the value of the estimatedEffort and the height by
the value of the actualEffort. The effort measure is the sum
of all efforts that were exerted to resolve the issue described
by the problem report.

perfect estimate

actualEffort
underestimated

color: analyser

estimatedEffort

overestimated

Figure 1. Polymetric effort shape patterns

With this information mapping we can get a quick and
effective overview over the quality of estimates: balanced
estimates (square boxes) constitute problems that were esti-
mated accurately with respect to the actual resolution effort
needed; underestimated (boxes that are thin and tall) and
overestimated (boxes that are short and broad) PRs can also
be spotted easily.

submitted

in_analysis
in_evaluation

in_resolution

Figure 2. Pie chart with process step lengths

To visualize the duration of process steps we use a pie
chart visualization. In Figure 2 we show a single pie with
the mapping to the four process steps: submitted, in_analysis,
in_resolution, in_evaluation. The size (i.e., the area) of the
pie is mapped to the total time from the creation of the PR
until it was closed.

With the addition of a PR state transition view shown
in Figure 3 we provide a new angle and starting point for

528

resolved |y in_resolution

in_evaluation |*<§

- hold
-
— _-ana\ sed
-

nol_reproducible

- L
[submitted | —=[In_analysis]
L

Tater_release
[rejected |
n duplicate analysis failed] [resolution falled L

Figure 3. PR life-cycle view

an analysis. In this view configuration all occurring state
transitions are displayed in an aggregated form. The width
of the arrows between the states is mapped to the number
of problem reports that exhibit the corresponding transition.
With the presented layout we can see the main path that most
PRs take, and that there are quite a few PRs deviating from
this standard path.

3. Case Study

To better represent the typical analysis process, we state
an overall goal that summarizes the intended direction for
each exploration step. The case study is based on a multisite

:"D H“DJDDDD“DHBH—DDDF‘:,_"_‘

problem reports for analyzer A

: R]

TR EET LU | .‘l I-|'-
[T
el |
O
I !
!
\
R ke
I L Ly

:DDDDDDDZZE*D

UHHJ\ j = — L L 10

problem reports for analyzer B

Figure 4. Effort view on PRs grouped and colored ac-
cording to the analyzer

project spanning five years. The issue tracking repository
contains approx. 20’000 problem reports (PRs) that were
handled by 368 distinct analyzers.

Goal: Get an overview of the quality of estimates and
how different analyzers are doing In Figure 4 we con-
figured a view that groups and colorizes PRs according to
the analyzer that did the estimates. Looking for patterns
we can see, that there is a mix of estimation errors as well
as some fairly well estimated PRs. We can also see, that
there are about six analyzers that do the most analyses (more
than 10) and a few others that have only a small number of
associated PRs. There are obviously some differences in the
performance of the analyzers. Considering the selections for
Analyzer A and Analyzer B, that we present in a detail view
above and below the main view, we can see that Analyzer A
mainly underestimates the effort, whereas Analyzer B mainly
overestimates. Looking at the differences in the width of the
boxes (estimatedEffort) of Analyzer A we get the impression
that he uses mostly one standard estimate for all his PRs
where Analyzer B has more variability in his estimates. It
might be worthwhile to discuss their estimation processes
with other team members to improve the quality of their
estimates.

» in_analysis

/ in_resolution

/ display selection

Figure 5. PRs that skipped the analysis phase, color in-
dicates the PR’s owner

Goal: Analyze process paths, find exceptional routes
and analyze them with regard to estimation quality In
Figure 5 one can see a detail view of our state transition
visualization (top view) were the transition submitted to in_-
resolution is selected. Only a small amount of all PRs take
this shortcut while most of them go first into the in_analysis
phase. To assess the effects on estimation quality we created
a polymetric view from the selected PRs (bottom view). In
this view the PRs are grouped and colored according to the
responsible problem report owner, as the owner has the task
to assign an analyzer. Here we observe that there is one
owner who is responsible for about one third of the PRs that
skipped the analysis phase. Examining in more detail we

529

see that the quality of the estimates is, at least, questionable.
There are mostly over- and underestimated reports and only
some square-like shapes denoting accurate estimates.

(based on a screenshot but redrawn for better readability on paper)

resolution_failed

analysed in_analysis
concluded

vN{e transition view for b)

"0 @ @°° °°

—)

[Csubmitted }—»{

in_resolution

resolved

in_evaluation

a) .

S XX XXTY TLRTE
@ e c@ e
‘e'r,:.‘_. ® X X KB

e ‘" og@ 'tvc“/' R
c)

‘®°°
/F’Hs that skipped in_analysis

Figure 6. PRs that skipped the analysis phase

a) b) o d)

‘eS°C6 0@ "°C ©cccoe

cecec @ @
/msp\ay top priority
£ priority ya effort

.

2

w

E}

k<l

“,

priority D
display lowest priority

' e“.’-‘gg,"', ¥ YR XX BJ C
©6°®cc °cc°@"
e". e °@G° °°¢6 ° e o

Figure 7. Pie view of PRs with priority top and low

Goal: Further explore the attributes of PRs that skipped
the analysis phase Using our pie chart visualization, as
shown in Figure 6, we can explore additional properties of
the problem reports that skipped the initial analysis. The
view shows that there are many almost totally green pies.
Which means, that they spent the wast majority of their pro-
cessing time in_evaluation. There are small and bigger pies
indicating shorter and longer processing time, and that there
are PRs that although they skipped the initial analysis phase

have nonetheless spent time in analysis. The pies labeled a),
b), and c) have a blue wedge in their pie chart. Selecting the
PR labeled b) and displaying it in a state transition view, we
can examine its life-cycle in more detail. Obviously the first
resolution attempt failed and the PR was transitioned into
in_analysis. From there it went back to in_resolution and was
declared as resolved. Then the evaluation showed that there
was still a problem and it went back to in_resolution and
after this third resolution attempt and a second evaluation it
was finally concluded.

Goal: Analyze the problem solving phases with respect
to the priority of a PR To find out what impact the prior-
ity has on the duration of the process steps we use the view
combination in Figure 7. Starting from the scatter plot view
in the middle we select the highest and the lowest priority
PRs and display them in our pie chart view. At first glance
we see that the lower priority PRs have the biggest pies and
therefore took the most time to resolve.

In Figure 7 we can spot pies with a relatively big yellow
part, e.g., the ones labeled a), b), ¢), and d), which means,
that they stayed a long time in the submitted state. This
is surprising since one would expect that on high priority
problems work would start as soon as possible. It could be
worthwhile to examine these reports more deeply and adjust
the process to improve ramp up time.

Summarizing the results we found that: there is no clear
tendency to accurately , under-, or overestimated PRs; most
of the analyzers do not have a consistent pattern in their
estimation quality; there are some analyzers with strong
tendencies to either over- or underestimate the effort; there
is one particular owner who often skips the initial analysis
phase and that some of these PRs exhibit complications
later on; there is a difference between the distributions of
processing time for top and low priority PRs but there is no
clear tendency considering the average open time.

4. Related Work

D’ Ambros et al. used data from a release history database
(RHDB) [3] to visualize the life-cycle of bugs [2]. With the
System Radiography and the Bug Watch View, they provided
a tool to focus on time, activity and severity/priority aspects
of bugs.

Halverson et al. [4] devised a visualization that focuses
on the social aspects of change requests and problem reports.
Similar to our approach, they also visualize state changes and
reveal problematic patterns such as multiple resolve/reopen
cycles.

In [7] Weiss et al. predict the effort a problem requires
to get fixed by analyzing the problem description and search
for similar problem reports. The average effort it took these
similar problems is than used as a prediction.

530

Anvik et al. describe the problems that arise when using
open bug repositories, e.g., duplicates, and irrelevant reports

[1].
5. Conclusions

In this paper we presented an interactive visualization
approach that is specifically tailored to uncover hidden pat-
terns and exceptional entities in problem report data. It is
based on the Micro/Macro Reading concept and uses easy to
understand views. These views can be combined in a flexible
way to allow sophisticated analyses.

We performed a first evaluation of our approach in an in-
dustrial setting with focus on improving effort estimation and
resources planing. Discussions with the project managers
of the industrial partner asserted the value of our approach
and its potential for improving their software maintenance
process.

Acknowledgments

This work was sponsored in part by the Eureka 2023
Programme under grants of the ITEA project if04032. Fur-
thermore, this work was supported by the Swiss National
Science Foundation (SNF).

References

[1] J. Anvik, L. Hiew, and G. C. Murphy. Coping with an open bug
repository. In eclipse "05: Proceedings of the 2005 OOPSLA workshop
on Eclipse technology eXchange, pages 35-39, New York, NY, USA,
2005. ACM.

[2] M. D’Ambros, M. Lanza, and M. Pinzger. "a bug’s life” - visualizing a
bug database. In Proceedings of VISSOFT 2007 (4th IEEE International
Workshop on Visualizing Software For Understanding and Analysis),

pages 113-120. IEEE CS Press, June 2007.
[3] M. Fischer, M. Pinzger, and H. Gall. Populating a release history

database from version control and bug tracking systems. In Proceedings
of the International Conference on Software Maintenance, pages 23-32,
Amsterdam, Netherlands, September 2003. IEEE Computer Society
Press.

[4] C. A.Halverson, J. B. Ellis, C. Danis, and W. A. Kellogg. Designing
task visualizations to support the coordination of work in software
development. In CSCW ’06: Proceedings of the 2006 20th anniversary
conference on Computer supported cooperative work, pages 3948,
New York, NY, USA, 2006. ACM.

[5] M. Lanza and S. Ducasse. Polymetric views — a lightweight visual
approach to reverse engineering. IEEE Transactions on Software Engi-
neering, 29(9):782-795, September 2003.

[6] E.R. Tufte. Envisioning Information. Graphics Press, May 1990.

[7] C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller. How long will it
take to fix this bug? In MSR "07: Proceedings of the Fourth Interna-
tional Workshop on Mining Software Repositories, page 1, Washington,
DC, USA, 2007. IEEE Computer Society.

