
Asset Recovery and Their Incorporation into Product Lines

Jens Knodel1, Isabel John1, Dharmalingam Ganesan1, Martin Pinzger2,
Fernando Usero3, Jose L. Arciniegas4, Claudio Riva5

1Fraunhofer Institute for Experimental
Software Engineering (IESE),

Kaiserslautern, Germany
{knodel, john, ganesan}@iese.fraunhofer.de

2Institute for Informatics,
University of Zurich,
Zurich, Switzerland
pinzger@ifi.unizh.ch

3Abengoa, Telvent,
Seville, Spain

fernando.usero@telvent.abe
ngoa.com

4Dep. de Ingeniería de
Sistemas Telemáticos,

Universidad Politécnica de
Madrid, Madrid, Spain

jlarci@dit.upm.es

5Software Architecture
Group, Nokia Research

Center, Helsinki, Finland
claudio.riva@nokia.at

Abstract

Software product lines aim in having a common
platform from which several similar products can be
derived. The elements of the platform are called assets
and they are managed in an asset base being part of the
product line infrastructure. Assets can include own
developments, open source or third-party software
modules, as well as design and project documents. In the
context of the European-wide project FAMILIES we
concentrated on techniques used to populate the asset
base by recovering assets from existing systems. We
present an approach on how to incorporate existing
assets into the product line infrastructure. Thereby we
explicitly distinguish the asset origins and the different
information sources available. The incorporation is a
quality-driven process that is backed up by a set of
reverse engineering techniques to evaluate the asset’s
internal quality. The quality assessment of an asset is the
critical measurement for industrial development
organizations in order to incorporate assets into their
product line infrastructure.

Keywords: architecture, asset incorporation, asset
recovery, product line engineering, reverse engineering.

1. Introduction

Software product lines are rarely created from scratch
on the green field but they rather emerge when a domain
becomes mature enough to sustain their long-term
investments. The typical pattern is to start with a small set
of products to quickly enter a new market. As soon as the
business proves to be successful new investments are
directed to consolidate the software assets. The various

products are migrated towards a flexible platform where
the assets are shared and new products can be derived
from. Product line engineering aims at sharing more than
just the development effort, they improve the quality,
reduce time-to-market, and increase the number of
derived products. Typically, product lines are built on top
of existing, related software systems whereas the common
artifacts are integrated in a common asset base, which is
managed in the product line infrastructure.

In order to keep the quality of the asset base high, the
product line architects have to decide whether or not an
existing asset becomes part of the asset base, in particular
to identify the needs for adaptation of the asset and to
reason about its suitability for the product line. The
derived decision either is reuse as-is, or reuse with
modification, recovery and adapt, or (re-)
implementation. Since high value assets can come from
different origins (i.e., legacy, in-house, 3rd party, open
source), the incorporation of these assets differs because
the asset origin dictates the available information to
evaluate the asset’s internal quality.

In this work, we present a generic asset incorporation
process to integrate existing assets into the asset base, and
relate a set of reverse engineering techniques to the
recovery of assets of different origins. The reverse
engineering techniques are classified based on the
information sources available for an asset. They aim at
migrating existing system assets into the product line
infrastructure or enriching the asset base to address new
requirements, or business goals.

The remainder of the paper is structured as follows:
Section 2 introduces the product line engineering
development process model of the FAMILIES project,
then section 3 presents the generic asset incorporation
approach. Section 4 continues with an asset classification,

Proceedings of the 12th Working Conference on Reverse Engineering (WCRE’05)
1095-1350/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: MAIN LIBRARY UNIVERSITY OF ZURICH. Downloaded on November 16, 2009 at 05:10 from IEEE Xplore. Restrictions apply.

which is the basis for the selection of reverse engineering
techniques presented in section 5. Section 6 presents
related work, while section 7 draws conclusions.

2. Product Line Engineering

Product line engineering introduces a systematic
development approach that explicitly supports a family of
similar systems. Such a family of products is designed to
take advantage of their common aspects and predicted
variabilities of a product line [1]. Figure 1 depicts the
FAMILIES reference model, an overview on how an
asset base supports the product line engineering activities.
Domain engineering activities have the goal to develop,
maintain and extend the infrastructure in form of generic
assets supporting the required flexibility. The domain
engineering activities are balanced with application
engineering activities, which actually build the concrete
products. Application engineering activities instantiate
core assets and build concrete products by resolving the
variabilities and adding product-specific functionality.
The resolution is made explicit, for instance by means of
decision models.

Thus, central and crucial for successful product line
engineering, are the core assets which contain the
components that have a high product line impact, that
provide key features, major variants and core
functionality. When evolving a product line, or in a
migration towards product line engineering, the
development organizations have the option to include
existing assets (which means the asset are not yet
prepared for the product line needs) instead of creating
assets themselves. The main decision criteria are the
quality of the existing assets and there suitability for the

product line. When assessing an existing asset, the
development organization has to decide for each asset on
what to do to populate the asset base:

As-is Reuse: Reuse the asset as it is, no or only very
small modifications to the asset are required. The
asset quality and suitability is in such a manner so
that it can be migrated to the product line
infrastructure with limited effort.
Reuse with modifications: Reuse the asset after it
has been modified substantially. The need and scope
of modifications and the activities to be carried out
(e.g., refactorings) are clear to the architects.
Recovery and adaptation: Recover an existing asset
with reverse engineering techniques. Learn about the
internal structure, the assets qualities and use the
information to improve or rebuild the asset and adapt
it so it fits into the product line infrastructure and
fulfills the acceptance criteria.
(Re-) Implementation: Development and realization
from scratch of a new asset and therefore rejecting
the existing asset. In case of a re-implementation
concepts coming from existing assets may contribute
to the implementation.

3. Asset Incorporation

We use the Software Process Engineering Meta-model
(SPEM, see [2]) as notation for the asset incorporation
process. The process to incorporate assets into the product
line infrastructure is mainly focused on domain
engineering activities, in particular domain analysis,
domain design, and domain implementation (see Figure
2).

Figure 1: Development Process Model for Product Lines

Proceedings of the 12th Working Conference on Reverse Engineering (WCRE’05)
1095-1350/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: MAIN LIBRARY UNIVERSITY OF ZURICH. Downloaded on November 16, 2009 at 05:10 from IEEE Xplore. Restrictions apply.

 In the activity of domain analysis, three essential sub
steps were identified:

Need Analysis: The results of need analysis are
generic asset descriptions formulating the needs the
asset has to fulfill in order to be appropriate for the
product line infrastructure. For this purpose, the
product line architects participate on requirement
engineering activities, such as requirements
elicitation, negotiation and so on. The need analysis
depends on the internal processes of the development
organization; it may range from formal requirement
engineering activities to agile modeling approaches.
The need analysis has to make clear why an
(existing) asset is needed.
Asset Discovery: The output of this activity is a set
of existing asset candidates that are considered to
fulfill the needs previously identified. This activity is
performed together by product line architects,
developers, and domain experts.
Asset Evaluation: The asset evaluation is considered
to be mandatory, because the generic asset to be
incorporated has to pass an evaluation where its
impact, cost, and quality is assessed. We propose to
use existing standards for such evaluations (e.g., ISO
14598 [3] or GQM (Goal-Question-Metric, see [4]),
however, if time constraints advice to not use such a
formal approach, other (internal) approaches have to
be used. At this stage, a decision may be made: if
there are no assets that pass all the evaluation criteria,
another need analysis should be carried out,
otherwise the evaluation boundary is reduced and the
best product fulfilling the evaluation is selected.

In the activity of domain design, there is an important
step to be performed:

Architectural Asset Incorporation: When including
existing assets in the asset base of the product line, it
is necessary to do this compliant to the product line
architecture. Driven by the product line architects, it
is one of the most critical steps because of the
interaction with other core assets, potential side
effects, and technical constraints. For instance, an
unexpected interaction may lead to the instability of
the architecture, which has to be avoided. Thus, as a
result of this process the architectural compliance has
to be ensured, in some cases the architecture will be
modified. In realization of such architectural
adaptations, impacts on the domain implementation
are very likely.

Finally, in the activity of domain implementation,
there is another step to be performed:

Technical Asset incorporation: This incorporation
differs from the architectural asset integration by
taking technical aspects of the incorporation into
account. Thus, interactions with other core assets are
analyzed at low level. Configuration, change and
traceability management activities become essential.
This activity may involve a wide range of technical
problems, but these types of problems mostly can be
solved. However, if there is an architectural
mismatch, the problem will be still present even if the
technical incorporation works well. Product line
developers and component engineers are responsible
of accomplishing this task.

Figure 3 presents the results of the major activities,
while Figure 4 depicts an overview of the process
activities and roles, and how the different activities
interact. Thereby all the roles, products and sub-steps are
include, so that it is possible to see the “whole picture”.

Figure 2: Domain Engineering Figure 3: Results per Major Activity

Need
Analysis

Selected
(Generic) Assets

Architectural

Incorporation

Product Line
Architecture

Results of Evaluation
(GQM, ISO 14598)

Technical Asset

Incorporation

Evaluation
Asset

Discovery
Asset

Asset

Set of COTS

Core Asset Components

Domain
Engineering

Domain
Design

Domain
Analysis

Domain
Implementation

Domain
Design

Architectural Asset
Incorporation

Domain

Implementation

Technical
Asset Incorporation

Domain

Analysis

Need
Analysis

Asset Evaluation Asse
Discovery (GQM,

ISO 14598)

Proceedings of the 12th Working Conference on Reverse Engineering (WCRE’05)
1095-1350/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: MAIN LIBRARY UNIVERSITY OF ZURICH. Downloaded on November 16, 2009 at 05:10 from IEEE Xplore. Restrictions apply.

4. Asset Classification

An existing asset has a distinct origin, describing the
development unit that produced the asset.

Legacy: The asset is developed, maintained, and
managed by the same development organization unit
that is responsible for developing the product line
infrastructure (i.e., the domain engineering).
In-house: The asset is developed, maintained, and
managed by another in-house development
organization unit that is not responsible for the
domain engineering. The unit responsible for domain
engineering has only limited influence on and access
to the other unit since the other unit has other
organizational objectives to achieve.
3rd party: Assets have a 3rd party origin when they
are developed by another organization not under
control of the product line development organization.
This means that the domain engineers are typically
not available but there might be a support by the
asset producers (e.g., hotlines). Typical examples for
3rd party assets are component of the shelf (COTS).
Open source: Open source communities can produce
assets that are of interest for a development
organization. The development organizations can
even decide to contribute to the open source
development themselves, but they do not have to.
Popular examples of open source assets that can be
incorporated into the asset base of a product line
infrastructure are, for instance the Eclipse platform
and its various plug-ins.
Combinations: Assets that evolved over a longer
time period can have combined origins from the
above list. This is especially true for large-scale

development organizations that buy and sell
development units, and for open source assets that
are adapted by a development organization to their
specific needs.

Table 1: Asset Information Sources

 Depending on the asset origin there are different
information sources from which assets are retrieved.
Table 1 lists these information sources. In this paper we
assume typical cases with development organizations
having a certain degree of maturity and ignoring the facts
that individual cases may differ and respective. The
availability of information sources is classified by the
asset origin, an “X” denotes that the information source is
available in all cases, a “+” in most cases, “?” means the
availability is unclear, while a “-“ means for the
unavailability of the information source.

5. Asset Recovery Techniques

Table 1 presented the different information sources
that are available for assets depending on their origin.
This classification enables the selection of appropriate
reverse engineering techniques in asset incorporation
process as described in section 2. We first present a
generic recovery process that spans over the individual
techniques, and then we present a selection of techniques
addressing the specific information sources (or a
combination of information sources). The reverse
engineering techniques are ordered by the type of
analyses (static, dynamic, document, and historic
analyses).

Asset Evaluation

Architectural Asset
Incorporation

Need Analysis

Technical Asset
Incorporation

Results of Evaluation
(GQM, ISO 14598)

Generic
Assets

Selected

Product Line
Architecture

Core Asset
Components

PL Architect

Product Line
Architects

Product Line
Developers

Set of COTS

Asset Discovery

Domain
Expert

Asset Evaluation

Architectural Asset
Incorporation

Need Analysis

Technical Asset
Incorporation

Results of Evaluation
(GQM, ISO 14598)

Generic
Assets

Selected

Product Line
Architecture

Core Asset
Components

PL Architect

Product Line
Architects

Product Line
Developers

Set of COTS

Asset Discovery

Domain
Expert

Figure 4: Asset Incorporation Phases and Roles

Information
Sources

Legacy In-
House

3rd

Party
Open
Source

Requirements
specification + ? - -

Architecture
description + ? - -

Design
documentation + ? - -

Interface
documentation ? ? X -

Source code X X - X

Test cases X + - +

User manual X X X X

Version history + ? - X

Bug reports ? ? - X

Asset expert + ? - -

Proceedings of the 12th Working Conference on Reverse Engineering (WCRE’05)
1095-1350/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: MAIN LIBRARY UNIVERSITY OF ZURICH. Downloaded on November 16, 2009 at 05:10 from IEEE Xplore. Restrictions apply.

5.1. Generic Recovery Process

The generic recovery process is based on the available
input data (see Table 1 for a list) and aims at recovering
the architecture or architectural aspects of the given assets
to evaluate the assets’ appropriateness for the product line
and to assess the assets’ qualities.

The input data comprise available documentation,
source code, configuration management information, and
system run-time traces. The input is complemented by
patterns and expert information. The first activity of the
recovery process (see Error! Reference source not
found.) is the information extraction from the input data.
This activity can be aided by experts [5], by obtaining
information from user documentation [6], using
techniques such as data gathering [7], lexical analysis [8]
or pattern matching [9]. The information extraction
objective is to obtain a conceptual model of the system.

Static-view extraction is the most common activity in
architecture recovery. Static views are obtained from
source code (source code entities, components, interfaces,
relationships among them and other relevant architectural
elements). Extracted views are complemented by
information from the conceptual model [5]. As a result of
this activity an architectural static view is obtained [10].

Dynamic-view extraction obtains the system behavior at
run-time by collecting traces from system-user or system-
environment interactions [10] resulting in architectural
dynamic views [8]. The preliminary architecture is made
up of static and dynamic views of the system.

In the abstraction activity, two essential steps are
conducted to refine the architecture: 1) reduction of the
complexity of the preliminary architecture, by increasing
the abstraction level and 2) filter of the preliminary
architecture to the topic of interest (e.g., communication,
security). The refined architecture comprises abstracted
views of the preliminary architecture used to isolate
certain architectural aspects.

In the presentation activity, the refined architecture is
polished by experts using reference patterns (see [5], [9],
[11], [12]). The resulting recovered architecture
represents the ”as-built” architecture that is a set of
architectural views regarding different architectural
aspects or parts.

The recovery process allows the product line architects
to reason about the existing assets. By focusing the
architectural views on the qualities identified in the
domain analysis and the suitability of asset to the product
line, the evaluation of the existing assets is facilitated.
Based on the available asset information sources, the
generic recovery process can be instantiated with concrete
reverse engineering techniques as presented in the next
section.

5.2. Reverse Engineering Techniques

5.2.1. Static Analyses

Static analyses extract information mainly from the
source code without executing it. The output of static
analyses range amongst others: static decomposition,
hierarchies, static metric values, responsibilities,
interfaces, naming conventions, dependencies, etc.

5.2.1.1. Architecture Evaluation

Static information can be used to refine a model
(idealized architecture) with the actual architecture. This
can be done to iteratively refine the expected mental
model and the documentation and to track the difference
and guide the architecture towards a to-be status.

This activity is supported by an architecture evaluation
tool (e.g., see the reflexion model technique [13] or the
SAVE tool [14]). In both techniques experts describe the
components and the relationships they expect among
them, then they map these components to code constructs
(e.g., files, classes, methods). The tool compares the
difference between the expected relationships and the
ones found in the system. The experts refine his model or
the mapping, or the reverse engineers adapt the fact

Source code, Cofiguration
management information

Available
documentation

PatternsExpert
information

Abstraction

Presentation

Recovered
Architecture

Refined
Architecture

Information
extraction

Conceptual
model

Static -view
extraction

Dynamic -view
extraction

System at
run time

Preliminary
architecture

Source code, Cofiguration
management information

Available
documentation

PatternsExpert
information

Abstraction

Presentation

Recovered
Architecture

Refined
Architecture

Information
extraction

Conceptual
model

Static -view
extraction

Dynamic -view
extraction

System at
run time

Preliminary
architecture

Figure 5: Recovery Process

Proceedings of the 12th Working Conference on Reverse Engineering (WCRE’05)
1095-1350/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: MAIN LIBRARY UNIVERSITY OF ZURICH. Downloaded on November 16, 2009 at 05:10 from IEEE Xplore. Restrictions apply.

extraction process. Figure 6 depicts an example for such
an architecture evaluation. The bold, red arrows indicate
the divergences between the mental model and the
dependencies extracted from the source code.

Figure 6: Example Architecture Evaluation

5.2.1.2. Interface Analysis

Documented interfaces are one of the prerequisites for
effective reuse of components since the developers have
to know which functionality is provided by a component
and how to access the functionality implemented.
Components in the context of interface analysis are
collections of source code entities (e.g., files, logically
related routines, groups of classes or packages, or
subsystems). Applications of the interface analysis
technique work with the following motivations:

Reduction of the complexity of given components
with respect to the number of offered routines by
minimizing the provided interfaces to only the
actually used interfaces.
Documentation of source code spots in usage lists
where to change accesses to a component when
refactoring the software system towards component-
based development.
Extension of architectural descriptions (e.g., the
module and/or the code view) by explicit notation of
the provided functionality of a component.
Refactoring of a group of entities towards an
encapsulated component with explicit boundaries.

The interface analysis reveals the connections of the
subject component to the rest of the software system, or if
it should become a real component in future, it documents
the spots to be changed and how the future component is
embodied in the system (see [15] for details).

5.2.1.3. Technique: Conformance and Recovery
Processes

Conformance and recovery are two processes used in
evolutionary software development. They are used as
mechanisms for quick feedback, to increase code
reusability, and to increase quality. In traditional systems

they enable reuse of implemented assets and evaluation of
them against standards. Product line conformance and
recovery processes have an additional value; both can be
used to locate commonalities, variations and variation
points. The orchestration of these processes is presented
in Figure 7. The processes proposed focus on quality
aspects [3] (e.g., performance, security, usability).

The conformance process needs previous phases
where objectives and focus are defined. Both take input
stakeholder requests and the quality of service as relevant.
Then, two parallel activities should be achieved. The
system architecture is obtained from the implementation
domain, using the recovery process (recovered
architecture). Conformance with respect to a particular
quality is complex to solve between architectures, so a
filtering process is required in order to obtain the
Significant Implemented Assets (SIA); the filtering
process only selects assets related to a particular quality.
On the other hand, similar processes should be achieved
from the standard domain. The standard usually has a rich
documentation, therefore an exemplification process
deducts the generic architecture (standard architecture), if
it is not defined in the standard (partial or totally). And
finally, in the same way as in the implementation domain,
the Significant Standard Assets (SSA) are extracted using
a filtering process.

Figure 7: Conformance Process

Conformance process compares and identifies
differences and coincidences, a number of methods and
techniques could be used, such as: Ontology-based
algorithms that search for common artifacts in a
architecture [16], Numerical and graph-based algorithms
to reduce complexity, Use cases to isolate parts of a
system, Comparison of the abstract syntax tree of similar
systems, Measurement of similarities using metrics

Significant assets for a specific Quality

Standard domainImplementation domain

Recovered architecture
view for specific quality

Recovered architecture

Asset
AssetRecovered

Asset

Asset
SIA

Standard architecture
view for a specific quality

Standard architecture

Asset
Asset

Standard

Asset
SSA

Filtration

Conformance

SIA-SSA SSA-SIASIA SSAU

Implemented system
(open

Standard

Recovery Exemplification

Filtration

Proceedings of the 12th Working Conference on Reverse Engineering (WCRE’05)
1095-1350/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: MAIN LIBRARY UNIVERSITY OF ZURICH. Downloaded on November 16, 2009 at 05:10 from IEEE Xplore. Restrictions apply.

(internal or external as defined to measure quality
characteristics [17]) and so on. Three relevant results are
obtained:

Proposal for enhancement of the SIA (SSA-SIA): as
a product of the difference between the SSA and
SIA, new requirements are identified and some
deficiencies have been located in the current
implemented architecture.
Proposal for a standard (SIA-SSA): as a product of
the difference between the SIA and SSA, some
deficiencies have been located in the reference
standard; it is frequent when technology goes beyond
the standards.
Common and variation point identification (SIA
SSA): The common assets are identified and
variation points located, it may be the main result of
an implementation accreditation with respect to a
standard.

5.2.2. Dynamic Analyses

Dynamic analyses extract information by
instrumenting and executing source code. The output of
dynamic analyses range amongst others: runtime traces,
runtime behavior, execution and runtime metrics, source
code element interaction, etc.

5.2.2.1. Technique: Dynamic Traces

The main aim of using dynamic or run-time traces is to
recover sequence diagram. Sequence diagrams show the
actually interaction among software components together
with the messages they exchange over a period of time. A
sequence diagram captures interaction among entities (for
e.g., classes, components). In addition, it captures thread
interaction. Sequence diagrams are a good source for
understanding how a particular scenario or use case
works when a program runs.

Such information for instance can be used to analyze
the performance. Knowing how many objects are created
when a program runs and the life-time of each object

helps us to build a run-time model. For non-OOP
implemented software components, dynamic traces can be
collected using instrumentation techniques. For OOP
components byte code instrumentation is an alternative.
One of the challenges in recovering sequence diagrams is
level of abstraction. A running program contains low-
level information like function/method call, field/variable
referenced by a function/method, thread starting another
threads. This low-level information is difficult to analyze
manually and deriving useful knowledge from it needs
abstraction.

To build abstraction into the run-time traces, we make
use of static information (e.g., classes, packages, files,
folders, components, subsystems or layers) and use-cases
(to find a high-level meaning for the interaction, e.g.,
provided by user manuals). Once an abstracted sequence
diagram is constructed, this can be used to check
consistency between specified sequence diagram and the
running system.

5.2.3. Document Analyses

Document analyses extract information by analyzing
the documentation of a system. The output of document
analyses range amongst others: use cases, features, use
case diagrams, description of functionality,
commonalities and variabilities between products,
conceptual models, domain wording, etc.

5.2.3.1. Technique: CaVE

CaVE (Commonality and Variability Extraction) is an
approach enhanced with techniques for structured and
controlled integration of user documentation of existing
systems into the product line. Until now, the information
needed to build a product line model is elicited
interactively with high expert involvement. As domain
experts have a high workload and are often unavailable
this high expert involvement is a risk for the successful
introduction of a product line engineering approach in an
organization. The CaVE approach overcomes the
following problems:

Domain experts have a high workload and are hardly
available so they need to be relieved by eliciting of
product line related information from documents.
There is a lack of guidance on how to integrate
legacy information found in documents into product
line models.
There is no variability management approach that is
general enough to integrate all kinds of artifacts into
a product line model.
Single system elicitation methods cannot be taken as
they are because multiple documentations have to be
compared. Commonalities and variabilities have to

Figure 8: Example Dynamic Traces
Figure 9: Example Dynamic Traces

Proceedings of the 12th Working Conference on Reverse Engineering (WCRE’05)
1095-1350/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: MAIN LIBRARY UNIVERSITY OF ZURICH. Downloaded on November 16, 2009 at 05:10 from IEEE Xplore. Restrictions apply.

be elicited and additional concepts (e.g. abstractions,
decisions) are needed.

With CaVE, common and variable features, Use Case
elements, decisions and requirements can be elicited. The
approach consists of the following phases:

Preparation: The product line engineer prepares the
user documentation by selecting extraction patterns.
Analysis: The product line engineer analyses the
documents with the selected extraction pattern and
marks the elements found.
Selection, and change: The selected elements are put
together to partial product line artifacts and presented
to the expert who can change elements and add
additional information

The first two steps of the approach can be performed
by persons who just have a slight domain understanding,
they do not have to be domain experts. The third step
requires involvement of domain experts (see [6] for
details.

5.2.4. Historic Analyses

Historic analyses extract information by analyzing the
configuration management data of a system. The output
of historic analyses comprises change dependencies and
bug dependencies. They indicate coupling dependencies
used to assess the quality of assets and dependencies
between them.

5.2.4.1. Technique: Change Coupling Analysis

For the extraction of change and bug dependencies we
retrieve modification reports from versions systems (e.g.,
CVS) and problem (bug) reports from bug tracking
systems (e.g., Bugzilla) and store them in the Release
History Database (RHDB) [19]. Both reports refer to a
product (i.e., asset) that is managed by these systems.

Change couplings are computed based on modification
reports. A change coupling between two assets is
established whenever changes to the two assets have been

committed to the repository by an author in the same
transaction. A bug dependency refers to change couplings
with respect to a problem that has been fixed. According
to priority and severity different categories of problems
are considered. Problems with high priority (i.e., P1) and
severity “critical” or “major” have a deeper impact on the
strength of change couplings than have problems with
low priority (i.e., P5) and severity “minor”. The strength
of change couplings is computed for a specified
observation period, for instance from the last release to
the recent release.

The number of change and bug dependencies and their
strength is input to the asset incorporation process, in
particular, to the architectural as well as technical asset
incorporation processes. Change couplings denote
interactions between assets on the architectural level as
well as technical level. For instance, on the technical level
we determine change couplings between source files. By
abstracting these coupling to the level of architecture,
such as between features or software modules, we
determine change couplings on the architectural level
[20], [21]. On both levels we can use the number and
strength of change couplings to assess the feasibility and
effort to incorporate an asset into the asset base. The
technique can be applied to the different kinds of assets
that are managed by configuration management systems
including the source code as well as the different project
documents.

Table 2: Artifacts Required by Reverse Engineering
Technique

5.3. Reverse Engineering Technique and Artifact

Table 2 revisits the different information sources of
Table 1 and relates them to the techniques presented in

Figure 10: Example CaVE

Information Sources 5.2.
1.1

5.2.
1.2

5.2.
1.3

5.2.
2.1

5.2.
3.1

5.2.
4.1

Requirements
specification (X) (X)

Architecture description X (X) (X)

Design documentation (X) (X) (X)

Interface documentation (X)

Source code X X X X

Test cases X

User manual (X) X

Version history X

Bug reports X

Asset expert (X) (X) (X) (X) (X) (X)

Proceedings of the 12th Working Conference on Reverse Engineering (WCRE’05)
1095-1350/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: MAIN LIBRARY UNIVERSITY OF ZURICH. Downloaded on November 16, 2009 at 05:10 from IEEE Xplore. Restrictions apply.

this section. The column header points to the section
number, where the technique is described. An X denotes
that this artifact is required, while an (X) denotes that the
technique would benefit from the availability of the
artifact (but it is not mandatory). When the product line
architects start the evaluation of an existing asset, they
collect the available information, and plan the reverse
engineering activities by selecting specific techniques.
The asset expert is indicated as very beneficial for all
techniques.

6. Related Work

Related work concerns in general architecture
recovery and feature location techniques used to extract
and determine assets for building an asset base.

Regarding architecture recovery a number of tools
have been developed that can be used to extract higher-
level views on the implementation of software systems.
Tools are, for example Bookshelf [24], Dali [25], or Rigi
[23]. They follow the Extract-Abstract-View Metaphor
described in [22]. Most of these tools differ in the
underlying fact extraction technique, in the methods and
details of fact representation, and in the analysis and
visualization techniques. In [22] Ebert et al. introduced
GUPRO which is an integrated workbench that supports
program understanding of heterogeneous systems on
arbitrary levels of granularity.

The SAR method described by Krikhaar [5]
concentrates on creating higher-level views on the
architecture. The approach is based on Relational
Partition Algebra [12] and defines a process for selecting
the information sources from which higher-level views
are abstracted. Riva proposed a view-based architecture
reconstruction approach named NIMETA [26]. Similar to
Krikhaar the approach is based on relational algebra.
NIMETA emphasizes the scrupulous selection of
architectural concepts and architecturally significant
views that are reflecting the stakeholders’ interests.

Regarding feature location a number of approaches
exist. Concerning the feature location in source code
Wilde et al. presented pioneering work. They introduced
the Software Reconnaissance approach that based on the
execution of test cases determines features [27].
Eisenbarth et al. based their approach on the Software
Reconnaissance technique and extended it by using the
concept analysis technique for determining features [18].
A similar approach has been presented by Wong et al.
They analyze execution slices of test cases to determine
the source code units that implement a feature [28]. These
techniques can be integrated into our asset recovery and
incorporation process.

7. Conclusion

Incorporation of assets into the asset base of a product
line infrastructure has to ensure that the quality of the
assets to be integrated suits the needs of the product line.
Therefore, it is crucial to have a well-defined defined
integration process and a set of reverse engineering
techniques to analyze the assets and to assess its internal
quality.

In this work, we present a quality-drive asset
incorporation process to integrate existing assets into the
asset base, and relate a set of reverse engineering
techniques to the recovery of assets of different origins.
According to the information sources we present reverse
engineering techniques to recover assets from existing
information sources, such as static and dynamic,
document, and historic analysis.

Our asset incorporation process evaluates recovered
assets with respect to their need and quality. Quality is
crucial because one asset may break the product line
infrastructure. We steer the incorporation process by
evaluations (based on ISO or on GQM) to ensure the
required qualities of the incorporated assets. This process
assures the incorporation of those assets that are needed
and that fulfill the quality criteria whereas the other
recovered assets are filtered out.

Future work includes refinement of the reverse
engineering techniques and development of new
techniques addressing information sources not yet dealt
with (e.g., test cases). Another topic of ongoing work is to
formulate guidelines that help the product line architects
to monitor the asset incorporation process, and to develop
customized GQM trees, which steer the analysis activities
for distinct domains (assuming that different domains will
differ in the required qualities as well).

8. Acknowledgements

We are grateful to the national ministries of Austria,
Germany, Finland, and Spain for partially funding our
work under EUREKA 2023/ITEA-ip00009 ’FAct based
Maturity through Institutionalization Lessons-learned an
Involved Exploitation of System-family engineering’
(FAMILIES).

Jose L. Arciniegas is a visiting scientist from
Universidad del Cauca, Colombia. His work has been
partially developed in the project TRECOM, granted by
the Spanish Ministry of Science and Technology under
reference TIC2002-04123-C03-01.

9. References

[1] Weiss, David M.; Lai, Chi Tau Robert: Software
Product-Line Engineering. A Family-Based

Proceedings of the 12th Working Conference on Reverse Engineering (WCRE’05)
1095-1350/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: MAIN LIBRARY UNIVERSITY OF ZURICH. Downloaded on November 16, 2009 at 05:10 from IEEE Xplore. Restrictions apply.

Software Development Process, Addison-Wesley,
1999.

[2] Object Management Group (OMG): Software
Process Engineering Metamodel Specification
version 1.1, 2002.

[3] ISO 9126. Software product evaluation: Quality
characteristics and guidelines for their use. ISO/IEC
9126. ISO, Geneva, Switzerland, 1991.

[4] Basili, V. R., and D. M. Weiss: A Methodology for
Collecting Valid Software Engineering Data, IEEE
Transactions on Software Engineering, Vol. SE-10,
pp. 728–738, 1984.

[5] Krikhaar, R. Software Architecture Reconstruction.
Ph.D. Thesis, University of Amsterdam, June 1999.

[6] John, I Dörr, J. Elicitation of Requirements from
User Documentation, Ninth International Workshop
on Requirements Engineering: Foundation for
Software Quality. Refsq '03. Klagenfurt/Velden,
Austria, June 2003.

[7] Boucetta, S. Hadjami Ben Ghezala, H and Kamoun,
F. Architectural Recovery and Evolution of Large
Legacy Systems. Proceedings of the International
Workshop on the Principles of Software Evolution.
Japan. July, 1999.

[8] Kazman, R. O’Brien, L.and Verhoef, C,
Architecture Reconstruction Guidelines, 2nd
Edition (CMU/SEI-2002-TR-034), 2002.

[9] Sartipi, K. and Kontogiannis, K. A Graph Pattern
Matching Approach to Software Architecture
Recovery, Proceedings of the IEEE International
Conference on Software Maintenance, Florence,
Italy, pp. 408-419, November, 2001.

[10] Ahmed E. Hassan and Richard C. Holt, Architecture
Recovery of Web Applications. In Proceedings of
the International Conference on Software
Engineering, Orlando, Florida, May 2002.

[11] Guo, G. Atlee, J. and Kazman, R. A Software
Architecture Reconstruction Method. Proceedings
of the First Working IFIP Conference on Software
Architecture, San Antonio, Texas, pp. 225-243,
February, 1999.

[12] Feijs, L, Krikhaar, R., and Van Ommering, R., A
Relational Approach to Support Software
Architecture Analysis, Software Practice and
Experience, Vol 28(4), pp. 371-400, April 1998.

[13] G. C. Murphy, D. Notkin, K. Sullivan: Software
Reflexion Models: Bridging the Gap between
Source and High-level Models, ACM Software
Engineering Notes, 1995.

[14] P. Miodonski, T. Forster, J. Knodel, M. Lindvall, D.
Muthig: Evaluation of Software Architectures with
Eclipse, Kaiserslautern, (IESE-Report 107.04/E),
2004.

[15] J. Bayer et al: Definition of Reference Architectures
based on Existing Systems, (IESE-Report
034.04/E), 2004.

[16] OMG. Ontology definition Metamodel. Request for
proposal. August 18. 2003.

[17] ISO/IEC JTC1/SC7/WG6 N461. Information
Technology – Software product quality –Part 1:
Quality Model, Part 2: External Metrics, Part 3:
Internal Metrics, Part 4: Quality In Use Metrics.
ISO/IEC 9126, November 1999.

[18] Eisenbarth, T., Koschke, R., and Simon, D.:
Locating Features in Source Code, IEEE
Transactions on Software Engineering, March 2003.

[19] Michael Fischer, Martin Pinzger, and Harald Gall.
Populating a Release History Database from
Version Control and Bug Tracking Systems.
International Conference on Software Maintenance,
pp. 23–32, Netherlands, September 2003.

[20] Michael Fischer, Martin Pinzger, and Harald Gall.
Analyzing and Relating Bug Report Data for
Feature Tracking. In Proceedings of the 10th
Working Conference on Reverse Engineering, pp.
90–99, Victoria, B.C., Canada, November 2003.

[21] Martin Pinzger, Michael Fischer, and Harald Gall.
Towards an Integrated View on Architecture and its
Evolution. Electronic Notes in Theoretical
Computer Science, 127(3):183–196, April 2005.

[22] Jürgen Ebert, Bernt Kullbach, Volker Riediger, and
Andreas Winter. Gupro - Generic Understanding of
Programs. Electronic Notes in Theoretical
Computer Science, 72(2):59–68, 2002.

[23] Kenny Wong. The Rigi User’s Manual — Version
5.4.4. University of Victoria, 1998.

[24] Patrick Finnigan, Richard C. Holt, Ivan Kallas,
Scott Kerr, Kostas Kontogiannis, Hausi A. Müller,
John Mylopoulos, Stephen G. Perelgut, Martin
Stanley, and Kenny Wong. The software bookshelf.
IBM Systems Journal, 36(4), November 1997.

[25] Rick Kazman and S. Jeromy Carriere. Playing
detective: Reconstructing software architecture from
available evidence. Automated Software
Engineering, 6(2):107–138, 1999.

[26] Claudio Riva. View-Based Software Architecture
Reconstruction. Ph.D. thesis, Vienna University of
Technology, 2004.

[27] N. Wilde and M.C. Scully, Software
Reconnaissance: Mapping Program Features to
Code, Journal of Software Maintenance: Research
and Practice. vol. 7, pp. 49-62, Jan. 1995.

[28] W.E. Wong, S.S. Gokhale, J.R. Horgan, and K.S.
Trivedi, Locating Program Features Using
Execution Slices, In Proceedings of the IEEE Symp.
on Application-Specific Systems and Software
Engeering and Technology, pp. 194-203, Mar.
1999.

Proceedings of the 12th Working Conference on Reverse Engineering (WCRE’05)
1095-1350/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: MAIN LIBRARY UNIVERSITY OF ZURICH. Downloaded on November 16, 2009 at 05:10 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

