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ABSTRACT
CODECRAWLER (in the remainder of the text CC) is a language in-
dependent, interactive, information visualization tool. It is mainly
targeted at visualizing object-oriented software, and has been suc-
cessfully validated in several industrial case studies over the past
few years. CC adheres to lightweight principles: it implements and
visualizespolymetric views, visualizations of software enriched with
information such as software metrics and other source code seman-
tics. CC is built on top of Moose, an extensible language inde-
pendent reengineering environment that implements the FAMIX
metamodel. In its last implementation, CC has become a general-
purpose information visualization tool.

Categories and Subject Descriptors:D.2.7 Distribution, Main-
tenance, and Enhancement: Restructring, reverse engineering, and
reengineering

General Terms: Measurement.

Keywords: Information Visualization.

1. INTRODUCTION
CC is a software and information visualization tool which im-

plements polymetric views, lightweight 2D- and 3D- visualizations
enriched with semantic information such as metrics or information
extracted from various code analyzers [6].

It relies on the FAMIX metamodel [1] which models object-
oriented languages such as C++, Java, Smalltalk, but also proce-
dural languages like COBOL. FAMIX has been implemented in
the Moose reengineering environment that offers a wide range of
functionalities like metrics, query engines, navigation, etc. [2].

We shortly introduce the principles of polymetric views and then
give some examples of the visualizations that CC enables the user
to achieve. The proposed visualizations support both program com-
prehension and problem detection.

2. POLYMETRIC VIEW PRINCIPLES
The visualizations implemented in CC are based on the polymet-

ric views described by Lanza [4, 6]. The principle is to represent
source code entities as nodes and their relationships as edges be-
tween the nodes, but to use figure shapes to convey semantics about
the source code entities they represent.

In Figure 1 we see that, given two-dimensional nodes represent-
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Figure 1: The principles of a polymetric view.

ing entities and edges representing relationships, we enrich these
visualizations with up to 5 metrics: (1+2)Node Size.The width
and height of a node: The wider and the higher the node, the big-
ger the measurements its size is reflecting. (3)Node Color. The
color interval between white and black. Here the convention is that
the higher the measurement the darker the node is. (4+5)Node
Position. The X and Y coordinates of the position of a node. This
requires the presence of an absolute origin within a fixed coordinate
system, therefore not all views can exploit such metrics (for exam-
ple in the case of a tree view, the position is intrinsically given by
the tree layout and cannot be set by the user).

The polymetric views in CC can be created either programmati-
cally in Smalltalk by constructing the view objects, or over an easy-
to-use View Editor.

3. EXAMPLE POLYMETRIC VIEWS
Coarse-grained views.Such views are targeted at visualizing

very large systems (e.g.,over 100 kLOC to several MLOC). In Fig-
ure 2 we see aSystem Complexityview of a single hierarchy which
makes 10% of a 1.2 million lines of C++ code. The view uses the
number of methods for the width and height of the class nodes. We
gather for example from this view that there are classes with sev-
eral hundreds of methods (at the bottom), while at the top we see
a large number of structs, identifiable by the fact that most of them
do not implement any methods.

Figure 2: A System Complexity View of a 200-classes hierar-
chy from an industrial C++ system. It uses as width metric the
number of attributes and as height metric the number of meth-
ods.
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Fine-grained views. In Figure 3 we see a visualization of the
internals of a small hierarchy of 4 classes. The class blueprint view
helped to develop a pattern language [4]. In the present example
we see the following patterns:

Figure 3: A Class Blueprint view on a small hierarchy of 4
classes written in Smalltalk.

Pure overrider: The three subclasses implement only overriding
methods (brown color).Siamese twin: The two subclasses on the
left and the right are structurally identical, not only do they imple-
ment the same methods (the methods differ within their bodies),
their static invocation structure is also the same.Template method:
The method node in the superclass annotated asA is a concrete
method which only invokes abstract methods (cyan color). This is
known as thetemplate methoddesign pattern.Inconsistent acces-
sor use: The superclass defines only two accessors (second layer
from the right), while it defines three attributes (rightmost layer).
These two accessors do not have ingoing edges: In the context of
this small hierarchy they are unused.Direct attribute access: The
attribute nodes of the superclass are directly accessed by several
methods. The methods annotated asB andC seem to play an im-
portant role in these classes: They are invoked by many methods
(several ingoing edges) and they invoke several methods (numerous
outgoing edges).

Evolutionary views. In Figure 4 we see an example [5] of such
a visualization, which again allows us to develop a pattern language
applicable in the context of software evolution:

Figure 4: An Evolution Matrix view on 38 versions of an appli-
cation written in Smalltalk.

The number of classes which survived the complete evolution of
the system since the beginning is annotated aspersistent classes.
The dayfly classesexisted during one version of the system and
were then removed. Probably the developer tried out something
implementation-wise and removed this ’experiment’ right away.
The pulsar classdenotes a class whose size in terms of number
of methods and attributes varies, making it thus an expensive class
of this system. A long stagnation phase where the system did not
grow in terms of number of classes, and two major leaps where the
system rapidly grew between two versions.

Coupling Views. Recent work on CC was concerned with ex-
tending it to visualize polymetric views of several releases of a soft-
ware system. The objective of these views is to highlight the cou-
pling dependencies between modules of a software system. Cou-
plings arise from structural dependencies between source code en-
tities, such as includes, inheritance, invocations, and also from pair-
wise changes, logical couplings obtained from release history data
as described in [3].

Lower-level information of source code entities and their cou-
pling dependencies is condensed to different metrics that are mapped
to graphical attributes and then visualized (left of Figure 5).

Figure 5: Left: A comparison of 7 Mozilla modules between
release 0.92 (on the left) and release 1.7 (on the right). Right:
Diff-graph between the releases.

The nodes represent modules with the number of classes (width),
number of files (height), and number of directories (color). The
edges represent abstracted invocation relationships between the mod-
ules (the width of the edges represents the weight,i.e., the number
of grouped function calls). This view highlights large modules and
strong coupling dependencies between modules.

Differences between abstracted views are not straight forward to
grasp with these graphs, because subsequent releases often lead to
similar graphs. CC handles this problem by computing the differ-
ence between graphs of two selected releases on the basis of metric
values. The differences between metric values of each node and
edge attribute are computed. The right of Figure 5 depicts the diff-
graph computed for the two Mozilla release graphs.

This graph highlights changes made to selected modules: The
DOM module on the the right side increased by 150 classes and 95
source files. The coupling dependencies (i.e., number of method
calls) from the XML module in the upper left corner to the DOM
module decreased by 142.
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