
Improving Fact Extraction of Framework-Based Software Systems

Jens Knodel
Fraunhofer Institute for Experimental Software

Engineering (IESE),

Sauerwiesen 6, D-67661 Kaiserslautern,

Germany

knodel@iese.fraunhofer.de

Martin Pinzger
Distributed Systems Group, Vienna University

of Technology,

Argentinierstr. 8/184-1, A-1040 Wien,

Austria

pinzger@infosys.tuwien.ac.at

Abstract

Modern software frameworks provide a set of common

and prefabricated software artifacts that support

engineers in developing large-scale software systems.

Framework-related information can be implemented in

source code, comments or configuration files, but in the

latter two cases, current reverse engineering approaches

miss important facts reducing the quality of subsequent

analysis tasks. We introduce a generic fact extraction

approach for framework-based systems by combining

traditional parsing with lexical pattern matching to

obtain framework-specific facts from all three sources.

We evaluate our approach with an industrial software

application that was built using the Avalon/Phoenix

framework. In particular we give examples to point out

the benefits of considering framework-related information

and reflect experiences made during the case study.

Keywords: architecture recovery, fact extraction,
frameworks, lexical pattern matching, parsing, reverse
engineering

1. Introduction

Reverse engineering and in particular architecture
recovery aim at extracting higher-level representations
(i.e., the software architecture) from existing software
systems and support engineers in assessing, maintaining,
and evolving large-scale software systems. In order to
produce such architectural views current reverse
engineering tools process various artifacts available for
the system under study such as source code, scenario
profiles, documentation, domain information and expert
knowledge [4].

Fact extraction from source code (i.e., finding pieces of
information about the system) is a fundamental step of
reverse engineering techniques and often has to be
performed first [6], [10], [12], [14], [16]. That means

before performing any high-level reverse engineering
analyses or architecture recovery activities, available
information in the source code has to be extracted and
aggregated in a fact base. Such a fact base forms the
foundation for further analysis tasks that are conducted
next, either manually or (semi)-automatically using tools.

A common technique for extracting facts from source
code is parsing. Basically, there exist several parsers for
each programming language. However, for framework-
based software systems fact extraction is more complex
due to the reason that frameworks transcend the pure
source code level with their own dialects and constructs.
For instance, framework-specific statements may appear
in source code comments, and configuration files are used
to define certain properties of software systems. Typically,
such information is removed by pre-processors or is
ignored by parsers. The result is a reduced fact base
lacking crucial information for further architectural
analysis tasks.

In this work we introduce a generic fact extraction
approach that allows the generation of a more usable and
complete fact base for framework-based software systems.
In addition to parsing that we use to extract the
programming language-related facts from source code, we
apply lexical pattern matching to extract the framework-
related facts. Each framework-related statement is
addressed by a pattern definition. The set of pattern
definitions is stored in a pattern repository. From there a
source code pattern matching tool retrieves all pattern
definitions concerning a framework, investigates source
code comments and configuration files, and produces facts
about matched statements. The results of both extraction
steps are then combined to an extended fact base that in
contrast to other reverse engineering approaches also
contains crucial framework-related information.

Our approach is open to various frameworks and only
needs the adoption of the pattern definitions for the lexical
analysis and the selection of an appropriate parser. By this
means a more detailed fact base can be obtained at
significantly lower costs than at adapting parsers to handle

Proceedings of the 10th Working Conference on Reverse Engineering (WCRE’03)
1095-1350/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: MAIN LIBRARY UNIVERSITY OF ZURICH. Downloaded on November 16, 2009 at 05:13 from IEEE Xplore. Restrictions apply.

framework dialects. We will demonstrate this with an
industrial software application that was built using the
Phoenix/Avalon [17] framework.

The remainder of the paper is structured as follows:
Section 2 provides the context for the case study by
answering what are Java frameworks and why are they
used. Our approach is described in detail in section 3. The
case study itself with its results and experiences is
described in section 4. Then section 5 provides an
overview about current extraction techniques. Section 6
summarizes our work and draws conclusions.

2. Frameworks

Frameworks provide a set of common and
prefabricated pieces of software that developers can use,
extend or customize to build software applications. In its
simplest form a framework is just a body of tried and
tested code as stated by Sheil in [18] that, however,
reduces development time, improves quality and enhances
maintainability. In [24], Valerio states that frameworks
provide reusable components, which implement
functionality and allow tailoring and customizing the
application to the customer needs.

As depicted by Figure 1, frameworks add generic
functionality to the product-specific source code. Based
on the configuration of the software system, the
developers can easily create several slightly different
systems just by adopting some entries within the
configuration. This kind of variation mechanism can be
used to address customer-specific requirements.

Embedding software applications into a framework
often can be implemented in different ways, basically,
including source code, but also comments and
configuration files.

Phoenix/Avalon [17] is an example for a framework
that is used to build large distributed software applications
in Java.

Figure 2: Example of an mx-operation doclet tag

2.1. The Phoenix/Avalon Framework

The Avalon project (see [2]) is an effort to create,
design, develop and maintain a common framework and
set of components for applications written using the Java
programming language. It allows components of varying
scale to be managed via a specific set of lifecycle
methods. Complete applications may be managed in a
server oriented container such as Phoenix.

Phoenix is a micro-kernel designed and implemented
on top of the Avalon framework. It provides a number of
facilities to manage the environment of server
applications. Such facilities include log management,
class loading, thread handling, security, and the java
management extensions (JMX).

Via JMX, it is possible to control and to manipulate an
instance of Phoenix at run-time. Such an instance is
composed of variables, components, applications and
blocks. The JMX functionality is generated automatically
during build-time by doclet tags. These tags are written as
Javadoc comments (with a “@phoenix:” prefix) directly
into the source code files. There are 4 major doclet tags:

• mx-topic: the mx-topic tag marks a class or
interface as eligible for management (i.e., it can
be accessed by JMX).

• mx-attribute: attributes can be read or written by
getter or setter methods, if they have the mx-
attributes tag.

• mx-operation: these are methods, which can be
invoked via JMX.

• mx-proxy: The mx-proxy tag is used to indicate
that a proxy class should be used to manage
some aspect(s) of an object. At runtime, the
management system will create an instance of the
proxy class passing in a reference to the managed
object in the constructor. Management calls are
then made on the proxy instead of the managed

Figure 1: Frameworks

/**
* Removes the application from
 * container
*
* @phoenix:mx-operation
*
* @param name the name of
* the application
*/
void removeApp(String name)
{

...
}

Proceedings of the 10th Working Conference on Reverse Engineering (WCRE’03)
1095-1350/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: MAIN LIBRARY UNIVERSITY OF ZURICH. Downloaded on November 16, 2009 at 05:13 from IEEE Xplore. Restrictions apply.

object.

Developers do not need to implement these tags by
hand, instead they just use the doclet tags. And how this
functionality gets used is up to the Phoenix/Avalon
framework. User interfaces are generated automatically
for the management of the interaction of the framework
and its application.

Another way of gaining benefits when using a
framework are complex, mostly XML-based configuration
files. For example, Phoenix/Avalon facilitates the
configuration of:

• Initial values for variables or class attributes.
• Default values for parameters in method

signatures.
• Communication mechanisms (e.g., threads,

sockets).
• Communication chains between components

within the framework (e.g., which components
provide data, which consume them)

• Data sources (e.g., databases, files)

• Component dependencies (which components
have be activated for performing a task)

Since the configuration of a framework defines
numerous properties of the software system, it is
important that the fact extraction process covers this kind
of information, too.

3. Framework-Based Fact Extraction

Basically, we combined the conventional parsing
process with lexical pattern matching to extract the
framework-related information from various information
sources such as source code, comments, and configuration
files. Figure 3 shows our generic extraction process in
IDEFØ [9] (Integrated Definition Language) depicting the
basic input sources processed and results produced by our
process. A detailed description of the five process steps is
given in the following subsections.

1

Preprocessing

2

Parsing

4

Pattern Matching

Source

Code

3

Pattern

Identification

Build-time

Information /

Configuration Files

Preprocessed

Source Code

Pattern

Definitions

Reverse Architect

Framework

Specific

Information

Parser

Lexical

Patern Matcher

Fact

Base

Programming

Language

Source Code

Language

5

Merge of the

Facts

Extracted Facts

By Parsing

Extracted Facts

By Pattern Matching

Fact Base

Format

Figure 3: The fact extraction approach

Proceedings of the 10th Working Conference on Reverse Engineering (WCRE’03)
1095-1350/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: MAIN LIBRARY UNIVERSITY OF ZURICH. Downloaded on November 16, 2009 at 05:13 from IEEE Xplore. Restrictions apply.

3.1. Step 1: Preprocessing

The source code of a software system often contains
preprocessor commands. These commands offer the
possibility to work with symbolic constants, macros and
conditions. Conditions may introduce certain variants of
the same software system varying in their behavior. This
means that the resulting fact bases for two variants may be
different, too. Therefore the approach analyzes only one
concrete instance of the source code, a preprocessed one.
The preprocessing step uses build-time information to find
out about macro names and conditions that create a
concrete instance. The parser and the lexical pattern
matcher will work only with the preprocessed code.

3.2. Step 2: Parsing

A parser is a program that receives input in the form of
source code instructions and breaks them up into parts (for
example, objects, methods, and attributes). This collected
data is filled into the fact base. Furthermore, dependencies
among the extracted entities are added to the fact base.
Depending on the source code language, an appropriate
parser is chosen. Typically, each programming language
has its own grammar that specifies the syntax. For this
reason, there is no all-purpose parser.

3.3. Step 3: Pattern identification

In order to address the framework-specific properties
of the software system, the reverse architect specifies the
criteria for the parts of the source code ignored by the
parser. The reverse architect has to turn his attention to
the unambiguous definition of each pattern. Otherwise the
results might get falsified. So-called false positives are
matches that fulfill the specified criterion, but they rather
should be left out.

The same prerequisites count for the definition of the
patterns addressing information defined in configuration
files. The reverse architect first has to identify the parts of
the framework configuration, which are of importance to
the system, and then he has to figure out the
characteristics of the found location. After that he can
formulate the specification of the pattern. All pattern
definitions are stored in a pattern repository for two
reasons:

• To allow the composition of complex patterns
based on less complex or trivial ones.

• To reuse already available pattern definitions in
the context of other frameworks or other systems
based on the same frameworks.

The reverse architect can reuse pattern definitions for
other software systems operating with the same
framework. The reason for this is that the mechanisms the
framework provides will not change when embedding
different applications into the same framework.
Furthermore, it may be possible to apply pattern
definitions when analyzing a system embedded into
another framework. For instance, the configuration files of
different frameworks can all be XML-based and use the
same keywords to define software systems properties.

3.4. Step 4: Pattern matching

Having the pattern descriptions, the analysis with the
lexical pattern matcher is performed in two cycles. The
first round addresses the preprocessed source code, while
the second one takes care of the configuration. The
extracted facts complete the data already contained in the
fact base.

Depending on the chosen lexical pattern matcher, this
step can be performed automatically by the tool. Inputs to
this step are on the one hand the pattern definitions, and
on the other hand the artifacts of the software system, the
source code and the build time information (i.e.,
configurations).

3.5. Step 5: Merge of the facts

After having the results of parsing and of pattern
matching, we have to merge both results in the final step
of our approach. For further analysis steps both results
have to be in the same format in the fact base as well as
the same syntax for the entries in the fact base has to be
used. For instance, if a method is extracted in the format
<class_name>.<method_name> by the parser then the
pattern matcher should produce the same format (i.e., use
the dot as class method delimiter). This conceptual merge
ensures that the source code facts extracted by one of the
techniques match each other in the fact base.

In the end, the resulting fact base consists of
information from different information sources but in the
same format. It can now serve as a basis for further
reverse engineering activities like architecture recovery.

4. Case Study

The case study dealt with an industrial software system
programmed in Java. The system is embedded in the
Phoenix/Avalon framework, and it can be easily adjusted
to new requirements via XML-based configuration files.
About 20 packages containing nearly 200 classes result in
approximately 30K lines of code. Since no preprocessing

Proceedings of the 10th Working Conference on Reverse Engineering (WCRE’03)
1095-1350/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: MAIN LIBRARY UNIVERSITY OF ZURICH. Downloaded on November 16, 2009 at 05:13 from IEEE Xplore. Restrictions apply.

commands were used in the source code, the first step of
the approach was left out.

We used the Rigi tool [23] through out the whole case
study to visualize the results we gained. For this reason,
we decided to build up the fact base as one single file in
the Rigi Standard Format (RSF). Some small Perl scripts
took over the conversion of the collected data into the
RSF format, as well as the merging of the different
information sources within the fact base.

4.1. Parsing

We used javagen, a tool based on GEN++ (see [5]) to
extract the facts directly from the source code files
provided by the industrial partner. The parser extracted
the following facts and relations:

• Classes: the application-specific classes
• Methods: the methods of the classes
• Attributes: these are class members, method

variables and static variables
• Inheritance information: the parent-child relation

for each class
• Method invocation: which method is invoked by

whom
• Attribute access information: which methods

access which attributes

When reviewing the results generated by the javagen
parser (we applied manual code inspections as described
in [6]), we discovered that parsing alone was not
sufficient. We had to take the configuration files into
account as well. For instance, the call graph was relatively
sparse and disjointed. Additionally, it showed some call
sequences, where the code entities were only connected

among themselves. The source code and the configuration
then exposed that the software system consisted of several
components, each running in its own thread. The
communication took place via queues, and the parser was
unable to extract this information (i.e., the providers and
consumers of the different queues).

Figure 5: Example of a configuration file

Figure 4 shows another example of a parsing problem.
A subset of the call graph is visualized with the Rigi tool,
extracted by the javagen parser. The boxes stand for
methods, and a line between two boxes means one
methods calls the other. The upper and the lower part of
the graph are not connected. Reviewing the code showed
that the two parts are related to each other. But the parser
missed this information. We then analyzed the specific
parts directly in the source code, in order to learn about
the reasons why the parser missed those parts. The parser
could not extract some calls to methods of a “private
final” class instance, if the method was called with a
preceding “this” (i.e., this.<class_instance>.<method>).
We assume the reason for this is a bug in the parser.

Furthermore, the parser was not able to detect that
certain source code entities are related to JMX
functionality. The relations to JMX are part of source
code comments, which are not analyzed by the parser.
However, since the application can be controlled and
manipulated directly by the user via JMX, it is crucial
information, which might have impact on further
architectural analysis activities.

4.2. Pattern identification

Pattern identification occurred in two places, the
source code and configuration files. Concerning source

Figure 4: Subset of the call graph

<queuedefaults>

<processSize>500</processSize>
</queuedefaults>

<queue name="q1">
 <maxSize>250</maxSize>
 <processSize>5</processSize>
 <sink name="name1"
 block="BLOCK_A"/>
 <source name="name1"
 block="BLOCK_B"/>
</queue>

<queue name="q2">
 ...
</queue>

Proceedings of the 10th Working Conference on Reverse Engineering (WCRE’03)
1095-1350/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: MAIN LIBRARY UNIVERSITY OF ZURICH. Downloaded on November 16, 2009 at 05:13 from IEEE Xplore. Restrictions apply.

code we were interested in Phoenix-related JMX doclet
tags that are contained in source code comments. In
particular we focused on the tags “mx-topic”, “mx-proxy”,
“mx-operation” and “mx-attribute”. For each such doclet
tag we can specify a corresponding source code pattern to
match it and output the framework-related information
accordingly.

Configuration files can contain a lot of information.
The software system holds several coarse-grained
components, which share data over several queues. The
configuration decides about how many queues are present
in the system, and which components operate as provider
and/or consumer to a specific queue. Since these
connectors characterize one of the important properties of
the system that is not extractable by a parser with
reasonable effort, we focused on the detection of these
queue connections.

Figure 5 shows an excerpt of such a configuration file.
Each queue is indicated with the keyword “<queue>”, the
connected components are indicated by the keyword
“<block>”. If “<block>” follows a “sink”, it provides data
to the queue, otherwise it consumes entries out of the
queue.

The base classes of each component, in the context of
the Avalon framework also called block, could be
extracted out of another part of the configuration. In this
way the queue could be mapped to certain source code
entities, and thus, the fact base was accumulated with this
type of information.

All pattern definitions were centered within a pattern
repository. This allows us to reuse the definitions in future
analysis activities.

4.3. Pattern matching

For the lexical pattern matching we used Revealer [18],
which is a lightweight source model extraction tool that
combines lexical with syntactic analysis capabilities. It is
based on regular expressions and provides basic pattern
elements that can be combined to simple and complex
(i.e., hierarchical and nested) pattern definitions in a tree-
like structure.

Besides the combination of pattern elements Revealer
pattern definitions support reuse of existing pattern
definitions and the specification of match and output
actions per pattern element. Basically, match actions are
used to further investigate the text of a matched pattern
element and output actions are used to output match
results in a proper data format such as for example RSF.

In the context of our case study we developed a set of
pattern definitions to extract Phoenix-related statements of
interest for our analysis tasks. We organized the pattern
definitions in a hierarchical way so that we were able to
increase reuse of pattern definitions and control the
extraction process. Figure 6 shows the basic structure of
our pattern definitions to match Phoenix JMX statements.

The matching process starts with the “comments”
pattern definition to match Java multi-line comments and
subsequent class or method signatures. Matched pattern
instances are sent to the “phoenix-mx” definition. This
pattern definition filters out non-Phoenix-related
comments and sends the Phoenix relevant comments to a
number of pattern definitions that are used to match the
Phoenix-related statements. Latter pattern definitions
output the match results about JMX controlled topics,
attributes, operations, and proxy objects in RSF format.

Figure 7 depicts the details about the Revealer pattern
definition we applied for matching Phoenix-related JMX
doclet tags. The pattern definition consists of five sections
each indicated by an XML comment:

1. Specifies basic pattern elements to match the
“@phoenix:” keyword that indicates the comment
as a Phoenix-related one containing JMX doclet
tags. Furthermore, it specifies a pattern element to
match the source code line succeeding the
comment that is either a class or a method
signature.

2. Links the single pattern elements specified before
to the root pattern definition.

3. References existing pattern definitions to be
reused. These definitions match the JMX doclet
tags of interest.

4. Specifies that each matched instance of the root
pattern definition is sent to the pattern definitions
specified in the reuse section.

5. Organizes the links that integrate the reused
pattern definitions into the root pattern definition.

For the investigation of the configuration files we
proceeded in the same way but with different pattern
definitions to extract queues related classes. We explored
the configuration file in order to describe the pattern in an
unambiguous way.

Basically, each class is running in a different thread,
the data flow between the classes happens via queues. A
class can consume data out of a queue, or it can provide Figure 6: Structure of Phoenix-related patterns

Proceedings of the 10th Working Conference on Reverse Engineering (WCRE’03)
1095-1350/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: MAIN LIBRARY UNIVERSITY OF ZURICH. Downloaded on November 16, 2009 at 05:13 from IEEE Xplore. Restrictions apply.

data for a queue. Every consumer checks regularly if there
is some new data to process in the queue. The data
producer and the data consumer classes were specified in
the configuration file of the software system. The
developer is able to change the data flow of the system
just by changing the correspondent entries in the
configuration file.

Figure 8 shows the results of the configuration file
analysis, a communication chain operating with queues.
The box in the top depicts the first data producer class that
receives its input data from an external information
source. It handles the incoming information and
dispatches the data to three other classes via a queue.
Then the data is processed. For instance, database entries
are adjusted, or the inputs are announced to the user.

By analyzing the configuration files of the software
system, the communication chain of the queues was
captured. By only working with the source code alone,
this important information about the software system
would have been lost.

Figure 9 shows the same subset of the call graph as
Figure 4, but this time including both, the extracted facts
by parsing and by lexical pattern matching. In this case,
there were two more connections extracted between the
two subsets by lexical pattern matching. The combination
of parsing and lexical pattern matching carried out that the
call graph now is more complete.

Figure 7: Revealer pattern definition to match Phoenix-related JMX doclet tags

<pattern root="main" dirs="." files=".*\.java">

<!-- 1. Phoenix management extension pattern -->
 <pe id="phoenix-mx" type="Definition"/>
 <pe id="phoenixSeq" type="Sequence"/>
 <pe id="phoenix" type="StringExp">
 <attr name="string">@phoenix:</attr>
 </pe>
 <pe id="phoenixDecl" type="RegExp">
 <attr name="regexp">[^\n]+</attr>
 </pe>

<!-- 2. Relations between pattern elements -->
 <rel from="main" to="phoenix-mx" type="contain"/>
 <rel from="phoenix-mx" to="phoenixSeq" type="contain"/>
 <rel from="phoenixSeq" to="phoenix" type="contain"/>
 <rel from="phoenix" to="phoenixDecl" type="next" start="0"/>

<!-- 3. Reused pattern definitions -->
 <pe id="mx-topic" type="Definition"
 reuse="mx-topic.xml#phoenixTopic"/>
 <pe id="mx-proxy" type="Definition"
 reuse="mx-proxy.xml#phoenixProxy"/>
 <pe id="mx-operation" type="Definition"

 reuse="mx-operation.xml#phoenixOperation"/>
 <pe id="mx-attribute" type="Definition"
 reuse="mx-attribute.xml#phoenixAttribute"/>

<!-- 4. Investigate phoenix declaration in more detail -->
 <pe id="innerPhoenixDecl" type="SendTo"/>

<!-- 5. Link pattern definitions to phoenixDecl element -->
 <rel from="phoenixDecl" to="innerPhoenixDecl" type="sendTo"/>
 <rel from="innerPhoenixDecl" to="mx-topic" type="contain"/>
 <rel from="mx-topic" to="mx-proxy" type="next"/>
 <rel from="mx-proxy" to="mx-operation" type="next"/>
 <rel from="mx-operation" to="mx-attribute" type="next"/>
</pattern>

Proceedings of the 10th Working Conference on Reverse Engineering (WCRE’03)
1095-1350/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: MAIN LIBRARY UNIVERSITY OF ZURICH. Downloaded on November 16, 2009 at 05:13 from IEEE Xplore. Restrictions apply.

4.4. Wrap up

To summarize the case study, we extracted facts out of
a framework-based software system to prepare further
analyses. We recognized that we missed crucial
information by just using a standard parser. For this
reason, we combined the parser with a lexical pattern
matcher in order to minimize the effort spent on fact
extraction. The specification of one single pattern took
averaged not more than 1 hour. This time includes the
isolation of a pattern out of the framework, the
comprehension of it as well as the writing down of the
description. The most part was spent to find out about
what elements formed the pattern. But, compared to a
parser enhancement, where the implementation of the
enhancements would cost a lot, the lexical analysis was
the more effective alternative in our case [20]. A problem
we encountered in the beginning was that we had different

formats for the extracted facts. This was easily resolved
by adapting the Perl scripts when merging the facts into
one common fact base. It is necessary that the extractors
produce the same format for the fact base (i.e., identifiers
of source code entities must have the same format).

Table 1: Doclet tags

Doclet Tag Number of Occurrences
mx-topic 20
mx-attribute 22
mx-operation 10
mx-proxy 2

Table 1 gives information about the numbers of doclet
tags that have been matched using the lexical pattern
matcher. Furthermore, we were able to detect all of the
specified queues responsible for the main data flow of the
software system.

The lexical analysis with the Revealer tool was able to
complement the results already gained by parsing. For
instance, the disjointed call graph was noticeable more
connected in the end. The fact base was filled up with data
fundamental for further architecture recovery activities.
Thus, we claim that architecture recovery of framework-
based software systems benefits from the introduced
generic extraction approach.

5. Related work

There are a variety of techniques and tools for the
extraction of facts about a software system. On the one
hand there are a lot of parsers that exists for the different
source code languages.

To parse Java, for instance, Korn et al. developed the
Chava parser as described in [11] as part of the CIAO
toolkit. Chava extracts information from Java code about
classes, methods, fields and their relationships into a
relational database. The database can be queried to learn
about the software system. In [3] Bowman et al. compare
different techniques to extract information from Java
software systems, namely parsing, disassembling and
profiling. The proposed extraction techniques by Korn or
Bowman differ from our approach because they are not
able to capture the framework-related facts. The fact base
in their approach will miss some important information
about the software system. There are a lot of other parsers
available, but they also have the problem that they can
handle only the standard language constructs and not the
framework-related properties of the software system under
investigation.

Lexical analysis can offer a solution to certain
extraction problems and reduce costs of generating a more
usable fact base. There are several lexical-based analysis
tools available that could be used for extraction of

Figure 9:Call graph subset after merging
results

Figure 8:Classes connected via queues

Proceedings of the 10th Working Conference on Reverse Engineering (WCRE’03)
1095-1350/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: MAIN LIBRARY UNIVERSITY OF ZURICH. Downloaded on November 16, 2009 at 05:13 from IEEE Xplore. Restrictions apply.

framework-related information. Well known examples are
lex [13], awk [1], or Murphy’s Lexical Source Model
Extraction (LSME) approach [15]. Lex and awk define
patterns as rules consisting of a regular expression and an
action. Matches are stored in specific variables that can be
accessed by actions to generate proper output data.
However, both tools lack of capability to express syntactic
constructs as used by programming languages and
framework dialects. LSME overcomes this problem and
allows for the specification of hierarchical related
expressions. One drawback of LSME, however, is that it
provides only two classes of tokens (single-character and
identifier) for specifying pattern definitions, which lowers
expressiveness.

Concerning fact extraction of framework-based
software systems Pinzger et al. in [19] introduced an
iterative and interactive extraction process that combines
component inspection techniques with source code
analysis to extract higher-level representations of COM+-
based software applications. Whereas their approach is
focused only on component frameworks and in particular
on Microsoft’s COM/COM+ our approach is more
generic and considers arbitrary frameworks.

Succi et al. describe in [22] an approach to extract
frameworks with the help of domain analysis. The main
difference between our and their approach is main goal.
We are building a more complete fact base, while they are
trying to build a reusable framework-based on existing
systems. We address with our approach already existing
third-party frameworks rather than the extraction of a
framework comprising reusable components.

6. Conclusion

Software development organizations apply frameworks
more and more to benefit from the advantages they offer.
Modern framework functionality and mechanisms are
often implemented in source code comments and
configuration files. Parsing usually misses such
information, so there is a need for action in reverse
engineering to address the framework-specific differences.
Instead of enhancing the implementation of the parser we
chose lexical pattern matching to solve the framework-
related problems in the extraction process. The
specification of the patterns used in the software system
has cost less effort than a possible enhancement of the
parser.

In this work we introduced a generic approach for the
fact extraction of framework-based software systems, and
we showed the usefulness of our approach with an
industrial case study. Further reverse engineering or
architecture recovery steps will benefit from the more
complete foundation gained through the combination of
parsing and lexical analysis.

Our generic fact extraction approach is open to any
parsers, any lexical pattern matcher and any framework.
This means as soon as there is a parser for a specific
source code language and we can specify pattern
definitions for the framework-related properties, our
approach will build a more complete fact base for the
software system under investigation. Both, results of
parser and lexical pattern matcher will be merged into one
common fact base, building the basis for further
architectural analysis.

Ongoing work will perform further case studies, where
other framework-based systems will be analyzed, and the
pattern definition repository will be extended through this
work.

In future, we will extend our catalogue of patterns, and
when the reverse architect is analyzing a new framework-
based software system, he can apply the already existing
patterns. We expect then savings in time and effort for the
pattern definition due to pattern reuse.

7. Acknowledgements

This work is partially funded by the European
Commission under EUREKA 2023/ITEA-ip00004 ’from
Concept to Application in system-Family Engineering
(CAFÉ)’.

8. References

[1] A. V. Aho, B. W. Kernighan, and P. Weinberger,
“Awk - a pattern scanning and processing language”,
Software Practice and Experience, 9(4):267-280, 1979

[2] The Apache Avalon Project, http://avalon.apache.org/

[3] I. T. Bowman, M. W. Godfrey, R. C. Holt,
“Extracting Source Models from Java Programs: Parse,
Disassemble, or Profile?”,
http://plg.uwaterloo.ca/~itbowman/papers/javasrcmodel.ht
ml

[4] E.J. Chikofsky, J.H. Cross, “Reverse Engineering and
Design Recovery: A Taxonomy”, IEEE Software, January
1990, pp. 13-17

[5] P. Devanbu,, “A language and front-end independent
source code analyzer”, Proceedings of ICSE 1992,
Melbourne, Australia

[6] M. E. Fagan, “Design and code inspections to reduce
errors in program development”, IBM Systems Journal,
vol. 15, no. 3, pp. 182-211, 1976

[7] G.Y. Guo, J.M. Atlee, R. Kazman,, “A Software
Architecture Reconstruction Method”, Proceedings of the
1st IFIP Working Conference on Software Architecture,
pages 15-33, San Antonio, Texas, USA, February 1999

Proceedings of the 10th Working Conference on Reverse Engineering (WCRE’03)
1095-1350/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: MAIN LIBRARY UNIVERSITY OF ZURICH. Downloaded on November 16, 2009 at 05:13 from IEEE Xplore. Restrictions apply.

[8] IEEE Std 1471-2000, “IEEE Recommended Practice
for Architectural Description of Software-Intensive
Systems”, IEEE-SA Standards Board, September 2000

[9] Integrated Definition Language,
http://www.idef.com/idef0.html

[10] R. Kazman, S.J. Carriere, ”View Extraction and View
Fusion in Architectural Understanding,”, Proceedings of
the Fifth International Conference on Software Reuse,
1998

[11] J. Korn, Y-F. Chen, E. Koutsofios, “Chava: Reverse
engineering and tracking of java applets”, Proceedings of
the 6th Working Conference on Reverse Engineering,
WCRE 1999, pages 314-325

[12] R. L. Krikhaar,, Reverse Architecting for Complex
Systems, Proceedings of the International Conference on
Software Maintenance, ICSM 1997

[13] M. E. Lesk,, “Lex - a lexical analyzer generator”,
Computing Science Technical Report 39, AT&T Bell
Laboratories, Murray Hill, New Jersey, October, 1975.

[14] A. von Mayrhauser, J. Wang, Q. Li, “Experience with
a Reverse Architecture Approach to Increase
Understanding,”, IEEE International Conference on
Software Maintenance (ICSM), 1999

[15] G. C. Murphy and D. Notkin, “Lightweight lexical
source model extraction”, ACM Transactions on Software
Engineering and Methodology, 5(3):262-292, July 1996.

[16] L. O’Brien, “Architecture Reconstruction to Support
a Product Line Effort”, Software Engineering Institue,
Technical Note CMU/SEI-2001-TN-015, July 2001

[17] The Phoenix Project,
http://avalon.apache.org/phoenix/index.html

[18] M. Pinzger, M. Fischer, H. Gall, and M. Jazayeri,
“Revealer: A Lexical Pattern Matcher for Architecture
Recovery“, Working Conference on Reverse Engineering,
pages 170-178, October 2002

[19] M. Pinzger, J. Oberleitner, and H. Gall, “Analyzing
and Understanding Architectural Characteristics of COM+
Components”, Proceedings of the 11th International
Workshop on Program Comprehension, May 2003, page
245-250

[20] H. Reubenstein, R. Piazza, and S. Roberts,
“Separating parsing and analysis in reverse engineering
tools”, Proceedings of the Working Conference on
Reverse Engineering, pages 117-125, 1993

[21] H. Sheil, “Frameworks save the day”, JavaWorld,
2000, September 29,
http://www.javaworld.com/javaworld/jw-09-2000/jw-
0929-ejbframe_p.html

[22] G. Succi, A. Valerio, T. Vernaza, M. Fenaroli, P.
Predonzani, “Framework extraction with domain
analysis”, ACM Computing Surveys 32,

[23] S.R. Tilley, K. Wong, M.-A.D. Storey, H.A. Müller,
“Programmable reverse engineering”, International
Journal of Software Engineering and Knowledge
Engineering, pages 501-520, December 1994

[24] A. Valerio, “Special issue on the effects of
frameworks and patterns on software reuse”, ACM
SIGAPP Applied Computing Review, September 1997,
Volume 5, Issue 2

Proceedings of the 10th Working Conference on Reverse Engineering (WCRE’03)
1095-1350/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: MAIN LIBRARY UNIVERSITY OF ZURICH. Downloaded on November 16, 2009 at 05:13 from IEEE Xplore. Restrictions apply.

