
A Method for the joint Analysis of numerical and textual

IT-System Data to predict critical System States

Patrick Kubiak1[0000-0002-4312-8499], Stefan Rass2[0000-0003-2821-2489], Martin Pinzger2[0000-0002-

5536-3859] and Stephan Schneider3[0000-0003-1810-8813]

1 Volkswagen Financial Services AG, Brunswick, Germany
2 Alpen-Adria-University, Klagenfurt, Austria

3 University of Applied Sciences Kiel, Kiel, Germany

patrick.kubiak@vwfs.com, {stefan.rass, martin.pinzger}@aau.at,

stephan.schneider@fh-kiel.de

Abstract. We present a method for the joint analysis of textual and numerical

IT-system data usable to predict possibly critical system states. Towards a com-

parative discussion culminating in a justified model and method choice, we ap-

ply logistic regression, random forest and neural networks to the prediction of

critical system states. Our models consume a set of different monitoring per-

formance metrics and log file events. To ease the analysis of IT-systems, our

models judge the future system state using one binary outcome variable for the

system state’s criticality as “alarm” or “no alarm”. Moreover, we use feature

importance measures to give IT-operators guidance on which system parame-

ters, i.e., features, to consider primarily when responding to an alarm. We eval-

uate our models using different configurations, including (among others) the

demanded lead time window for incident response, and a set of common per-

formance measures. This paper is an extension to previous work that adds de-

tails on how to jointly process textual and numerical data.

Keywords: Machine Learning, IT-Operations, AI Ops

1 Introduction

One of the major challenges for IT-operations departments is to manage a complex

and heterogeneous IT-infrastructure landscape. This situation results in a heterogene-

ous toolbox of monitoring systems as well as a large number of different IT-system

parameters that IT-operators have to monitor. Commonly, each monitoring system

has its own set of rules to notify IT-operators in any case a system state turns from

regular operation into a critical state. In some instances, such rules come as isolated

thresholds for each IT-system parameter of interest, whose excess or undercut gener-

ates notifications, i.e., alarms. Furthermore, IT-systems store necessary information to

judge the system state in different data sources having a non-compatible kind of for-

mat, i.e., numerical monitoring data and textual log file data. In this paper, we present

a novel method to combine data from these two major data sources of IT-operations

departments usable for machine learning (ML) models. We aim to use such a com-

mailto:patrick.kubiak@vwfs.com
mailto:martin.pinzger%7d@aau.at

2

bined data set to i) judge the system state using one binary outcome instead of a set of

different isolated alarms; ii) predict incoming critical system states using an experi-

mental setup for data acquisition and iii) analyze the influence of monitoring metrics

and log file events on the system state using a single ML model. We give a detailed

procedure to transform textual log file data into a suitable format to be usable with

numeric monitoring data for a joint analysis and predictive inference. Furthermore,

we apply a set of classification methods, i.e., logistic regression (LogReg), random

forest (RF) and neural networks (NN), on this data set to achieve i) and ii), and for a

comparative study of the three methods. We evaluate the prediction quality of our

models using a set of common diagnostic metrics. For iii), we use RF importance

measures, i.e., mean decrease in accuracy (MDA) and mean decrease in Gini (MDG),

to explain the reasons why each model did or did not raise an alarm. Hence, we use

feature importance measures as a tool to analyze the influence of each monitoring

metric and log file event as triggers for (critical) changes of the system state.

This paper will answer following research questions (RQ):

1. RQ1: How can we join numeric and textual IT-system data to be usable in a single

ML model?

2. RQ2: How accurate are different models to predict the system state in the form of

a binary classification problem?

3. RQ3: Which features do have the biggest influence on the system state and can be

considered as most promising triggers, i.e., root causes, for changes?

We start with a related work section to demarcate this paper from previous work. In

section 3, we present a short description of our experimental setup that is similar to

the configuration of our previous paper (Kubiak et al., 2020). The focus of this paper

is a detailed description of the data preparation process, which was necessary to “uni-

fy” data of heterogeneous types (textual and numeric) and out of multiple sources, as

presented in section 4. We extended our experiments using other ML methods as

presented in section 5. Furthermore, we used a diverse set of evaluation metrics and

changed the approach to evaluate the relevance of features on the binary outcome that

classifies the overall system state as normal or critical. Previous work (Kubiak et al.,

2020) suggested a relatively simple importance measure by taking a relative count of

how often a feature appeared as significant in a model (a decision tree), relative to all

cases (technically, a conditional probability for the feature to appear or not appear in

the prediction model). This work adopts the more popular concept of importance

measures of the relative count of appearance (conditional probability of feature signif-

icance) is agnostic of the level of appearance in the tree. This extended work allows

us a more detailed evaluation of our models and more informative results as presented

in section 6. We close our work with new findings related to threats of validity in

section 7 and a conclusion in section 8.

3

2 Related Work

The IT-operations domain is a predestined field for ML researchers since it generates

a huge amount of data, which often exceeds human analysis capabilities. Most ML

models in the literature focus either on numerical or textual data and leave possible

advantages of a joint analysis unexplored. However, the literature offers a vast lot

different papers related to this domain, which enable practitioners to maximize the

availability of IT-systems due to automation, issue prevention, easier problem deter-

mination and faster troubleshooting (Kubiak/Rass, 2018). We can achieve such ad-

vancements using processual recommendations (Hochstein et al., 2005), (Potgieter et

al., 2005), e.g., ITIL, or ML methods that accelerate the understanding of data and

improve its potential as valuable resource for organizations. We consider symptoms

monitoring and detected error reporting as main monitoring mechanisms for our

work. Symptoms refer to as side-effects in case of abnormal behavior of IT-systems

while errors occur when things go wrong and the system state differs to the expected

system state (Salfner et al., 2010). Errors are undetected until monitoring systems or

system users observe any differences in the system state. Symptom monitoring is the

standard mechanism to permanently check if any threshold violations of runtime met-

rics, e.g., CPU utilization, occurred (Salfner et al., 2010). Detected errors are typically

protocolled in log files that are an extensive collection of all system events. On moni-

toring data, different researchers applied, among others, regression methods (An-

drzejak/Silva, 2007), (Cheng et al., 2005) or classification methods (Murray et al.,

2003), (Kiciman/Fox, 2005), (Shen et al., 2018). Often, we prefer to transform log file

data into sequences of log file events beforehand. Thus, corresponding ML methods

consume event-driven input data and allow us to apply event pattern mining (Zeng et

al., 2014), (Kiran et al., 2015), (Kiyota et al., 2017), (Zöller et al., 2017) or event

summarization methods (Kiernan/Terzi, 2009), (Jiang et al., 2011). Among others,

one approach discovers whether there is correlation between the system load intensi-

ty, recorded by monitoring agents, and the occurrence of computational intensive log

file events (Luo et al., 2014). Nevertheless, the analysis of both data sources in a

complementary manner has not be exhaustively explored yet. We recommend two

surveys (Salfner et al., 2010), (Li et al., 2017) to interested readers to get a more com-

prehensive selection of available ML methods in the IT-operations domain. Further-

more, we proposed a method selection guide for practitioners in dependency of the

type of data and the application in an earlier work (Kubiak/Rass, 2018).

3 Experimental Setup for Data Acquisition

For data acquisition, we used an experimental concept for an automated load and

performance test scenario to simulate real-life user interactivities on a small-scale

digital twin of a real-life IT-system environment (Kubiak et al., 2020). This IT-system

resembles a productive system without being one and allows us to fully control and

manipulate the systems behavior as requested. Since the IT-system is a training envi-

ronment and mainly used for occasional (and non-periodically happening) user train-

4

ings, there was no continuous system load on it. Therefore, we developed test scripts

to emulate regular system load, such as client transactions sent to the system, and load

peaks. Here, we used VuGen (link) and scheduled the test scripts using LoadRunner

Enterprise (link), which both are software products of Micro Focus. This step was

necessary to generate the required lot of anomalies in short time, which we would

otherwise have to collect over long periods (possibly months to years) on a productive

system. The major advantage of this setup is to produce any sort of behavior to gener-

ate data for model training that satisfies our requirements best, e.g., a balanced data

set. In particular, such an experimental setup allowed us to trigger rare events and

anomalies of diverse kinds to the amount and extent required (Kubiak et al., 2020).

Thus, we consider artificially generated system load intensity based on real transac-

tions of an industrial IT-system to obtain the data to evaluate our method and models.

3.1 Application Architecture and Implementation

The IT-system of our choice is a Java web application. The contract management

system (CMS) is an on premise cloud application hosted at our data center running on

an OpenStack environment. Fig. 1 presents the architecture of the CMS.

Fig. 1. Architecture of the CMS (Kubiak et al., 2020)

We use a platform as a service (PaaS) as frontend component of the CMS and an

infrastructure as a service (IaaS) as backend component of the CMS. Both compo-

nents run on Linux RHEL 7.x operating system but use different application runtime

frameworks. The PaaS uses WildFly (link) while the IaaS uses JBoss EAP (link).

However, both components generate own log file data with a varying structure. For

the collection of the monitoring metrics, we used DX Application Performance Man-

agement (link) on both components. Tab. 1 presents the sizing of the PaaS and IaaS

components.

https://marketplace.microfocus.com/appdelivery/content/virtual-user-generator-vugen
https://www.microfocus.com/en-us/products/loadrunner-professional/overview
https://www.wildfly.org/
https://www.redhat.com/en/technologies/jboss-middleware/application-platform
https://www.broadcom.com/products/software/aiops/application-performance-management

5

Table 1. Sizing of the PaaS and IaaS

 PaaS IaaS

CPU 4 x Intel Xeon CPU E5-

2680 v4 @ 2.40GHz

8 x Intel Xeon CPU E5-

2680 v4 @ 2.40GHz

Memory 8 GB 8 GB

Disk space 4 GB 20 GB

Section 3.3 presents a description of obtained log file messages and monitoring met-

rics, which then refer to as features of our predictive models.

3.2 Load and Performance Test Design

To generate necessary system load on our testbed, we triggered a varying number of

virtual users (vUsers) on the system that act in the same way as human system users

do. Hence, the vUsers call a set of system transactions, e.g., search for existing con-

tracts in the database or create new contracts, and the CMS does not recognize any

deviation to human users. The only difference depends on the scripted induction of

the system load since the vUsers follow a predefined schedule and call system trans-

actions without any breaks what human users naturally do. However, we designed a

concept for a 10-day long experiment for data acquisition and let a varying number of

simultaneous working vUsers be the trigger for the system load intensity. From data

quality perspective, we aim to evaluate the suitability of our models with data whose

underlying generative processes are entirely known to us. Thus, patterns can be ex-

plained and “noise” under normal conditions is distinguishable from load-induced

anomalies. We produced system load for 8 hours on each test day. To avoid patterns,

we scheduled stepwise load peaks with a varying intensity to the CMS, which refer to

as anomalies that we aim to predict. After each load peak, the system returned to a

similar baseline that refers to as normal system state. Fig. 2 presents an example of

the induced system load of one test day.

Fig. 2. System load of one test day

6

We triggered the changes of the system state in a 15-minutes interval to guarantee a

balanced data set containing as much records for each system state as possible. We

recognized a significantly negative influence on the accuracy of our models resulting

from too imbalanced data in an earlier experiment. We used a rule-based approach for

the data labeling related to the number of vUsers working on the system as presented

in section 4.4. Due to internal regulations of the enterprise, we had to limit our exper-

imental setup to a maximum load intensity generated by ≤ 25 vUsers. This is one

threat to validity and further discussed in section 7.

3.3 Description of Monitoring Metrics and Log File Messages

The monitoring agents collected a set of groups of performance metrics, which consist

of at least one but mostly of more metrics. For example, the CPU is a single measure

while the agents collect measures for response times of over 50 different JavaBeans.

Tab. 2 presents an overview of the collected groups of monitoring metrics.

Table 2. Collected groups of monitoring metrics (Kubiak et al., 2020)

Group of Monitoring Metrics Description

Average response time (AR) The average response time in ms of a JavaBean

from the method call to the response

Memory pools (MP) The dedicated part of the heap memory in bytes,

which allocates memory for all instances and ar-

rays at runtime

Concurrent invocations (CI) The number of simultaneous calls of a JavaBean

CPU The CPU utilization in %

% time spent in garbage collec-

tion (GC)

The percentage time within an interval, in which

obsolete in-memory code is removed

Sockets (SO) The number of available communication end

points of the IT-system

From performance perspective, we can assume a critical system state if the IT-system

meets at least one of the following conditions:

1. The values of the AR group of metrics increase significantly

2. The values of the AR and CI group of metrics increase at the same time

3. The value of the GC metric exceeds ≈ 25%

4. The values of the SO group of metrics range in the area of 0 over a longer period

For confidentiality reasons, we are unable to provide an overview of the exact log file

messages and their meaning since inferences to the CMS are prohibited. Thus, Tab. 3

7

only presents an abstract overview of the log file messages grouped by their semantic

meaning.

Table 3. Overview of the log file messages

Description Number of different

Messages in the har-

vested logs

Component

PaaS IaaS

Session data expired 12 X X
Exception handling 8 X X
Remote procedure call failed 5 X X
Session timeout 2 X X
Loading of language ID failed 1 X
Generation of a new contract failed 1 X
Database connection failed 1 X
Error for some input string 1 X
Top level exception 1 X
Unexpected value 1 X

Some internal error 1 X

Failed to call a JavaBean 1 X

Some connection error 4 X

Invalid search request 1 X

Database error 1 X

Some missing parameter value 1 X

The total amount of different log file messages is 42 and all of them are error messag-

es. We assume that errors are the most promising indicators to observe misbehavior

on log file level. Therefore, we exclusively filtered out errors from the raw log file

data and used them in our predictive models as described in section 4.1.

4 Data Preparation

The core of our method is to unify textual and numerical IT-system data in one pre-

dictive model. In the following section, we describe necessary steps to transform the

textual data in a numerical form joinable with the monitoring data. Afterwards, we

applied a set of standard practices to analyze corresponding features in case of their

predictive power and reduced the model complexity by removing features that did not

satisfy the requirement of increasing the predictive ability.

4.1 Extracting Error Event Sequences from Log Files

It is a common practice to transform raw log file data into event sequences since the

analysis of structured log file events is much easier than exploring log file messages

8

in the overall textual corpus, e.g., using appropriate forms of visualization. Further-

more, such log file event sequences allow us to apply different ML methods as de-

scribed in section 2. However, we focus on a timestamp-based structure of log file

events in the form of an event-occurrence-matrix (EOM) as prerequisite for our

method. Commonly, we can apply three different methods to obtain such a target

structure from raw textual log file data: log parsers, classification or clustering meth-

ods. As described in section 4.2, we applied clustering algorithms for this task since

such methods identify clusters, i.e., log file events, in the data autonomously at the

costs of accuracy (in comparison to log parser and classification methods). The major

advantage is that clustering methods in this case offer a high degree of flexibility and

may require less parameter tuning. We do not necessarily need deep knowledge about

the log file structure, which is a requirement to develop specific (and possibly rigid)

extractors, i.e., log parsers. Moreover, we avoid preparing any labeled training data as

it is necessary to apply classification methods. However, log files contain a lot of

information, which are not directly related to misbehavior and we want to train our

models exclusively on conditions that lead to potential issues. Therefore, we filtered

out error messages beforehand using regular expressions. We extracted 786,522 error

messages out of approximately 95 million log file messages in total. Afterwards, we

applied a set of information retrieval techniques to shrink the remaining error mes-

sages to text parts, which are necessary to generate the EOM. For example, we re-

moved record specific data, e.g., unique identifiers (IDs), which may confuse cluster-

ing algorithms in the way that they may group error messages with same semantics

into different clusters.

4.2 Numerical Representation and Clustering of Log File Messages

After we cleaned the texts in the log file data to the minimum extent required, we aim

to transform the structure in the form of a timestamp-based EOM. A document-term-

matrix (DTM) allows to convert text into numbers by counting the number of times

each word, i.e., term, appears in the given document corpus. A DTM is a matrix, in

which the element in row 𝑖 and column 𝑗 gives the number of appearance of term 𝑗

(associated to the column) in the document 𝑖 (associated to the row) and allows us to

apply clustering methods on this – hereby numerical – representation of text (Imai,

2017). For the clustering task, we applied the Density-Based Spatial Clustering of

Applications with Noise (DBSCAN) algorithm (Ester et al., 1996). In comparison to

other clustering algorithms, e.g., K-means, the major advantage of DBSCAN is that it

works without an a priori guess for the number of clusters. Given that we may hardly

expect how many and what different kinds of messages will be in the logs to come,

this is a crucial advantage. For the data in this work, we let a CMS generate logs for a

period of 10 days. We explicitly refrain from manually digging into perhaps millions

of rows in the raw log file to point out the applicability of the method with only least

or no domain knowledge. In case that domain knowledge is available, refined results

may be obtainable upon replacing DBSCAN by a more “pre-informed” clustering at

this step. Nevertheless, in absence of specific domain knowledge, DBSCAN is a sim-

ple method to apply (Kubiak et al., 2020). For our experiments, we took DBSCAN

9

configured with 𝑚𝑖𝑛𝑃𝑡𝑠 = 4 and 𝜀 = 0.4 after testing different configurations with-

out considerable differences for the result. 𝜀 refers to as the radius and 𝑚𝑖𝑛𝑃𝑡𝑠 refers

to as the minimum number of points falling into the proximity of the cluster-center to

reasonably call such an accumulation of points a “cluster”. We obtained 28 clusters

and 6 noise points for the PaaS logs and 14 clusters and 4 noise points for the IaaS

logs. Unlike K-means or hierarchical clustering algorithms, DBSCAN does not force

all observations into clusters. Hence, it has the ability to remove noise into separate

noise clusters and prevents distorted clusters (Raschka/Mirjalili, 2018). Now, we

combine obtained cluster and timestamp information to generate the EOM having the

structure of Tab. 4.

Table 4. Event-occurrence-matrix

Timestamp PaaS

Event 1

… PaaS

Event 28

IaaS

Event 1

… IaaS

Event 14

xx:xx:xx 1 … 0 0 … 1

xx:xx:xx 0 … 1 1 … 1

Each cluster then directly defines another indicator, i.e., feature 𝑥𝑖 in the models; at

each time 𝑡. Then, we can assign the error messages at this time to some cluster, cor-

responding to setting the variable 𝑥𝑖 = 1 if error messages related to this cluster were

found, i.e., they occurred, in the log, or 𝑥𝑖 = 0 otherwise. Finally, the set of 0-1-

valued variables 𝑥1, 𝑥2, … , 𝑥28 for the 28 clusters in the PaaS logs and 𝑥29, 𝑥30, … , 𝑥42

for the 14 clusters in the IaaS logs are the first part of the data set. Afterwards, we

joined the EOM with the numeric monitoring data using the timestamp as primary key

and obtained the final data set with 196 features.

4.3 Feature Analysis and Dimension Reduction

A data set with 196 features is not easy to handle and may unnecessarily increase the

complexity of our models. Therefore, we applied a set of standard practices to exclude

features that do not improve the predictive power of the models. Removing such fea-

tures results in a smaller data set that can significantly improve the efficiency and

results of ML models (Zhang et al., 2003). Without any effort, we can directly remove

60 features. This features were constants having zero values due to the fact that the

export of the monitoring data consists of each a column for all available JavaBeans

regardless the CMS called corresponding JavaBeans within the 10 days or not. In

other words, there were no measures for 60 monitoring metrics. To further decrease

the dimensionality of the data set, we applied following statistical practices:

1. Remove features with low variance since they often suffer of little predictive in-

formation and have no positive influence to the skill of ML models

(Kuhn/Johnson, 2020)

10

2. Remove highly correlated features using a threshold of ≥ 0.9 (Schober et al., 2018)

to judge the correlation as very strong

3. Remove outliers using the interquartile method (Salgado et al., 2016)

4. Remove missing values using listwise deletion (Sauer, 2018)

Step 2) may be optional in dependency of the applied ML methods. Strong correlation

among features leads to the phenomenon of multi-collinearity. This can be troubling

for some ML methods (Kuhn/Johnson, 2020) and is a key problem for binary logistic

regression (Senaviratna/Cooray, 2019), which is one of our choices for the prediction

task. Finally, these steps reduced the number of features to 47 out of initial 196 fea-

tures.

4.4 Data Labeling

For the labeling, we chose a deterministic approach based on the number of vUsers

working simultaneously on the CMS since we assume the number of vUsers on the

system as main trigger for the system load intensity. We added a column called

“Alarm” that refers to as label of each record where 𝐴𝑙𝑎𝑟𝑚 = 1 denotes a critical

system state and 𝐴𝑙𝑎𝑟𝑚 = 0 denotes a normal system state. We defined the following

rules to label the data (Kubiak et al., 2020):

1. Normal system state: ≥ 5 and ≤ 17 vUsers working on the CMS

2. Critical system state: ≥ 18 and ≤ 25 vUsers working on the CMS

Remark: it should be kept in mind that a deterministic labeling will generally produce

data on which regression models may fail due to separation. Hence, a manual labeling

or at least a manual check of a sample of the machine-generated labels is advisable, if

regression models are to be evaluated. On the contrary, a divergence problem when

fitting a regression model can in turn be an indicator of determinism and a pointer

towards a trial with a deterministic (e.g., decision tree) model.

Internal regulations of the enterprise limited our experiments. We assume that a max-

imum of 25 vUser never really exhausted available resources of the CMS, i.e., the

system was never overloaded or reached a serious critical system state. However, we

deemed this experimental setup as suitable to get a first feeling in case of evaluating

our method. Nevertheless, a critical discussion related to the limitations is part of

section 7 to ensure transparency to the readers.

5 Modeling and Evaluation

For the classification task, we applied three different ML methods: LogReg, RF and

NN and evaluated their suitability using 16 different configuration cases and a set of

common performance measures as described in the following sections. Our general

prediction scheme is illustrated in Fig. 3. It visualizes the basic idea of our novel

11

method for a joint analysis of time series data collected by monitoring agents and

discrete event data.

Fig. 3. General prediction scheme (Kubiak et al., 2020)

5.1 Choice of Classification Methods

Our initial choice for the classification task is LogReg since it is the de facto standard

method for binary classification problems (Hosmer/Lemeshow, 2000). Moreover, it

tells us - during the fitting – if the dependent variable, i.e., alarm, has a deterministic

dependence in question (Kubiak et al., 2020). That is, either:

1. There is a stochastic element governing whether or not an alarm is raised, then the

logistic model is a reasonable choice and the fitting of coefficients will converge

2. There is a deterministic process behind the alerts to occur, in which case the model

fitting (a maximum likelihood optimization algorithm) will fail to converge, which

is then the information that the logistic regression model is not a good choice.

In the case of 2), the LogReg tells us that we should rather fit a more “deterministic”

model. In our previous work (Kubiak et al., 2020), we applied decision trees as our

second choice since the LogReg in some cases failed to converge. We decided to

rethink this decision since tree based models suffer of high variance and obtained

results may be quite different in dependency of the randomly sampled data (James et

al., 2013) in our evaluation design. Thus, we decided to use RF as alternative method,

which reduces the variance of bagging as well as reduces the correlation between

trees without increasing the variance too much (Hastie et al., 2009). Moreover, RF

offers out-of-the-box analysis of the feature importance using the MDA and MDG

measures, which enables us to identify features that are most likely relevant to judge

the system state of the CMS. Additionally, we applied NN to complete the selection

12

of candidates for the classification task since they are known to be powerful predic-

tion methods and extend the evaluation of this work.

5.2 Configuration Cases

We want our models not only to classify the system state at current time 𝑡, we aim to

predict incoming critical system states with a lead time window of 𝑡+1, 𝑡+5, 𝑡+10 and

𝑡+15 using historic records at 𝑡−1, 𝑡−5, 𝑡−10 and 𝑡−15. Thus, we construct a set of 16

different cases, i.e., training data sets, in the following way (Kubiak et al., 2020):

We denote the lead time window as ∆𝑡 and the historic observations over a fixed time

window as ∆ℎ. Now, we proceed as follows: At time 𝑡, collect all records within peri-

od 𝐻 = [𝑡 − ∆ℎ, 𝑡] and concatenate these records into a larger training data set that

contains all data within this time window. In this way, we obtain a data set, in which

each 𝑥𝑖 occurs with multiple copies in the record. For example, if there fall three rec-

ords into the past history, each carrying the features 𝑥1, … , 𝑥𝑘, we obtain a record with

a feature set of 𝑥1
(0)

, … , 𝑥𝑘
(0)

, 𝑥1
(1)

, … , 𝑥𝑘
(1)

 and 𝑥1
(2)

, … , 𝑥𝑘
(2)

 where 𝑥𝑖
(𝑗)

 refers to as the

𝑖th feature at 𝑗 timestamps prior to 𝑡. Hence, with the feature set constructed as above,

𝐴𝑙𝑎𝑟𝑚 = 1 if and only if there was an alarm in the records between 𝑡 and 𝑡 + ∆𝑡.

Thus, we set 𝐴𝑙𝑎𝑟𝑚 = 1 if there was an alarm falling into [𝑡, 𝑡 + ∆𝑡] and we instanti-

ate the current record with historic observations collected from all records falling into

the period [𝑡 − ∆ℎ, 𝑡]. Otherwise, we set 𝐴𝑙𝑎𝑟𝑚 = 0 since there has be no race condi-

tion occurred after 𝑡 within ∆𝑡, which we aim to predict on the current system state

and history. We consider following configurations for the evaluation of our models as

presented in Tab. 5.

Table 5. Configuration cases (Kubiak et al., 2020)

Number of historic Observations (∆𝒉)

L
ea

d
 T

im
e

(∆
𝒕)

 1 5 10 15

1 C1 C5 C9 C13

5 C2 C6 C10 C14

10 C3 C7 C11 C15

15 C4 C8 C12 C16

Each configuration case differs in its setting in case of ∆𝑡 and ∆ℎ, which we both

measure in minutes. We aim to identify whether a set of varying ∆𝑡 and ∆ℎ influences

the results in case of the prediction accuracy or the importance of the features and

their multiple copies to possibly identify somewhat like a prediction limit if the accu-

racy significantly decreases. Naturally, we would expect a larger retrospective win-

dow to increase the prediction accuracy, and likewise, the accuracy would be ex-

13

pected to deteriorate, the larger the forecasting window is made (i.e., the farer we

attempt to look into the future). The second expectation turns out to be not the case.

5.3 Evaluation Design

The settings of the configuration cases allow us to test our models in case of a varying

prediction horizon and history to identify whether there is an impact on the model

results or not. Each of the cases (C1-16) represents a new data set, which we consid-

ered independently for training and test of our models. Thus, we fitted at least 16

models for each of the three classification methods. Furthermore, we fitted each mod-

el using a loop with 100 runs where we generate randomly sampled data for training

and test in each of the runs. Unfortunately, we are unable to provide results for the

NN for 100 runs but still present that their prediction quality seems to be similar to

LogReg and RF after training and applying them once on all configuration cases. The

reason is related to high computational time for evaluation of each case, repeating the

evaluation 100 times for every method and running this experiment was considered as

impractical. We evaluate the performance of our models using a set of common per-

formance metrics, which we determine for every single run. These metrics are: accu-

racy, precision, recall, F1-Score and the Matthews correlation coefficient (MCC).

Here, we follow a standard practice to evaluate our models on a broad range of per-

formance metrics for a fair and honest evaluation. This practice is preferred over us-

ing a single metric that is being optimized (Zhang/Zhou 2014) as we only focused on

the accuracy measure in our prior work. For all measures, we can consider the model

quality as higher if the measures are higher with a maximum value of 1, which refers

to as perfect classification. We remark that in the IT-operations domain we should

give more attention to the recall than to the precision measure. This is because a miss,

i.e., false negative, of predictive models in this area may cause expensive (tangible or

intangible) damage, i.e., a service break, for organizations. Recall penalizes misses

with high costs and is more reliable in this case. However, in each run, we additional-

ly calculate the MDA and MDG measures to evaluate the importance of the features

for the fitted RF. For evaluation of experimental studies, the popularity of both

measures increases since both confirmed practical utility (Louppe et al., 2013) alt-

hough there is a lack of clearance regarding their inner workings (Genuer et al.,

2010), (Louppe et al., 2013). We aim to use this information to identify the most

promising indicators for the CMS turning into a critical system state. Moreover, we

give practitioners, i.e., IT-operators, guidance at hand on which system parameters to

focus on primarily if our models raise alarms to answer the “why” the system is turn-

ing into a critical state. For IT-operators, this is invaluable and can significantly ease

the determination of root causes.

14

6 Results

Let us now present our results in case of the predictive quality along the set of per-

formance measures and then present the analysis of the feature importance, which we

exclusively obtained for the RF.

6.1 Performance Metrics

We start our evaluation with the results of the single run of the NN for all configura-

tion cases as presented in Tab. 6.

Table 6. Results of the NN for a single run

Case Accuracy Precision Recall F1-Score MCC

1 0.97 0.96 0.98 0.97 0.94

2 0.93 0.93 0.93 0.93 0.86

3 0.94 0.88 0.95 0.92 0.87

4 0.95 0.94 0.90 0.92 0.88

5 0.99 1.00 0.99 0.99 0.98

6 0.99 0.99 0.99 0.99 0.97

7 0.99 0.99 0.98 0.98 0.97

8 0.98 0.96 0.98 0.97 0.96

9 1.00 1.00 1.00 1.00 1.00

10 0.97 0.98 0.97 0.96 0.93

11 0.97 0.96 0.95 0.95 0.93

12 0.99 0.98 0.98 0.98 0.97

13 0.99 0.96 1.00 0.98 0.96

14 0.98 0.97 0.98 0.97 0.95

15 0.98 0.97 0.98 0.98 0.95

16 0.99 0.99 0.98 0.98 0.97

For the single run, we obtained extremely high values for each performance measure

for all configuration cases. During the model fitting and testing a set of different par-

ametrizations for the NN, we obtained some interesting findings related to our exper-

imental setup for data acquisition and the resulting data set(s). For each configuration

case, we divided the data into training, test and validation data as it is common. We

obtained high performance measures on the training as well as on the test and valida-

tion data. During model training, we recognized that the training loss steadily de-

creases while the validation loss steadily increases. Mostly, this indicates that the

model suffers of overfitting. However, since our NN performed very good on training

as well as on unseen test data, we assume that the model has a good generalization

capability, which rules out overfitting as possible cause for the high performance

metrics. The divergence of training and validation loss may indicate that the predic-

tion results are high but not very confident. The reasons could be related to our de-

terministic approach for the labeling and the fact, that a maximum of 25 vUsers never

15

really overloaded the CMS. Assuming that the feature values are too similar in both

cases for records labeled with 1 or 0 may be a reason for the high prediction quality.

In other words, the values do not vary enough for both labels and a clear allocation is

missing. Further tests with different parametrization of the NN showed that NN with a

low number of hidden layers, e.g., 1, and a low number of neurons, e.g., 2, counter-

acts the drift of the training and validation loss without a considerable decrease of the

prediction quality. The losses differ more in case of deep NN having more hidden

layers and a high number of neurons, e.g., 32, 64 or 128. In case of deep NN, we

could counteract the increasing difference between the losses using a sigmoid hidden

layer after a rectified linear unit (ReLu). Generally, the deep NN seem to perform

better using sigmoid activation functions, e.g., hyperbolic tangent function, rather

than using ReLu’s. Thus, we assume that a set of < 5 features is highly correlated

with the binary target and the classification strongly depends on very few features.

After analysis, we obtained that there is a considerable correlation between the target

and the CPU and GC features (at least about 0.75). In the following, we present a

selection of the obtained results for the LogReg and RF. We do this case wise and

illustrate the results using boxplots. Fig. 4 shows the performance for case 1 of

LogReg and RF of 100 runs with in each randomly sampled training and test data.

Fig. 4. Results of LogReg and RF for case 1 over 100 runs

We see that both classifier achieved good prediction quality within 100 runs but RF

outperforms the LogReg in case of all performance metrics having median values of

0.96 (accuracy), 0.96 (precision), 0.95 (recall), 0.95 (F1-Score) and 0.91 (MCC) while

the median values for LogReg are 0.91 (accuracy), 0.91 (precision), 0.91 (recall), 0.91

(F1-Score) and 0.83 (MCC). These results confirm the very good performance of the

NN for the classification task on the data of the CMS. We remark that it is difficult to

compare the results of a single run for NN and 100 runs for LogReg and RF but as a

first impression, all of the three classification methods show a very strong predictive

ability. The results of all remaining cases are similarly high without considerable

differences. Thus, we summarize that a lead time window of 15 minutes has no ap-

parent influence on the prediction accuracy. Due to our experimental setup, 15

minutes are the maximum horizon to forecast the system state of the CMS since we

triggered changes of the system state every 15 minutes to the system as described in

section 3.2. This circumstance limits the forecasting horizon within our experiment

16

for further analysis. However, we moreover investigated that an increasing number of

past observations considered for analysis of cases with an identic lead time window

significantly decreases the range of upper and lower quartiles and the whiskers. Thus,

we obtained more stable results with less variation along the 100 runs. Fig. 5 illus-

trates the results of case 13 of LogReg and RF.

Fig. 5. Results of LogReg and RF for case 13 over 100 runs

For example, the quartiles of the recall measures of LogReg for case 1 are 0.96/0.86

and the whiskers are 1.00/0.77 while we obtained 0.92/0.88 for the quartiles and

0.96/0.83 for the whiskers of case 13. For RF, the recall measures of case 1 of the

quartiles are 1.00/0.90 and the whiskers are 1.00/0.80 while for case 13, the quartiles

are 0.91/0.87 and the whiskers are 0.95/0.82. This effect is consistently presents in all

cases if the number of past observations increases and the lead time window remains

unchanged. Summarized, we obtained (very) good prediction quality for LogReg, RF

and NN and more stable, i.e., a less degree of variation, results if we consider more

past observations to predict the system state with the same lead time window.

6.2 Feature Importance

To give IT-operators guidance about which features are most likely to be important

for the judgement of the system state, we use MDA and MDG. The first one quanti-

fies the feature importance by measuring the change of the prediction quality if the

measures of the feature are randomly permuted, compared to the original observation.

On the other hand, MDG is the sum of all decreases in Gini impurity to a given fea-

ture that the RF uses to form a split, normalized by the number of trees (Calle/Urrea,

2011). Similar to the performance measures, we calculated measures for MDA and

MDG in each run and illustrate a selection of the results using boxplots. Fig. 6 pre-

sents the results of MDG for case 1 that have a value of ≥ 5.

17

Fig. 6. MDG for case 1 over 100 runs

We see that MDG judges 5 features as important if the threshold is set to ≥ 5. These

features are CPU, GC and three different features of the AR group of metrics, i.e.,

calls of JavaBeans. Using the same threshold for MDA, it judges 17 features in total

as important. For the sake of space, Fig. 7 illustrates the results of the top-10 ranked

features only.

Fig. 7. MDA for case 1 over 100 runs (top-10 ranked features)

We clearly see the overlap: all of the five features that MDG judged as important,

MDA judges as important as well. Both measures show that the CPU utilization is the

predominant feature. This impression confirms in case of the analysis of other config-

uration cases, which we but do not illustrate. For example, the increasing lead time

window of case 4 increases the importance of the CPU up to a MDG median value of

18

66.83. MDA confirms this increase for case 4 having a median value of 31.92 for the

CPU feature. Moreover, MDA judges the occurrence of an IaaS log file event as im-

portant for case 4, after all in 10 of the runs having a median value of 5.40. The im-

portance of log file events is confirmed in several configuration cases, e.g., case 8 and

12, by MDA as well as MDG. Unfortunately, we are unable to derive any generic

assumption for this effect since the importance of log file events occurs more likely

sporadic. Nevertheless, it confirms the interplay of both types of IT-system data with

the overall system state. Summarized, the CPU utilization is after analysis the most

promising indicator for the system turning into critical in the most configuration cases

having consistently MDA and MDG values of at least ≥ 5. Furthermore, the CPU

utilization is the only feature that consistently shows to be important including its past

observations, i.e., 𝑡−5 etc., for configurations considering multiple copies of the past

observations in their data sets. This is consistent with our labeling approach based on

the number of vUsers since each user very likely increases the CPU load. However,

our results show that we moreover identified different AR, CI, MP or log file related

features to be important in different configuration cases. We assume that these fea-

tures would be difficult to investigate using domain knowledge only. IT-systems con-

tain a high number of different system parameters and their impact to the system state

may be hard to recognize without a statistical analysis. Thus, our method and models

deliver advanced knowledge about the underlying IT-system and its inner workings

related to the overall system state.

7 Threats to Validity

We acknowledge our experimental setup for data acquisition as main threat to con-

struct validity and assume that the low load intensity on the CMS biased the evalua-

tion of the predictive models. At the data-level, we identified that some of the

measures of the features do not significantly differ independently whether the label is

either 1 or 0. This is the result of:

1. A system state that probably never seriously endangered due to the maximum of 25

vUsers working on the CMS at the same time

2. An experimental and deterministic labeling on data that probably does not contain

measures representing a real critical system state

We assume that our experimental setup for data acquisition is the main trigger for the

conspicuous high performance metrics. Nevertheless, we addressed the threat of in-

ternal validity using an evaluation design with different configuration cases and 100

runs with randomly sampled data for training and test. Thus, at the algorithm-level we

considered various parametrizations for our models, trained them on different data

and tested them on unseen data to avoid phenomenon like overfitting to be the cause

for the high prediction accuracy. Furthermore, we applied a set of different perfor-

mance measures to ensure a fair and honest evaluation. In case of external validity,

we propose a generalizable methodical approach for the joint analysis of textual and

numerical IT-system data to predict the system state. However, the nature of ML

19

methods is that they exclusively depend on the data used for the model fitting. Thus,

our results are specific to the industrial IT-system used for data acquisition.

Despite all these threats and countermeasures, we emphasize that the main contribu-

tion of this work is the process and outline of steps that starts from heterogeneous data

of incompatible type (numeric and textual), going through a data type unification for

admissibility for statistical analysis, whose interpretation is presented with a discus-

sion of potential pitfalls and possible conclusions. Thus, the threats to validity do not

extend to the described method itself.

8 Conclusion and Future Work

We present a method to predict the overall state of IT-systems using a combination of

heterogeneous data sources. Our method breaks down limitations of analyzing data

with incompatible formats by compiling textual log file information and numeric data

into a single prediction model. This method is designed towards explainability to

identify root causes with help of statistical methods, which may ease the initiation of

countermeasures to avoid system downtimes. We achieved following results:

1. On RQ1: We used a set of different data preparation processes to unify textual and

numerical IT-system data in a single ML model. Our method requires a minimum

degree of domain knowledge and is applicable to any IT-system (although data

preparation processes always depend on the specific application and data) but is

conceptually generalizable to incorporate domain knowledge if available.

2. On RQ2: We see that all models achieved high prediction quality even if the re-

sults of the NN seem to outperform LogReg and RF results. We admit that this im-

pression may be biased since 100 runs on randomly sampled data to evaluate the

NN were impractical due to the required computational time for training and test-

ing.

3. On RQ3: The analysis of the feature importance points out the CPU utilization as

most promising indicator to judge the system state. Thus, is should be considered

as preferred root cause in case of alarms. It is also admitted that this result is to be

taken specific for the experimental setup and may come out of different in other

practical instances of systems. Nonetheless, the general reasoning behind this find-

ing does apply to other settings than we described.

Our method and evaluation design allow us to analyze and to predict the overall sys-

tem state using various available system parameters, covering a wide and diverse

range of sources and formats. By analyzing the feature importance, we clearly see that

monitoring metrics as well as log file events affect the system state and may be con-

sidered as root causes in different configuration cases. This analysis allows us to give

IT-operators substantiated guidance on which system parameters to focus on in case

of alarms. We believe that such a statistical analysis along all available system pa-

rameters accelerates the decision making of IT-operators. Moreover, we think that a

detailed analysis would be hard to beat if we only consider domain knowledge and

experience of the IT-operators although both are not negligible. Future work will

20

complement the evaluation of our method by experts, i.e., monitoring architects and

IT-operators. The expert evaluation will focus and the feasibility, utility and usability

of our method in case of its practical applicability. Moreover, we will publish results

of an empirical study that investigates the applicability of ML methods specific to the

IT-operations area in general. Among others, this study will analyze the tradeoff be-

tween high accuracy vs. high explainability of ML models for prediction of IT inci-

dents.

References

1. Andrzejak, A., Silva, L. (2007): “Deterministic Models of Software Aging and Optimal

Rejuvenation Schedules” in Proc. of the 10th IFIP/IEEE International Symposium on Inte-

grated Network Management. IEEE, Munich, Germany, pp 159–168.

2. Cheng, F.-T., Wu, S.-L., Tsai, P.-Y., Chung, Y.-T., Yang H.-C. (2005): “Application Clus-

ter Service Scheme for Near-Zero-Downtime Services” in Proc. of the 2005 IEEE Interna-

tional Conference on Robotics and Automation. IEEE, Barcelona, Spain, pp 4062–4067.

3. Ester ,M., Kriegel, H.-P., Sander, J., Xiaowei, X. (1996): “A density-based algorithm for

discovering clusters in large spatial databases with noise” in Proc. of the Second Interna-

tional Conference on Knowledge Discovery and Data Mining (KDD’96). Portland, OR,

USA, pp 226–231.

4. Genuer, R., Poggi, J.-M., Tuleau-Malot, C. (2010): “Variable selection using random for-

ests” in Pattern recognition letters, vol. 31, no. 14, pp 2225–2236.

5. Hastie, T., Tibshirani, R., Friedman, J. (2009): “The Elements of Statistical Learning: Da-

ta Mining, Inference, and Prediction”, 2nd ed. Springer, New York.

6. Hochstein, A., Tamm, G., Brenner, W. (2005): “Service-Oriented IT Management: Bene-

fit, Cost and Success Factors” in Proc. of the 13th European Conference on Information

Systems, Information Systems in a Rapidly Changing Economy. Regensburg, Germany.

7. Imai, K (2017): “Quantitative Social Science: An Introduction”, Princeton University

Press, Woodstock, Oxfordshire, GB.

8. James, G., Witten, D., Hastie, T., Tibshirani, R. (2013): “An introduction to statistical

learning: with applications in R”, Springer, New York.

9. Jiang, Y., Perng, C.S., Li, T. (2011): “Natural event summarization” in Proc. of the 20th

ACM international conference on Information and knowledge management. Glasgow,

Scotland.

10. Kiciman, E., Fox, A. (2005): “Detecting Application-Level Failures in Component-Based

Internet Services” in IEEE Trans Neural Network, vol. 16, no. 5, pp 1027–1041.

11. Kiernan, J., Terzi, E. (2009): “Constructing comprehensive summaries of large event se-

quences” in ACM Transactions on Knowledge Discovery from Data (TKDD), vol. 3, no.

4, Art. No. 21.

12. Kiran, R.U., Shang, H., Toyoda, M., Kitsuregawa, M. (2015): “Discovering Recurring Pat-

terns in Time Series” in Proc. of the International Conference on Extending Database

Technology. Brussels, Belgium.

13. Kiyota, N., Shimamura, S., Hirata, K. (2017): “Extracting Mutually Dependent Multisets”

in Proc. of the International Conference on Discovery Science. Kyoto, Japan.

14. Kubiak, P., Rass, S. (2018): “An overview of data-driven techniques for IT-service-

management” in IEEE Access, vol. 6, pp 63664–63688

15. Kubiak, P., Rass, S., Pinzger, M. (2020): “IT-Application Behaviour Analysis: Predicting

Critical System States on OpenStack using Monitoring Performance Data and Log Files”

21

in Proc. of the 15th International Conference Software Technologies, Lieusaint - Paris,

France, pp 589–596.

16. Kuhn, M., Johnson, K. (2020): “Feature engineering and selection: A practical approach

for predictive models”, CRC Press, Taylor & Francis Group, Boca Raton, FL, USA.

17. Li, T., Zeng, C., Jiang, Y., Zhou, W., Tang, L., Liu, Z., Huang, Y. (2017): “Data-Driven

Techniques in Computing System Management” in ACM Computing Surveys (CSUR)

vol. 50, no. 3, Art No. 45.

18. Louppe, G., Wehenkel, L., Sutera, A., Geurts, P. (2013): “Understanding variable impor-

tances in forests of randomized trees” in: Proc. of the 26th International Conference on

Neural Information Processing Systems.

19. Luo, C., Fu, Q., Lou, J.-G., Ding, R., Wang, Z., Lin, Q., Zhang, D. (2014): “Correlating

events with time series for incident diagnosis” in Proc. of the 20th ACM SIGKDD interna-

tional conference on Knowledge discovery and data mining. New York, NY, USA.

20. Murray, J., Hughes, G., Kreutz-Delgado, K. (2003): “Hard drive failure prediction using

non-parametricstatistical methods” in: Proc. of the ICANN/ICONIP.

21. Potgieter, B.C., Botha, J.H., Lew, C. (2005): “Evidence that use of the ITIL framework is

effective” in: Proc. of the 8th Annual conference of the national advisory committee on

computing qualifications. Tauranga, New Zealand, pp 160–167.

22. Raschka, S., Mirjalili, V. (2017): “Machine Learning mit Python und Scikit-Learn und

TensorFlow: Das umfassende Praxis-Handbuch für Data Science, Predictive Analytics und

Deep Learning”, 2nd ed.. mitp Verlag, Frechen, Germany.

23. Salfner, F., Lenk, M., Malek, M. (2010): “A survey of online failure prediction methods”

in ACM Computing Surveys (CSUR) vol. 42, no. 3, Art. No. 10.

24. Salgado, C.M., Azevedo, C., Proença, H., Vieira, S.M. (2016): “Noise Versus Outliers” in

MIT Critical Data Secondary Analysis of Electronic Health Records. Springer Internation-

al Publishing, Cham, pp 163–183.

25. Sauer, S. (2018): „Moderne Datenanalyse mit R: Daten einlesen, aufbereiten, visualisieren

und modellieren“, Springer Fachmedien Wiesbaden GmbH, Wiesbaden.

26. Schober, P., Boer, C., Schwarte, L.A. (2018): “Correlation Coefficients: Appropriate Use

and Interpretation” in Anesthesia & Analgesia, vol. 126, no. 5, pp 1763–1768.

27. Senaviratna, N., Cooray, T. (2019): “Diagnosing Multicollinearity of Logistic Regression

Model” in Asian Journal of Probability and Statistics, pp 1–9.

28. Shen, J., Wan, J., Lim, S.-J., Yu, L. (2018): “Random-forest-based failure prediction for

hard disk drives” in International Journal of Distributed Sensor Networks, vol. 14, no. 11.

29. Zeng, C., Tang, L., Li, T., Shwartz, L., Grabarnik, G.Y. (2014): “Mining Temporal Lag

from Fluctuating Events for Correlation and Root Cause Analysis” in Proc. of the 10th In-

ternational Conference on Network and Service Management (CNSM). Rio de Janeiro,

Brazil.

30. Zhang, M.-L., Zhou, Z.-H. (2014): “A Review on Multi-Label Learning Algorithms” in

IEEE transactions on knowledge and data engineering, vol. 28, no. 8, pp 1819–1837.

31. Zhang, S., Zhang, C., Yang, Q. (2003): “Data preparation for data mining” in Applied Ar-

tificial Intelligence, vol. 17, no 5–6, pp 375–381.

32. Zöller, M.-A., Baum, M., Huber, M.F. (2017): “Framework for mining event correlations

and time lags in large event sequences” in Proc. of the IEEE 15th International Conference

on Industrial Informatics (INDIN). Emden, Germany.

33. Calle, M. L., Urrea, V. (2011): “Letter to the Editor: Stability of Random Forest Im-

portance Measures” in Briefings in Bioinformatics, vol. 12, no. 1, 2011, pp 86–89.

