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A B S T R A C T

Nowadays, many companies design and develop their software systems as a set of loosely coupled microservices
that communicate via their Application Programming Interfaces (APIs). While the loose coupling improves
maintainability, scalability, and fault tolerance, it poses new challenges to the API evolution process. Related
works identified communication and integration as major API evolution challenges but did not provide the
underlying reasons and research directions to mitigate them. In this paper, we aim to identify microservice
API evolution strategies and challenges in practice and gain a broader perspective of their relationships.
We conducted 17 semi-structured interviews with developers, architects, and managers in 11 companies and
analyzed the interviews with open coding used in grounded theory. In total, we identified six strategies and six
challenges for REpresentational State Transfer (REST) and event-driven communication via message brokers.
The strategies mainly focus on API backward compatibility, versioning, and close collaboration between teams.
The challenges include change impact analysis efforts, ineffective communication of changes, and consumer
reliance on outdated versions, leading to API design degradation. We defined two important problems in
microservice API evolution resulting from the challenges and their coping strategies: tight organizational
coupling and consumer lock-in. To mitigate these two problems, we propose automating the change impact
analysis and investigating effective communication of changes as open research directions.

Editor’s note: Open Science material was validated by the Journal of Systems and Software Open Science Board.
1. Introduction

Many modern software systems are split into loosely coupled ser-
vices to improve maintainability, scalability, and fault tolerance (Gos
and Zabierowski, 2020). Service-oriented Architecture (SOA) (Krafzig
et al., 2006) was one method to distribute a large monolithic soft-
ware system into multiple smaller services. SOA relied on shared busi-
ness models and centralized communication over an Enterprise Service
Bus (ESB) (Cerny et al., 2018). Consequently, the individual services
were tightly coupled, and introducing changes required integration and
deployment coordination throughout the system’s services (Bushong
et al., 2021). This led companies to migrate from SOA to Microser-
vice Architecture (MSA). MSA replaced the shared models of services
with independent domain models exposed only via Application Pro-
gramming Interfaces (APIs) for each so-called microservice, and the
ESB with message brokers only forwarding serialized messages (Zhang
et al., 2019). Microservices exposing their functionality via APIs are
called providers and microservices calling and interacting with these
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APIs are called consumers. The communication approach in MSA is
referred to as ‘‘smart endpoints and dumb pipes’’ and loosely couples
the microservices via such well-defined APIs, allowing them to evolve
independently within a system (Wu et al., 2022).

However, maintaining the overall systems’ functionality requires
more synchronization efforts between the development teams as each
microservice’s data structures and business logic, i.e., behaviors, evolve
independently (Ma et al., 2019). Unlike a single monolithic code base
or shared SOA interfaces, the loose coupling prohibits developers from
learning about individual microservice API changes at compile time.
If provider teams do not notify consumer teams about changes in
advance, the breaking changes only manifest during the first actual
API call at runtime. Changes in the provider’s API could then result in
unexpected behavior and potentially break the execution of dependent
consumers interacting with that API.

Previous studies (Alshuqayran et al., 2016; Söylemez et al., 2022)
identified communication and integration as major challenges in the
vailable online 22 May 2024
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MSA. Similarly, Cerny et al. (2018) identified communicating the API
changes to dependent teams, i.e., consumers, and testing for incom-
patibilities as the primary two open research challenges in service
integration. According to Zdun et al. (2020), the API evolution pro-
cess still misses effective communication and support for consumers
affected by changes. Assunção et al. (2023) found that many devel-
opers waste their time with implementing technical API changes and
updates instead of focusing on business logic. Hence, microservice API
evolution requires more research (Lamothe et al., 2021). While related
works acknowledged the challenges of API evolution, integration, and
communication of changes, they did not provide the underlying reasons
or how to solve them sustainably.

In this paper, we aim to understand current microservice API evo-
lution strategies and challenges in practice and to gain a broader
perspective of their relationships for future research directions. For this,
we defined the following three research questions:

RQ1 What means do developers use to exchange messages between
services, and how do they document them?

RQ2 Which strategies do developers follow to introduce and commu-
nicate API changes in loosely coupled systems?

RQ3 Which challenges do developers face when introducing and com-
municating API changes in loosely coupled systems?

For answering the three questions, we conducted semi-structured
interviews (Adams, 2015) with practitioners from multiple companies,
analyzed the interviews with open coding (Corbin and Strauss, 1990),
and grounded our qualitative research results with related literature.
Through this, we identified (a) REpresentational State Transfer and
event-driven communication as the main communication techniques in
MSA, (b) six API evolution strategies formulated as best practices for
practitioners, (c) six API evolution challenges to consider as pitfalls
when designing an MSA, (d) two important problems namely tight
organizational coupling and consumer lock-in, and (e) two directions
for future research to address these problems and improve microservice
API evolution. We provide a replication package (Lercher et al., 2023)
comprising the interview guide and resulting code book.

To the best of our knowledge, this is the first study investigating
microservice API evolution strategies and challenges in practice to
create a comprehensive list of best practices and pitfalls and to derive
two important underlying problems and open research directions to
mitigate them. We focus on loosely coupled systems based on the MSA
communication approach ‘‘smart endpoints and dumb pipes’’ and use
the terms service and microservice interchangeably. Furthermore, we use
the term API when referring to the communication techniques in MSA
for simplicity.

The remainder of this paper is structured as follows. Section 2
describes the method of semi-structured interviews, our study design,
data analysis, and participant selection. Section 3 presents the message
exchange techniques used in practice and answers RQ1. In Sections 4
and 5, we present the identified evolution strategies and challenges
in practice and answer RQ2 and RQ3. Section 6 presents the overall
theory of our study results by defining two important problems in API
evolution. We propose future research directions and discuss the limi-
tations in Section 7. Section 8 presents related works on API evolution
and Section 9 concludes our study.

2. Methodology

In this section, we describe our study design, data analysis, and
participant selection.
2

2.1. Study design

Due to the open-ended and explorative nature of our research
questions, we conducted semi-structured interviews (Adams, 2015;
Gudkova, 2018) with developers, architects, and management roles
directly working on MSA or similar loosely coupled systems. The semi-
structured format enabled the participants to express their thoughts
freely and provided us the opportunity to ask follow-up questions and
discuss emerging topics ad-hoc while maintaining the desired dialogue
direction. This allowed us to not only learn about applied strategies
and encountered challenges individually but also to understand their
underlying reasons and consequences.

We formulated an interview guide focusing on answering our re-
search questions to serve as an orientation during the interviews. The
interview guide consisted of five question categories: (a) background,
(b) communication, targeting RQ1, (c) API evolution as provider, tar-
geting RQ2 and RQ3, (d) API evolution as consumer, targeting RQ2 and
RQ3 from a different perspective explained below, and (e) additional
thoughts.

The background category elicits the participants’ education, expe-
rience, subjective definition of a microservice, and details about their
work environments. These questions help to set the context and clarify
the terminology used by the interviewer and participant during each in-
terview, thereby improving the construct validity of our study (Wohlin
et al., 2012).

The communication category aims at answering RQ1. It focuses on
the communication approaches, which and how microservice APIs are
exposed, and how they are documented.

The two API evolution categories explicitly illuminate the provider
and consumer sides in API evolution to answer RQ2 and RQ3. During
preliminary discussions, we realized that developers do not think about
the evolution of external APIs but expect unlimited availability of
the consumed API version. Hence, we decided to explicitly split the
perspectives on provided APIs, i.e., APIs developed and maintained
by the interview participants’ teams, and consumed APIs, i.e., APIs
interacted with by the participants’ teams without access to the source
code or runtime environment. The categories contain open questions
regarding the frequency of provided and consumed APIs’ changes,
the reasons for these changes, the strategies for communicating and
implementing them, the strategies for notifying other teams about
changes, the strategies for getting informed on changes, the challenges
they encountered during each of these tasks, and general improvement
ideas.

Finally, the interview guide concludes with the question ‘‘Do you
have additional thoughts you want to express?’’ sometimes triggering
multiple more minutes of dialogue. We used this question to encourage
the participants to discuss additional topics we did not consider but that
they think are important.

We followed established guidelines for qualitative research (Adams,
2015; Goodrick and Rogers, 2015) and refined the interview guide
two times. After an initial pilot interview, we moved the questions for
general improvement ideas from the last category into the provider and
consumer API change categories to improve the interview flow. After
the fourth interview, we added a background question about the used
development and deployment technologies to have a clear picture of
the participants’ systems.

In total, we conducted 20 interviews but excluded three from the re-
sults (cf. Section 2.3). We designed the interview guide to last between
60-90 minutes. Depending on the available time frame and involvement
of the participants, the interviews lasted around 71 min (min = 52;
max = 92; mean = 70.9; median = 71 minutes). Due to the SARS-
CoV-2 pandemic and physical distance, we conducted 11 interviews
via online videoconference and 6 interviews in person. We did not
observe noticeable differences in the openness or involvement of the
participants between these two modes.
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2.2. Interview analysis

We analyzed the interviews qualitatively to answer the open-ended
research questions. First, we recorded each interview and transcribed
it verbatim. Then, we applied open coding (Corbin and Strauss, 1990)
used in grounded theory (Glaser and Strauss, 1967; Adolph et al.,
2011). In this method, individual interview statements, e.g., ‘‘You
already have a set of test cases that you can run against the old interface.
You will see immediately when you introduce something that breaks it’’,
are labeled with matching codes, e.g., test the interface on changes.
The codes are then assigned to categories, e.g., contract testing, which
themselves form a hierarchy, e.g., contract testing is a subcategory of
the regression testing strategy.

The first author analyzed all interview transcripts statement by
statement, identified the codes, and organized them into a hierar-
chy of categories. We applied investigator triangulation (Campbell
et al., 2013), i.e., the second and third authors analyzed two random
interview transcripts independently and we discussed the identified
categories to increase the result quality (O’Connor and Joffe, 2020). We
achieved coder agreement after short discussions, mainly on the phras-
ing of categories with the same meaning. We analyzed all interviews
iteratively, i.e., using the resulting codebook from the previous session
for the next interview transcript. After 12 analyzed interviews, the
codebook began to stabilize, i.e., we only found a few new categories
for the following two interviews and the last three interviews did not
add any new categories but instead only repeated existing ones. Hence,
we reached theoretical saturation (van Rijnsoever, 2017).

We structured the categories into the following topics: background,
communication and documentation, API evolution strategies, API evo-
lution challenges, and improvement ideas. This structure allowed us
to answer the research questions directly from the code book. Addi-
tionally, we used the findings to build an overall theory of two impor-
tant underlying problems in microservice API evolution. In this paper,
we used the format (𝑖/17) to indicate the number 𝑖 of participants
upporting a finding.

We applied member checking (Runeson et al., 2012) by sharing
he study results with our interview participants for feedback and
alidation. Therefore, we created a draft report and per participant
ighlighted all findings and statements where we considered their
nswers. We sent out the 17 individually highlighted reports and re-
eived 13 responses. Two participants had minor remarks which we

incorporated and the others fully agreed with our interpretations.
Finally, we identified related works and literature for our findings

nd included them per result category. This approach helped to support
r reject our qualitative results, put them into relation, and strengthen
he overall theory.

.3. Participant selection

Our participants had to be developers, architects, or managers work-
ng on developing loosely coupled services exposing an API, e.g., Rep-
esentational State Transfer (REST) or event-driven communication, for
t least one year. Similarly to other studies (Safwan and Servant, 2019;
arcía et al., 2020), we contacted previous colleagues and applied

nowball sampling (Biernacki and Waldorf, 1981), i.e., asked them to
orward our interview request to their peers matching our requirements
s potential participants. Considering the explorative nature of the
tudy, this sampling technique is sufficiently effective for theoretical
aturation (Baltes and Ralph, 2022).

We continuously advertised our call for interview participants to
olleagues while conducting and analyzing the scheduled interviews.
n total, we contacted 25 colleagues directly and stopped sending out
dditional requests once our codebook reached saturation. We only
ccepted a maximum of three interview partners per company on a
irst-come, first-served basis. Through the snowball sampling, we con-
3

ucted 20 interviews with participants from 12 companies but excluded
three of the interviews from the results. One excluded participant
(C4-P1) worked in a team of only two developers, who created their
API solely for the front end and, hence, handled API evolution like
any other internal source code change. Another participant did not
introduce breaking changes to their product’s APIs yet and did not
consume any external APIs. The third excluded participant learned of
our intermediate results and was excluded to avoid biased answers.

In total, we report on the results of 𝑛 = 17 interviews from 11
companies. All participants are industry practitioners with an average
practical experience of 10 years (min = 2; max = 25; mean = 10.2;

edian = 10 years) and an average of 4.5 years of practical experience
ith loosely coupled systems (min = 1; max = 7; mean = 4.6; median =
years). Their highest relevant education ranges from a technical high

chool diploma to a doctoral degree (Ph.D.). The technical roles include
ix developers, four senior developers, and seven architects, including
wo principal architects. The participants work on three types of loosely
oupled systems: MSA, loosely coupled services that they consider too
arge to be called microservices, and self-contained systems (Cerny
t al., 2017) where multiple microservices share a code base. We
onsider all systems loosely coupled because they use the MSA’s smart
ndpoints and dumb pipes communication approach, which allows
he components to evolve independently. Table 1 contains the details
bout the individual participants. Their companies focus on various
ndustry fields, and we classified the company sizes based on their staff
eadcount according to the European Union small and medium-sized
nterprises definition.1 Table 2 contains the company details.

. Message exchange techniques (RQ1)

This section presents the message exchange techniques used in
ractice and their corresponding documentation techniques, which we
licited with the communication questions of our interview guide.
ence, this section answers RQ1: What means do developers use to
xchange messages between services, and how do they document them?

.1. Answer to RQ1

The two most popular message exchange techniques among the
articipants are Representational State Transfer (REST) APIs and event-
riven communication. On average, REST APIs make up 66.8% of the
otal communication (min = 5%; max = 100%; mean = 66.8%; median

85%) and event-driven communication makes up 22.6% of the total
ommunication (min = 0%; max = 95%; mean = 22.6%; median =
0%). Some participants provide and maintain Simple Object Access
rotocol (SOAP) APIs (min = 0%; max = 60%; mean = 12.8%; median
0% of the total communication). However, they no longer develop

ew SOAP APIs but only maintain existing ones for legacy consumers
nd plan to discontinue them once all consumers migrated. Fig. 1
isualizes the proportion of the three communication techniques among
he interview participants as violin plots. All participants use Open-
PI and Swagger tools to document their REST APIs automatically.
dditionally, many participants manually supplement this documen-

ation with wiki pages or in-line source code documentation. The
articipants refrain from documenting the event-driven communication
ormally because it targets system-internal services with well-known
aintainers.

Notably, we heard of specialized protocols such as GraphQL2 for
PI querying, Websockets for bidirectional communication, and Google
rotocol Buffers3 for serialization. However, only a maximum of two
articipants mentioned them, and hence, we did not include them in
he detailed results. In the following, we present the details of the two
ain communication techniques.

1 https://single-market-economy.ec.europa.eu/smes/sme-definition_en.
2 https://graphql.org/.
3
 https://protobuf.dev.

https://single-market-economy.ec.europa.eu/smes/sme-definition_en
https://graphql.org/
https://protobuf.dev
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Table 1
Backgrounds of the interviewed participants. The principal architects coordinate multiple systems and teams.

Participant
code

Highest education Technical role Expa (yrs) Expb (yrs) System architecture System
sizec

Team
size

C1-P1 Bachelor Developer 7 3 MSA and monolith 25 6

C2-P1 Ph.D. Principal architect 13 6 MSA – –
C2-P2 Ph.D. Architect 10 6 MSA 50 6
C2-P3 Master Architect 10 6 MSA 50 6

C3-P1 Master Architect 10 3 Services 6 10
C3-P2 Bachelor Developer 4 4 Services 7 10
C3-P3 Technical high school Developer 7 5 Services 20 17

C5-P1 Master Senior developer/Technical lead 10 4 Services 30 5
C5-P2 Technical high school Senior developer 7 6 Services 30 5

C6-P1 Bachelor Senior developer/Technical lead 15 3 MSA 15 15
C7-P1 Master Developer 4 3 Services and monolith 3 6
C8-P1 Bachelor Developer 6 3 MSA 10 10
C9-P1 Ph.D. Developer 2 1 MSA and Function-as-a-Service 70 3
C10-P1 Master Architect 14 7 MSA and monolith 15 7

C11-P1 Master Architect 9 7 Self-contained systems and monolith 20 6
C11-P2 Master Principal architect/Department head 20 7 Self-contained systems and monolith – –

C12-P1 Technical high school Senior developer/Product manager 25 5 Services 40 13

a Total practical experience.
b Practical experience with loosely coupled systems.
c Number of loosely coupled components according to the system architecture.
Table 2
Backgrounds of the companies with the number of interview participants.

Company code Industry field Company size # P

C1 Construction Large 1
C2 Access management Large 3
C3 Automotive Large 3
C5 Video processing Medium-sized 2
C6 Retail Large 1
C7 Monitoring Large 1
C8 Process digitization Small 1
C9 E-commerce Small 1
C10 Traffic management Large 1
C11 Research and higher education Large 2
C12 E-mobility Large 1

Fig. 1. Proportion of communication techniques of the total communication among
interview participants.

3.2. Representational state transfer (REST)

All interview participants (17/17) provide REST APIs for their ser-
vices and transfer messages serialized into JavaScript Object Notation
(JSON).
4

3.2.1. REST APIs
The participants consider REST APIs a de facto standard for service

communication. They highlighted the ease of use and little setup time
for consumers, considering most developers are already familiar with
REST. Furthermore, most REST API frameworks support authorization
protocols such as OAuth 2.0 out-of-the-box. Hence, many participants
(9/17) explicitly state that they exclusively use REST for public-facing
APIs to customers. A few participants (3/17) provide client SDKs ab-
stracting the REST calls, but this approach increases the maintenance
overhead with each additionally supported development language.

Similar to the participants, the literature considers REST (Fielding,
2000) the de facto standard to publicly expose request–response APIs
for accessing data and computing resources of web services (Kratzke
and Quint, 2017; Zimmermann et al., 2020).

According to Aksakalli et al. (2021), REST APIs have the advantage
of easy implementation but require well-defined request–response data
structures and the availability of both the provider and consumer
services at call time to process a request correctly.

3.2.2. REST API gateways
Many participants (9/17) implement dedicated API gateways that

handle all incoming REST API requests. Their API gateways abstract the
individual services’ APIs and versioning by hiding the internal architec-
ture and only providing a single access point for external consumers,
enabling system transparency and loose coupling. Furthermore, the API
gateways centrally manage the authentication of requests and eliminate
the redundancy of implementing it for each service’s API individually.
Interestingly, most developers and senior developers (8/10) described
an API gateway, while only one architect (1/7) mentioned using it. We
assume that the REST API gateway is a typical implementation detail
and is mainly used and considered by developers.

A REST API gateway implements the Facade pattern (Gamma et al.,
1995) on component level (Zdun et al., 2017). Taibi et al. (2018)
recommend the API gateway as an extensible and backward-compatible
orchestration and coordination pattern, and an MSA without an API
gateway is considered bad practice (Taibi and Lenarduzzi, 2018; Akbu-
lut and Perros, 2019). As a disadvantage, the single API gateway is a
potential bottleneck. Load balancing techniques (Taibi et al., 2018) and
resiliency patterns (Mendonca et al., 2020), such as Retry and Circuit
Breakers, mitigate this disadvantage but increase the development and

runtime complexity.



The Journal of Systems & Software 215 (2024) 112110A. Lercher et al.

s
s
a
s
O
s
a
c

d
a
g
r
E
f
A
b

3

w
f
a
i
(
t
m
f
o
t
m
p
u
w
t

a
o
t
c
a
i
c
d
e
a
c

3

R
c
f
a
o

3.2.3. OpenAPI and Swagger documentation
All participants (17/17) use the OpenAPI specification4 to define

and document their REST APIs formally. The OpenAPI specification
allows the clear documentation and versioning of the REST API. They
further use Swagger tools5 to generate and visualize the OpenAPI
pecification in the browser automatically. Many participants (9/17)
hare the OpenAPI specification also with external consumers, who
re typically familiar with the format or even use OpenAPI them-
elves. In particular, many developers (7/10) recommended sharing the
penAPI specification, including all four senior developers. Moreover,

ome participants (5/17) use the OpenAPI and Swagger capabilities to
utomatically generate server code, consumer code, contract tests, and
lient SDKs.

OpenAPI is a vendor-neutral description format by the Linux Foun-
ation and de-facto standard in the industry. Neumann et al. (2021)
nalyzed 500 REST APIs and found that almost half automatically
enerate the specification with Swagger. Various practical tools6 and
esearch approaches (Koren and Klamma, 2018; Peng et al., 2018;
d-Douibi et al., 2020; Karlsson et al., 2020) utilize the OpenAPI speci-
ication format. However, the OpenAPI specification only describes the
PI structure, not the API behavior, e.g., authentication and relations
etween message fields.

.2.4. Supplementary manual documentation
Many participants (9/17) supplement the OpenAPI documentation

ith manual documentation about the REST API behavior in written
orm or UML diagrams. ‘‘It’s not enough to just show the REST interface
nd the parameters, you have to know some business context around
t’’ C3-P1. The participants mainly use wiki pages, e.g., Confluence
5/17), to manage supplementary documentation, where they also link
o previous API versions and the OpenAPI specification. The supple-
entary documentation explains the authentication processes, message

ields’ semantics and relationships, and error handling and recovery
ptions. While the senior developers did not mention manual documen-
ation, both principal architects and another architect even maintain
anual documentation of the REST API structure, e.g., REST endpoints,
arameters, and example calls. Swagger tools could generate such doc-
mentation automatically, however, in a more technical format. Hence,
e presume architects prefer a manually created overview compared to

he technical OpenAPI documentation with implementation details.
OpenAPI only serves as a specification for a REST API’s structure

nd input and output formats. The API’s behavior and semantics are
ften documented in natural language or even missing. For instance,
he relationship between the two fields balance value and tax flag
ould vary. If the tax flag is set, it could mean the tax value was
dded to the balance. Alternatively, it could mean that the balance
s deductible. Such resulting ambiguity of behavior and semantics
omplicates integrating multiple services with different contexts and
omain vocabulary (Cremaschi and De Paoli, 2017). Schwichtenberg
t al. (2017) proposed an approach to derive the semantics by semi-
utomatically matching the OpenAPI structure with public ontology
oncepts. Still, the OpenAPI does not document the API behavior.

.2.5. Internal source code documentation
Notably, some participants (6/17) do not document system-internal

EST APIs on the API level. Instead, they prefer reading the source
ode and in-line code documentation directly, which they consider
aster than loading the Swagger-generated documentation and manu-
lly identifying the semantics and behavior from it. This preference was
nly expressed by participants not working on MSA but larger services,

4 https://spec.openapis.org/oas/v3.1.0.
5 https://swagger.io/tools/.
6

5

https://openapi.tools.
where the whole code base is already loaded in the development
environment.

This documentation strategy for system-internal functionality fol-
lows conventional development practices and is unrelated to loosely
coupled systems. Hence, we refer to conventional source code docu-
mentation research, e.g., Shmerlin et al. (2015).

3.3. Event-driven communication

Many participants (13/17) use event-driven communication pat-
terns, such as publish–subscribe and message queues, system-internally
to send asynchronous messages via message brokers. We identified
that the participants with a team size of more than ten do not utilize
event-driven communication. Considering its typically limited docu-
mentation, we presume that this communication technique creates
more implicit knowledge than REST APIs, posing problems for larger
teams.

3.3.1. Asynchronous messaging and message brokers
The participants (13/17) use asynchronous messaging whenever

real-time responses are not required and eventual consistency is ac-
ceptable, e.g., on state updates or completion notifications of long-
running processes. ‘‘It’s the cloud. It’s async anyways, why not make it
explicit?’’ C5-P1. The participants mainly use the two message broker
technologies RabbitMQ7 (6/17) and Apache Kafka8 (3/17). Some par-
ticipants (6/17) emphasize that this abstraction layer helps to loosely
couple the system. New services are easily added and removed as
publishers and subscribers without adapting any other services. Sim-
ilarly, asynchronous messaging helps integrate services with an exist-
ing monolith by notifying them about internal events without alter-
ing the monolith’s original program flow. Consequently, all partici-
pants maintaining a monolith as part of their system use event-driven
communication, except for one (4/5).

Asynchronous communication via message brokers, a type of simple
message-oriented middleware (Yongguo et al., 2019; Sommer et al.,
2018), decouples services during development, deployment, and run-
time. RabbitMQ and Apache Kafka are two of the most popular message
broker technologies (Yongguo et al., 2019). They automatically store
and distribute messages for immediate or later consumption by any
subscribed service. Contrary, calling a REST API requires the explicit
knowledge and availability of all directly called services. As a down-
side, introducing message brokers increases the system’s complexity
because they hide communication paths and dependencies between the
services (Aksakalli et al., 2021).

3.3.2. Limited documentation of event-driven communication
Contrary to REST API documentation, only a few participants (3/17)

explicitly document the event-driven communication, and only one of
them uses the AsyncAPI9 specification. We theorize most participants
do not formally document their event-driven communication because it
aims at system-internal communication. Hence, the audience for such
documentation consists mainly of other company-internal developers
with access to the source code (cf. Section 3.2.5). ‘‘Actually, it’s quite
easy to look into the services to get an idea how the payloads look like and
so on’’ C5-P2. In contrast, REST APIs are open to external consumers
and customers with less technical or domain-specific backgrounds.

AsnycAPI is the de-facto industry standard for documenting
message-based communication (Gómez et al., 2020). Interestingly, it
is not well recognized by our interview participants who rely on the
source code instead. Aksakalli et al. (2021) stated that the advan-
tage of the MSA is eliminated once the system dependencies become

7 https://www.rabbitmq.com.
8 https://kafka.apache.org.
9
 https://www.asyncapi.com/docs/reference/specification/v2.6.0.

https://spec.openapis.org/oas/v3.1.0
https://swagger.io/tools/
https://openapi.tools
https://www.rabbitmq.com
https://kafka.apache.org
https://www.asyncapi.com/docs/reference/specification/v2.6.0
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Table 3
The API evolution strategies with participant and company counts.

API evolution strategy # P # C Perspective

Accept necessary breaking changes 17 11 Provider
Understand the reasons for breaking changes 17 11 Provider
Consider structural and behavioral changes 5 4 Provider

Stay compatible and avoid unexpected breaking changes 17 11 Provider
Work around breaking changes 17 11 Provider
Regression test the API 10 8 Provider
Think ahead and design a dynamic API 6 6 Provider

Version the API 17 11 Provider
Create a new version on breaking changes 17 11 Provider
Expose multiple versions simultaneously 13 8 Provider

Collaborate with other teams 15 9 Both
Actively involve consumer teams 14 8 Provider
Follow the API-first approach 11 8 Both

Internally, just break (and fix) it 11 10 Both

Abstract external systems’ APIs 6 5 Consumer

unmanageable. Accordingly, dynamic monitoring approaches such as
Helios (Popescu, 2010; Popescu et al., 2012) and D2Abs (Cai and Thain,
2016; Cai and Fu, 2022) are used to identify or recover undocumented
dependencies and potential change impacts between services.

4. API evolution strategies (RQ2)

This section presents the API evolution strategies that we found with
the provider and consumer API evolution questions and the additional
thoughts discussions of our interview guide. It answers RQ2: Which
strategies do developers follow to introduce and communicate API changes
in loosely coupled systems?

4.1. Answer to RQ2

The interview participants apply five strategies to evolve the pro-
vided microservice APIs and one to handle the evolution of consumed
APIs. Table 3 contains the complete list formulated as comprehensive
best practices that practitioners should follow when evolving microser-
vice APIs.

First off, all participants must deal with breaking changes from
adding or improving provided functionality and system maintenance
efforts. All participants stay compatible with existing consumers and
actively avoid introducing unexpected breaking changes. Many partici-
pants apply regression testing to detect unintentional breaking changes
before release. Some participants implement dynamic APIs allowing
custom queries where consumers decide the message fields in the
response. All participants version their APIs and indicate breaking
changes with increased version numbers. Many provide multiple API
versions allowing consumers to migrate at their own pace. Most par-
ticipants collaborate with dependent teams by discussing the planned
API changes before implementation. They focus on the API definition
before implementing the underlying functionality in parallel. Many
participants agree that system-internal changes without impact on the
public API do not require special handling, e.g., formal planning or
versioning. From the consumer perspective, some participants promote
an abstraction layer for external systems that handles authentication
and message translations. In the following, we present the details of
each strategy.

4.2. Accept necessary breaking changes

According to Lehman’s laws of software evolution (Lehman, 1979),
real-world software systems require maintenance and evolution to stay
relevant. Consequently, all participants (17/17) must deal with break-
ing API changes from the provider perspective.
6

4.2.1. Understand the reasons for breaking changes
From the interviews, we identified four main reasons for breaking

changes: (a) introducing new functionality (12/17), e.g., extending
existing workflows or providing more diverse workflows and APIs,
(b) changing the underlying technology (8/17), e.g., migrating to a
new cloud provider or updating the programming language version,
(c) improving existing functionality (6/17), e.g., merging similar work-
flows or improving performance, and (d) improving the API design
(6/17), e.g., removing outdated workflows or restructuring the exposed
API. Other reasons include bugfixing (4/17), introducing or changing
security and authentication techniques (4/17), and migrating to a
changed external system’s API (4/17). We did not identify any notable
differences between the participants’ backgrounds and the mentioned
breaking change reasons. Hence, we consider the top four reasons
generally applicable. While the participants frequently introduce non-
breaking changes, they only introduce breaking changes quarterly to
half-yearly to provide enough lead time for affected consumers. Two
exceptions are bugfixes and external API migrations, which require
timely breaking changes to retain a stable system again.

Xavier et al. (2017) analyzed changes in Java library APIs and iden-
tified 28% as breaking. Brito et al. (2020) found three main motivations
for breaking library API changes, which are similar to our findings:
implementing new features, simplifying the API, and improving main-
tainability. Li et al. (2013) stated that more than 80% of web service
API changes are refactorings, matching our findings for improving the
existing functionality and API design.

4.2.2. Consider structural and behavioral changes
Our participants described two types of breaking changes: structural

and behavioral. All participants (17/17) considered structural changes,
e.g., deletions and renamings, breaking changes. Interestingly, only a
few participants (5/17) identified behavioral changes, e.g., changing
a timestamp’s timezone or returning unexpected values, as harmful
and handled them as potential breaking changes. ‘‘The customer still
recognizes that the values changed from last time and then triggers a support
ticket to ask about it’’ C3-P2. Some participants (6/17) intentionally
introduce behavioral changes to avoid structural changes and use or-
ganizational strategies as justification, e.g., declaring all fields optional
(cf. Section 4.3.3).

Newman (2021) called the two breaking API change types structural
and semantic, and the service’s internal behavior influences the seman-
tics. Dig and Johnson (2006) considered behavioral changes in Java li-
braries breaking because changed computation results require different
consumer-side handling. Similarly, Fokaefs and Stroulia (2014) clas-
sified web API changes as no-effect, adaptable, and non-recoverable,
representing internal, structural, and behavioral changes, respectively.
They justified their terminology because structural changes are recov-
erable by adding wrappers around consumer services, but behavioral
changes require code changes and re-deployment to handle the changed
computation results.

4.3. Stay compatible and avoid unexpected breaking changes

The main strategy from the provider perspective, followed by all
participants (17/17), is to avoid unexpected breaking changes and
to stay backward compatible with consumers. ‘‘We ensure that we
don’t have any breaking changes, unless it’s absolutely necessary’’ C2-P2.
The participants do not actively notify API consumers about back-
ward compatible changes, except for the persons requesting the new
functionality.
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4.3.1. Work around breaking changes
Whenever possible, the participants (17/17) plan and implement

workarounds to avoid breaking changes to their APIs. ‘‘We would discuss
this, what it means, what is affected by it, and then we try to find a solution
that does not change something for the [existing consumers]’’ C10-P1.
Many participants (11/17), especially the ones with smaller system
sizes, recommend extending an API by adding or duplicating endpoints,
messages, and fields instead of changing them to ensure compatibility
of the new functionality with existing consumers. Similar to the indi-
vidual APIs, the overall system’s business workflow should not break
after introducing changes. The execution order and results for each
step in a workflow should stay compatible with all existing consumers.
This is especially important for long-running workflows, e.g., ordering,
preparing, and shipping a product, where breaking workflow changes
would disrupt any open orders. However, one participant warns of
introducing tailored APIs for single use cases to avoid breaking changes
in others. In their experience, this fragments the APIs and increases the
system’s complexity.

Theoretically, this compatibility strategy provides the best results
for providers, who only maintain a single API version, and consumers,
who do not need to change their implementation. In practice, avoiding
breaking API changes is not always possible (Xavier et al., 2017; Brito
et al., 2020). Daigneau (2012) advocated the Tolerant Reader pattern
or consumers, e.g., only accessing needed message fields, not relying
n sorting but identifiers, and wrapping domain-specific objects in
ore general structures such as lists and maps, to reduce consumers’

usceptibility to breaking changes.

.3.2. Regression test the API
Many participants (10/17), including all four senior developers,

ecommend regression testing to detect accidentally introduced break-
ng changes before re-deploying their services. ‘‘You already have a
et of test cases that you can run against the old interface. You will see
mmediately when you introduce something that breaks it’’ C2-P3. ‘‘Before
eleasing, we run each and every test we have - and this is a quite huge
est suite - over the last release version again to make sure nothing did
reak in between, since the last release’’ C5-P2. We found that most
articipants following MSA and all participants with a system size of
0 components or more apply this strategy. We presume that the loose
oupling and increased system complexity require such automated test-
ng approaches to identify inestimable breaking changes. Unit testing
f the source code detects behavioral changes, e.g., changed result
alues, and contract tests detect structural and behavioral changes
n the API, e.g., required parameters or unexpected response objects.
inally, a few participants (3/17) execute complete end-to-end tests to
nsure functionality and backward compatibility for the most important
orkflows. When introducing planned breaking changes, the loose

oupling of services requires the developers to adapt their contract test
oubles to the changes manually. ‘‘At the point of writing, my test data
as the format that you would say it will have. If you change it, then I will
ave to change my test data as well’’ C6-P1.

Regression testing is an established practice to raise confidence that
rogram modifications have no unexpected adverse effects (Leung and
hite, 1989; Wong et al., 1997). Biswas et al. (2011) concluded that

egression testing component-based systems helps to detect indirectly
odified APIs after behavioral changes in the business logic. While only
few participants stated the types of tests they employed, we expect

hem to use the functional tests for MSA recommended by Richardson
2018): unit tests, integration or contract tests, component tests, and
nd-to-end tests. Chen et al. (2021) identified test case generation as
n open concern in grey literature. Godefroid et al. (2020) proposed
n approach for regression testing structural and behavioral REST
PI changes by automatically generating requests and comparing the
7

esponses for multiple service and consumer version combinations.
rameworks, such as Spring Cloud Contract10 for Java and pact-net11

or .NET, simplify REST API testing. They generate server stubs for
onsumer-side testing and define a domain-specific language to write
equests for server-side tests. Demircioğlu and Kalipsiz (2022) proposed
egression testing for message-driven APIs. They extracted low-level
CP and UDP package payloads and reverse-engineered the request and
esponse messages into future regression test cases.

.3.3. Think ahead and design a dynamic API
Some participants (6/17) recommend that providers design dynamic

PIs with the goal of flexibility, resulting in fewer breaking changes.
ynamic APIs publish all available fields of a response object, and con-

umers pre-filter them as part of the request. The consumers then only
eceive their subset of fields, potentially containing null values. The API
roviders must plan ahead and consider current and future use cases
nd their expected responses to allow such dynamic APIs. ‘‘Therefore,
n general, we [...] think ahead and we try to add many times also attributes
n advance’’ C9-P1. With this approach, the developers design a clear,
xtensible, multi-purpose API for the underlying functionality instead
f a specific API tailored to the current use cases. The participants
ecommend JSON objects compared to strings or binary because JSON
llows for hierarchies, lists, and null values. We found that none of
he participants following this strategy mentioned improving existing
unctionality as a reason for breaking changes. Instead, such changes
xtend the dynamic API or its filter options and response objects may
ontain additional null values. A few participants (3/17) declare most
ields optional to avoid future breaking changes. Notably, all advocates
f dynamic APIs also apply the regression testing strategy. We attribute
his to the increased size and complexity of dynamic APIs to support
uerying and filtering. Accordingly, the evolution of dynamic APIs
reates more maintenance overhead than simpler APIs. Surprisingly,
nly one participant mentioned GraphQL, a query language specialized
n querying a subset of response fields. The others implemented the
ynamic APIs with REST.

Bloch (2006) advised self-explanatory and extensible APIs. They
hould not overconstrain but serve multiple use cases. Consumers
dhering to the Tolerant Reader pattern (Daigneau, 2012) can react to
hanges in list sizes, hierarchical structures, and null values of APIs
racefully and might even recover from moved fields. Brito and Valente
2020) showed that GraphQL queries required less implementation time
han REST, with improved results for increased query complexity. Brito
t al. (2019) found that client-specific GraphQL queries allowed a
eduction of JSON response fields by 94% compared to REST. Wittern
t al. (2019) revealed exponential response times and sizes for GraphQL
ueries in practice and recommended throttling requests and pagina-
ion techniques. Similarly, Quiña-Mera et al. (2023) concluded that
raphQL requires more best practice examples and improvements in
uery complexity, code generation, and security. These findings might
xplain our study results, where only one participant used GraphQL
hile others preferred custom REST implementations.

.4. Version the API

All participants (17/17) apply versioning as providers to evolve
heir APIs and consumers use the version information in requests and
essages to access the corresponding API version of a service. ‘‘We have
efined that for every API that is accessible from the outside we do have
ersioning’’ C3-P1. Notably, the participants focused on REST APIs when
iscussing versioning and we identified versioning for event-driven
ommunication as a challenge (cf. Section 5.7).

10 https://spring.io/projects/spring-cloud-contract.
11 https://github.com/pact-foundation/pact-net.

https://spring.io/projects/spring-cloud-contract
https://github.com/pact-foundation/pact-net
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4.4.1. Create a new version on breaking changes
All participants (17/17) increase the API version when introducing

breaking changes as providers. Non-breaking changes, such as exposing
new endpoints or extending message objects, are implemented in the
latest API version directly. The participants use increasing integer
values for enumerating the API versions, e.g., 𝑣1, 𝑣2. A few partici-
pants (5/17) explicitly mentioned semantic versioning,12 all of whom
hold architectural roles. We assume they are used to understanding and
emphasizing the exact versions during discussions. Still, only the major
version number in semantic versioning indicates breaking API changes
and is relevant for consumers. Hence, the requests to a versioned
API only require the major version number to indicate compatibility,
independently of the internal versioning granularity.

Semantic versioning or integer versioning are well-known strategies
for indicating breaking changes in API management (Koçi et al., 2019;
Knoche and Hasselbring, 2021). Neumann et al. (2021) analyzed 500
REST APIs and found that 65.4% exposed the major version within the
request call. Similarly, Serbout and Pautasso (2023) analyzed 7,114
REST APIs, and the majority used static versioning in the URI or request
metadata (70.1%) or dynamic version discovery through a dedicated
endpoint (3.1%). Taibi and Lenarduzzi (2018) considered not having
API versioning as an MSA smell.

4.4.2. Expose multiple versions simultaneously
Ideally, a new API version supersedes the previous version, and

provider teams only maintain the latest version as a single source
of truth. In reality, many participants (13/17) expose multiple API
versions simultaneously to serve consumers who do not or only infre-
quently update their API calls. The newest features are only available in
the latest API version and all consumers requiring these features must
update their calls. Other consumers are unaffected and continue using
the previous API versions. The participants follow two approaches for
running multiple API versions in parallel: exposing all API versions in
the same service instance (8/17), and deploying each service version
separately (5/17). Most architects (6/7) prefer exposing all API versions
within the same service. They consider it easier to maintain because the
underlying business logic stays consistent. ‘‘So just this simple mapping
of DTOs. When you use the right technologies it’s quite OK and not that
much of effort’’ C2-P1. In contrast, deploying each service and API
version separately duplicates the source code base and requires more
complex message routing. Still, some participants (5/17) prefer the
smaller service instances and freedom in changing the source code per
version, including both participants working at small companies. We
did not discover notable differences for the participants’ approaches
with respect to their system architecture or size. The number of si-
multaneously exposed API versions typically ranges from 2 to 8. ‘‘We
have to keep the last three versions running, not more’’ C8-P1. ‘‘For core
systems we have about 7 to 8 breaking versions’’ C2-P1. However, the
participants only remove old APIs once all consumers migrated to the
newer version. After all, they must support all customers independently
of the used request versions. This sometimes requires the participants
to support old API versions indefinitely, especially for important and
slowly responding customers (cf. Section 5.3).

Newman (2021) proposed the same two strategies we found for
running multiple API versions in parallel: emulating the old interface,
i.e., exposing all API versions in the same service instance, and co-
existing incompatible microservice versions, i.e., deploying each service
version separately. Like our participants, he recommended emulating
the old interface because this approach is easier to maintain, evolve,
and monitor. Neumann et al. (2021) reported that about two-thirds of
the 500 analyzed REST APIs supported API version selection, indicat-
ing multiple active versions. The Parallel Change pattern (Sato, 2014)
requires both the old and new versions running for the consumers to

12 https://semver.org.
8

migrate at their own pace. Providers remove the old version once the
consumers finished the migration. Wang et al. (2014) found that web
APIs follow such deprecate-replace-remove cycles in practice. Serbout
and Pautasso (2023) encountered 135 out of 7,114 REST APIs with
multiple active versions and a maximum number of 14 coexisting ver-
sions. We explain the low number of 135 compared to our qualitative
result with their automated extraction approach. They extracted the
version information from the OpenAPI specifications, where we expect
providers to motivate consumers to use only the latest version (cf.
Section 5.5.1).

4.5. Collaborate with other teams

Most participants (14/17) closely collaborate with teams of con-
sumer services during the API evolution process by providing change
previews, receiving early feedback, and synchronizing integration.
While they are finally responsible for the evolution of their APIs, they
value consumers’ feedback. ‘‘So, if other product teams, for example, are
affected by this [change], then we first have some discussion rounds about
it’’ C5-P2.

4.5.1. Actively involve consumer teams
Most participants (14/17) discuss planned changes in provided APIs

with consumer teams and use the feedback to improve the underly-
ing workflow and API design before release. Participants with more
experience in loosely coupled systems were more likely to apply this
proactive collaboration strategy. Many participants (11/17) schedule
meetings for the discussions. According to them, one or two people
per dependent system are involved in such meetings, which take up to
one hour. A few participants (3/17) distribute API version previews for
asynchronous feedback loops. The architects, including both principal
architects, prefer meetings, while three of the four senior developers
prefer the API previews for asynchronous feedback. We presume that
senior developers want to take their time to fully understand the
specification, whereas architectural meetings address the API use more
broadly.

Once all involved teams accept the proposed API design, they imple-
ment the services and consumers in parallel and add them to the testing
environment as soon as possible for additional feedback. Encountering
problems with the agreed-on specification during the implementation
phase triggers additional follow-up discussions. Finally, the developers
of multiple teams jointly write contract tests and plan the deployment
of the individual components. ‘‘But we also make the meetings to describe
the changes and make tests together on the QA systems and define a date
where they switch over to the new interface. And we monitor if it works for
them’’ C3-P1.

Richardson (2018) acknowledged that features spanning multiple
services require careful coordination between development teams. Bog-
art et al. (2021) found that developers considered breaking changes the
provider’s responsibility, who felt personally obligated to help resolve
them. This explains our participants’ close and proactive collaboration
approach. The collaboration results from the loosely coupled system
architecture, which, by itself, does not provide any immediate feedback
on the implementation’s and integration’s correctness (Pautasso and
Wilde, 2009).

4.5.2. Follow the API-first approach
To simplify the collaboration efforts, many participants (11/17) dis-

cuss and agree on an API definition before starting the implementation.
This API-first approach continuously improves the API design based
on encountered design issues and consumer feedback without having
to implement the actual logic behind the interfaces. ‘‘It’s an iterative
process. There is no shame in having a final-v2’’ C6-P1. The main goal
is to create a well-defined API, not a functional prototype. According
to the participants, the API-first approach improves the overall design
by focusing on readable, self-documenting, and reusable APIs. ‘‘Both

https://semver.org
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the [internal developers] and the customer using the public API have a
nice experience and get all the same information’’ C7-P1. Furthermore,
changing a preliminary API definition requires less effort than changing
a partially implemented system. Most participants following MSA apply
the API-first approach (7/8). We expect that the small microservice size
facilitates the creation of a complete API specification, which, in turn,
allows stubbing the actual functionality during development.

The participants use the OpenAPI specification (cf. Section 3.2.3)
to document and distribute the REST API definition when following
the API-first approach. All participants applying the API-first strategy
also actively involve consumer teams (cf. Section 4.5.1), except for
one (10/11). We presume that the formalized OpenAPI specification
simplifies such collaborations. Some participants (5/17) further use the
OpenAPI specification to automatically generate server code, consumer
code, contract tests, and client SDKs. Interestingly, this was mentioned
by most senior developers (3/4) and two architects, but not by other
developers who typically work at this design level.

Kopecký et al. (2014) described the API-first approach as first
building the functionality as API and only then creating clients for
that API. Hence, developers design APIs to provide their business func-
tionality to the outside, not only to support specific use cases (Wilde
and Amundsen, 2019). Beaulieu et al. (2022) concluded that the API-
first approach creates clear and well-defined APIs that expose business
capabilities, reduce the domain coupling with consumers, and allow
parallel development.

4.6. Internally, just break (and fix) it

Many participants (11/17) agree that internal breaking changes are
easier to implement and integrate from a provider perspective and,
hence, occur more frequently. Internally refers to the accessibility scope
of the breaking API, i.e., the affected consumers are company-internal,
well-known, or their source code is directly accessible. In this case,
many developers (9/17) introducing breaking changes also change all
the consumers and the test suites. Some developers (6/17) are in close
contact with the colleagues maintaining the consumers, or directly
create pull requests for the consumers’ source code. Accordingly, a
few participants (4/17) explicitly stated they do not version internal
APIs, but update, test, and redeploy them directly. We could not
identify notable differences in the answers for this strategy regarding
the participants’ backgrounds and assume that it is generally applicable.

However, this evolution strategy for internal APIs is unrelated to the
MSA. Hence, we refer to conventional source code evolution research,
e.g., Brito et al. (2020).

4.7. Abstract external systems’ APIs

From a consumer perspective, some participants (6/17) use dedi-
cated integration services to abstract communication with external sys-
ems. These services handle the authentication with the external sys-
ems and translate request and response field names to the internal
omain names. The internal services then do not know about the
ctual external systems they communicate with. This allows the in-
egration services to partially handle breaking changes in external
ystems, e.g., changed authentication, moved or renamed fields, and
ome semantic changes, and convert them back to the expected values.
ence, they minimize error propagation, and an external API change
ight not affect other internal services. Notably, only participants
orking in large companies mentioned this consumer strategy.

The integration service is the consumer-side counterpart of the API
ateway (cf. Section 3.2.2). This abstraction layer follows the Proxy

and Facade patterns (Gamma et al., 1995) on the component level,
e.g., implementing access functionality and simplifying the external
interfaces. Espinha et al. (2015) conducted six interviews where the
developers advised to contain external web API changes to a small
set of files. Similarly to our participants, Fokaefs and Stroulia (2014)
considered structural changes recoverable by adding a wrapper to the
original consumer service. Similarly, Wu et al. (2016) recommended
9

encapsulating external libraries to reduce the potential change impact.
Table 4
The API evolution challenges with participant and company counts.

API evolution challenge # P # C Perspective

Manual change impact analysis is error-prone 14 11 Both
Code changes affect the API unexpectedly 9 7 Provider
Understanding consumed APIs’ changes is effort 9 7 Consumer

Consumers rely on API compatibility 12 7 Provider

Communication with other teams lacks clarity 9 7 Both
Consumers might be unknown 7 5 Provider
Informal communication channels 17 11 Both
Communication suffers from hierarchy 6 4 Both

API maintainability and usability degrade over time 14 9 Provider
Outdated API versions add maintenance overhead 10 8 Provider
Backward compatibility increases technical debt 9 6 Provider

Governmental services are uncooperative 6 4 Consumer

Event-driven communication evolution is disregarded 7 4 Both

5. API evolution challenges (RQ3)

This section presents the API evolution challenges that the partici-
pants encountered. We elicited them with the provider and consumer
API evolution questions and the additional thoughts question of our in-
terview guide. This section answers RQ3: Which challenges do developers
face when introducing and communicating API changes in loosely coupled
systems?

5.1. Answer to RQ3

We identified six challenges in the API evolution process, out of
which three result in degrading API maintainability and usability.
Table 4 contains the complete list formulated as comprehensive pitfalls
for practitioners.

First, most participants encounter problems in understanding the
impact of source code changes on their own APIs as providers and
the impact of external API changes on their services as consumers.
Second, consumers of many participants fully rely on API compat-
ibility and refrain from migrating to a new version. Third, many
participants consider communicating with other teams challenging,
especially company-externally. They follow no general communication
strategy and suffer from hierarchical communication. As a result of
these challenges, the API cannot evolve sustainably, and most par-
ticipants report degrading API design and increasing technical debt.
In contrast, governmental services choose to evolve APIs regardless
of consumer concerns, which poses a challenge for some participants
consuming them. Finally, we noticed that participants hesitated to
discuss event-driven communication, and some deemed evolving event-
driven communication challenging. In the following, we present the
details of each challenge.

5.2. Manual change impact analysis is error-prone

Most participants (14/17) find assessing source code and API change
impact challenging. Based on the provider and consumer perspectives,
we split this challenge into two: understanding the impact of source
code changes on the provided APIs and understanding the impact of
external API changes on the consuming services.

5.2.1. Code changes affect the API unexpectedly
Many participants (9/17) state that development teams must man-

ually assess the impact of source code changes on the APIs they
provide. They experienced that the developers sometimes overlooked
that they introduced breaking changes to the API and published them
without versioning or notifications. ‘‘From time to time we face problems,
but mainly because some team has overlooked that it has been doing a
breaking change’’ C2-P1. We found that most participants dealing with
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this challenge recommend the collaboration strategy (cf. Section 4.5),
which helps to resolve any breaking changes that are only identified by
consumers (8/9).

Moreover, technology changes, such as library or language version
updates, may result in unexpected side effects for the API that are not
visible in the code base. We found that all participants mentioning
changing the underlying technology as a reason for breaking changes
(cf. Section 4.2.1) encountered this challenge, except for one (7/8). As
a solution, one participant uses git diff to extract the changes between
two generated OpenAPI specification versions manually to identify
overlooked structural breaking changes. However, developers lack the
tools to identify behavioral changes and, hence, a few participants
(4/17) consider them especially challenging. Static analysis tools have
problems detecting behavioral changes, e.g., changes in the return
values of methods, and automated tests cannot cover all execution
paths. ‘‘When you go into this [...] topic, it’s not so easy to test all
constellations’’ C10-P1.

Static analysis tools, e.g., openapi-diff,13 extract structural changes
etween two OpenAPI specification versions. However, Rubin and Ri-
ard (2016) conducted 35 interviews with software developers and
eported that integration challenges are mainly related to semantic
nd behavioral changes introducing unpredicted side effects. Sorgalla
t al. (2018) proposed model-driven microservice development. They
ssessed the impact of model changes by assembling the system to
xecute integration tests and marked the conflicting microservices. Ma
t al. (2019) automatically prioritized contract and unit tests based on
he service dependencies to identify and prevent unexpected breaking
hanges in the MSA faster. However, these approaches require access to
he whole system’s source code and sufficient test coverage. Chaturvedi
nd Binkley (2021) applied web service slicing by identifying changed
SDL operations based on the source code’s behavioral changes and

sed the slice for regression test selection. Static analysis approaches
or the source code level (Hanam et al., 2019; Nguyen et al., 2019) used
ontrol and data flow analysis techniques to extract semantic changes
nd their impact without relying on test execution. However, they do
ot apply to the service API level.

.2.2. Understanding consumed APIs’ changes is effort
Many participants (9/17) encountered problems with analyzing

xternal API changes from a consumer perspective. We found that the
articipants do not follow a generalizable strategy when filtering exter-
al change notifications for relevancy or assessing the change impacts,
xcept that they do it manually. Sometimes (6/17), the development
eams are the ones who assess the impact of external changes directly.
he developers identify the dependencies and relevant service changes
y reading the change notifications, external documentation, and their
wn source code. Participants belonging to larger teams especially
entioned this time-consuming approach, including all three with
team size above ten. Understanding the external changes strongly

epends on the notification and documentation quality. ‘‘Because if it
ust says: API extension, there’s a new field in there, you think, yeah, for
hat?’’ C12-P1. If the notifications contain the thoughts and reasons

or the API evolution it is easier to identify, understand, and integrate
elevant changes. ‘‘The only challenge then is really to find any edge cases
hat are not described in the documentation, and which then will cause
rrors in our system’’ C11-P1. A few participants (4/17) acknowledged
hat provider teams pre-filter the notifications of breaking changes for
onsumer teams. While this approach reduces unnecessary communi-
ation, misjudgments result in system failures. ‘‘They just missed out on
ne change, because they didn’t know that it was important for us’’ C3-P1.
few participants (2/17) rely on dedicated roles, e.g., product owners

r architects, who know the service dependencies and actively inform

13 https://github.com/OpenAPITools/openapi-diff.
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the teams of external changes. As a downside, this approach relies on
individual peoples’ knowledge.

Xavier et al. (2017) found that, once known, breaking Java API
changes only impacted less than 3% of their consumers. Bogart et al.
(2021) discovered that most participants felt overwhelmed by the
number of change notifications and considered integrating them risky.
Dynamic analysis approaches for loosely coupled systems (Liu et al.,
2019; Guo et al., 2020) trace service calls at runtime to generate
a service dependency graph (SDG) and analyze behavioral changes
and performance issues over time. Similarly, Helios (Popescu, 2010;
Popescu et al., 2012) and D2Abs (Cai and Thain, 2016; Cai and Fu,
2022) identified dependencies and potential change impacts of services
at runtime by analyzing event-driven message handling. As a limitation,
these approaches require access to the system’s runtime environment,
which is not available to external consumers. Furthermore, they cannot
identify the actual impact of changes but only the potentially affected
services and methods.

5.3. Consumers rely on API compatibility

Many participants (12/17) report the challenge of convincing con-
sumers to update their API calls to the new version after introducing
breaking changes. As providers, the participants prefer removing out-
dated API versions and only focusing on the latest. Still, consumers rely
on previous API versions even after receiving requests to update their
calls within some timespan and, hence, hinder the clean-up process.
‘‘And then, if they changed, we can remove the old version finally. But
that’s always a bit more work because you have to keep the old version
compatible’’ C3-P1. We found that both participants working in small
companies did not report this challenge. Further, three participants
from only two large companies did not encounter the challenge, with
one of them not supporting any external consumers. Hence, we expect
this challenge to be generally applicable to larger companies that
typically support more consumers. We found two main reasons for
the consumers’ reluctance: the teams do not have enough resources
to update the API calls in the near future (9/17), or do not prioritize
changes to already working functionality (7/17). ‘‘Most of the customers
don’t touch the code anymore for one year or 1.5 years if it works’’ C5-P2.
Most participants suffering from this challenge apply the collaboration
strategy (cf. Section 4.5) (11/12). We presume that they attempt to
convince consumers to update their calls by discussing the planned
changes in advance and actively supporting the migration steps.

Some participants (5/17) explicitly stated they follow the never
hange a running system strategy as consumers themselves and only
igrate API calls if they require the new functionality. ‘‘What for, I
on’t need anything from 2.0 to 4.0, my world is running’’ C12-P1. This
pproach was only mentioned by developers and senior developers,
ossibly due to their direct exposure to developmental strain. While it
educes the development effort from a consumer perspective, the same
eams suffer from the slow and rigid migration strategy when their
onsumers apply it. Eventually, some participants (5/17) force their
onsumers to migrate their calls by turning off the outdated API version
ith a fixed, non-negotiable deadline, but this measure is not feasible

or business-critical APIs. ‘‘Yeah, we’re earning money with them so you
annot just say: sorry you cannot use it anymore’’ C2-P3.

In the early years, web services introduced breaking API changes
ithout versioning or with short deprecation periods, e.g., of three
onths (Li et al., 2013; Fokaefs and Stroulia, 2014; Wang et al., 2014;
spinha et al., 2015). Espinha et al. (2015) found that developers pre-
erred longer deprecation periods after conducting six interviews. Neu-
ann et al. (2021) reported that two-thirds of 500 analyzed REST APIs

upported version selection, indicating that breaking changes in newer
ersions did not immediately affect old consumers. Hora et al. (2018)
tudied the impact of library API changes. While more than half of the
nvestigated systems were potentially affected by changes, the majority
id not react and continued using the previous version. To prevent this
ehavior, de Toledo et al. (2021) suggested a clear period of support
hat should not be extended. However, this is often not feasible in

ractice.

https://github.com/OpenAPITools/openapi-diff
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5.4. Communication with other teams lacks clarity

Many participants (9/17) encountered problems in communicating
changes with other teams. Developers do not know whom to inform,
forget to notify the consumer teams, or convey the change information
incorrectly. ‘‘If something goes wrong, it’s communication’’ C3-P3.

5.4.1. Consumers might be unknown
The provider teams introducing breaking changes should know

which consumers are affected and how to contact the corresponding
teams, but some participants (7/17) miss knowledge or appropriate
documentation of consuming services and contact partners. Most par-
ticipants encountering this challenge reported that their consumers rely
on API compatibility (cf. Section 5.3) (6/7). After all, the participants
cannot reach out to notify them about breaking changes or request
migrations. The challenge is more prominent in larger teams, where
the knowledge may be more distributed. Interestingly, all participants
encountering this challenge also face difficulties in understanding the
impact of external API changes (cf. Section 5.2.2). If they are not
informed about breaking changes as consumers, the services exhibit
unexpected behavior or failures after the update and require manual
investigation of the problem. ‘‘We got a 503 - Service Unavailable and so
I called the product and asked: what’s the problem here? And then they told
me: Oh, right, we changed the API for that’’ C3-P2.

We could not find a generalizable consumer documentation strategy
to recommend during our study. We noticed that most architects (6/7)
seem to know their consumers and did not mention this challenge. Ar-
guably, these roles might have a different understanding of consumers,
e.g., on a department or company level, whereas developers require
individual contact persons whom they can reach out to. Accordingly,
some participants (8/17) rely on their teams’ or superiors’ implicit
knowledge. They discuss future API changes and potentially affected
consumers with specific colleagues, team leads, or architects. ‘‘He
just remembers most of the time. Or maybe he has some documentation
on his end. I’m not really 100% sure’’ C3-P3. As a downside of this
implicit knowledge, the information becomes siloed and can get lost
if the individual leaves the company. Some participants (6/17) log
REST API calls from consumers with tracing tools, e.g., Dynatrace,14

Grafana,15 or custom implementations. This allows them to look up all
consumer IPs or hostnames for each REST API endpoint and provides
information about its use. However, these participants still face the
challenge of unknown consumers as they cannot infer actual contact
persons from the logged calls. A few participants (4/17) utilize the
credentials used for authenticating calls to their services to maintain
a list of actively used APIs and their corresponding consumers. A few
participants (3/17) even maintain manual documentation about the
consumers and contact partners for each microservice. ‘‘We document
it in lists and I think this is not really ideal. So, which API is used by which.
This is especially error-prone if we have to change something’’ C8-P1.

de Toledo et al. (2021) recommended tracking internal and exter-
nal users to directly request migrations. Consequently, related works
build SDGs by analyzing the source code or runtime behavior of ser-
vices (Bushong et al., 2021). Laverdière et al. (2015) proposed static
analysis to construct a cross-service call graph by analyzing calls be-
tween SOAP services. Similarly, Ma et al. (2019) visualized and an-
alyzed SDGs by statically extracting REST API calls from the source
code. Cai and Thain (2016) proposed identifying method dependencies
based on the execution order of event-driven messages at runtime,
and we presented additional dynamic approaches in Section 5.2.2. As
a limitation, these approaches require access to the source code or
runtime environment of the services, which is not available for external
partners.

14 https://www.dynatrace.com.
15 https://grafana.com.
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5.4.2. Informal communication channels
During our study, we could not identify a generalizable strategy to

inform consumer teams about API changes. The participants either fol-
low their own ad hoc strategy or accept the overhead for manual com-
munication. ‘‘Sadly, there is no company standard for [communicating]
versioning interfaces. It’s up to the products to handle this’’ C3-P1.

Company-internal, the main means for written communication are
e-mails (9/17), followed by announcement channels (6/17) and instant
messages (4/17), e.g., via Slack, Microsoft Teams, or Mattermost. ‘‘And
we do have people that actively have to look at these propagated changes.
Are they relevant for the services I’m responsible for?’’ C6-P1. Notably,
e-mail communication is preferred within larger teams. Alternatively,
API changes are verbally announced in formal meetings (5/17), e.g., co-
ordination or sprint review meetings, and informal meetings (5/17),
e.g., coffee talks. As a downside of such verbal communication, devel-
opers might miss the API change notifications or forget the details over
time. Accordingly, all five participants who conduct formal meetings
also maintain manual documentation for their APIs (cf. Section 3.2.4).

Company-external, some participants (6/17) use e-mails to com-
municate with partners and customers. Some participants (6/17) also
mentioned dedicated roles responsible for communicating and man-
aging the API changes. This role could belong to the product owner,
a dedicated coordinator position, or even a dedicated team centrally
managing the company’s API integration. As a downside, this again
constrains the knowledge to one or a few persons. A few participants
(4/17) notify breaking and non-breaking API changes via release notes
but simultaneously consider the natural language description too ver-
bose for a technical assessment. ‘‘I’m pretty sure that no customer is
really looking at that’’ C5-P1. A few participants (4/17) have to actively
check for breaking changes as API consumers, especially for large API
providers like Amazon Web Services. ‘‘Finally, we need to ask all the time
for changes or if they are changed and then there is a quite big delay until
we can continue’’ C9-P1. We could not identify any relationships be-
tween the participants’ backgrounds and the employed communication
channels. Hence, we conclude that no generally applicable internal or
external communication strategy exists.

Espinha et al. (2015) identified e-mails as the main communication
channel but found developers considered them unreliable. Additionally,
large providers, e.g., Google and Twitter, sent upcoming changes via e-
mail lists of registered accounts. Similarly, Bogart et al. (2021) reported
that developers communicated pre-release announcements via e-mail
and Twitter. Sohan et al. (2015) identified four communication chan-
nels: the API homepage, the API response, e.g., deprecation information
in the header, customized e-mails, and newsfeeds. Yasmin et al. (2020)
found only three out of 1,368 analyzed REST APIs proactively informed
callers about deprecation in the response objects, where developers
would directly see it during development or in log files. However,
consumers who are no longer actively working on APIs they previ-
ously integrated (cf. Section 5.3) may not notice such deprecation
information.

5.4.3. Communication suffers from hierarchy
Some participants (6/17) suffer from a high level of organizational

abstraction, hindering effective communication. Communication with
unfamiliar teams or external partners involves multiple developers,
team leads, and company representatives, possibly altering the infor-
mation with every pass down the chain. The involved people might
overlook the details of API changes or mistakenly consider them unim-
portant. ‘‘The problems arise when too many third parties are involved
because it’s like the telephone game. You pretty much get completely different
results at the end’’ C3-P3. From the consumer perspective, this reduces
trust in the communicated changes. Furthermore, we discovered that
most participants facing this challenge encountered difficulties in un-
derstanding the changes of consumed APIs (cf. Section 5.2.2) (5/6).
Consequently, from the provider perspective, most participants with

https://www.dynatrace.com
https://grafana.com
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this communication challenge observe that their consumers rely on
previous API versions (cf. Section 5.3) (5/6).

Baškarada et al. (2020) conducted interviews with 19 software
architects and reported API change communication and coordination
with related services as challenging. Rubin and Rinard (2016) found
that collaboration and software quality depended on the social bound-
aries of developing companies. We refer to Conway’s law (Conway,
1968) stating that a system’s structure follows the companies’ commu-
nication structure.

5.5. API maintainability and usability degrade over time

As a result of the previous challenges, many participants (14/17)
experience degrading API and source code quality in the services they
provide. Consumers relying on a specific version and uncertainty about
introducing breaking changes force providers to maintain the out-
dated versions and increase the technical debt with no clear resolution
strategy.

5.5.1. Outdated API versions add maintenance overhead
Many participants (10/17) mentioned the overhead of maintaining

old API versions to ensure backward compatibility with existing con-
sumers. We discovered that most architects (6/7) and senior developers
(3/4) acknowledge this challenge. ‘‘That’s a huge pain for us’’ C5-P2.
This challenge aggravates if consumers rely on previous API versions
(cf. Section 5.3), with most participants facing this challenge also
facing the other (8/10). Furthermore, we observed that the challenge
becomes more prominent with larger system sizes. Some participants
(5/17) consider the additional routing and handling logic based on
the respective message version as an overhead. This logic converts the
REST API requests and event-driven messages to the newest format or
forwards them to the corresponding workflow version. When running
coexisting incompatible microservice versions (cf. Section 4.4.2), the
system requires a dedicated routing layer because the incoming re-
quests and messages are processed by individual runtime components.
A few participants (4/17) highlighted the increased code base size and
complexity for the backward-compatible business logic and workflows,
additional tests to verify each supported version and regression test
any changes, and even for backported features, further complicating
outdated workflows instead of removing them. When running coexist-
ing incompatible microservice versions, the providers must maintain
multiple code bases, one for each supported version, and synchronize
them accordingly.

Some participants (5/17) feel that the overhead for ensuring back-
ward compatibility interferes with developing new features. We found
that these participants belong to small teams, where individual team
members are likely to perceive the regular maintenance overhead
more prominently. ‘‘It holds you back if you want to change some other
implementation, if you want to optimize something, or implement some new
feature that doesn’t work with an old way of transferring data or something
like that. And it also slows you down or holds you back from developing
any new features’’ C2-P2. Finally, we found that most participants who
provide dynamic APIs (cf. Section 4.3.3) face the maintenance overhead
challenge (5/6). We presume that the inherent complexity of dynamic
APIs further increases their maintenance overhead.

Bogart et al. (2021) called the overhead to maintain obsolete code
and create workarounds for compatibility opportunity cost. This op-
portunity cost transforms into consumers’ migration cost once the
providers decide to break and clean up the interface. Espinha et al.
(2015) recommended providers deprecate and remove the outdated
APIs at some point to avoid increasing opportunity costs. Similarly,
Lübke et al. (2019) proposed three deprecation patterns: eternal life-
time guarantee, limited lifetime guarantee, and aggressive obsoles-
cence. The first pattern provides unlimited API support, the second
provides a clear deadline as part of the API version release, and the
third removes an outdated version with prior notice of a deadline,
which is not necessarily known during release. The three patterns
balance the forces of opportunity cost and consumer efforts. However,
an API deadline is often not feasible in practice (cf. Section 5.3).
12
5.5.2. Backward compatibility increases technical debt
Many participants (9/17) experienced that, as a provider, avoiding

breaking changes and favoring extensions for backward compatibility
degrades the initial API design over time. ‘‘That means we need to
carry all the technical debt in our SDKs and our public APIs’’ C5-P1.
This challenge is more prominent for participants following a service
architecture, where components are expected to have larger individual
code bases. Eventually, the evolved APIs contain multiple workflows
for the same functionality, outdated fields filled by old consumers but
ignored when received, optional fields only processed by some con-
sumers, and multiple equivalent endpoints fixing typos or supporting
different languages. ‘‘I mean, there’s a developer perspective. You want
to get rid of old, not really good working stuff, but in reality you just
can’t’’ C5-P2. Almost half the participants following the duplication
strategy to work around breaking changes (cf. Section 4.3.1) explicitly
stated that this exacerbates the technical debt challenge by convoluting
the API (5/11).

The technical debt increases implementation complexity for new
functionality and regression testing efforts for identifying unexpected
side effects. Similarly, the API usability degrades as the consumers try
to understand the differences between duplicated workflows, requests,
and fields. A few participants (3/17) created a new streamlined version
once their APIs became too convoluted and tried to convince their
consumers to move to this cleaned-up version. In the worst case, this
improvement step creates yet another version to maintain. ‘‘Of course,
you can also deprecate it. The question is if the other colleagues will also
take it seriously’’ C11-P1. Accordingly, most participants dealing with
unknown consumers (cf. Section 5.4.1) mentioned increased technical
debt in their APIs (6/7) because they are unable to communicate
the breaking changes resulting from the clean-up. Interestingly, we
discovered that announcing breaking changes via face-to-face meetings
(cf. Section 5.4.2) helps to mitigate the technical debt challenge, as
most participants using this internal communication channel did not
experience it (7/8). We presume that such direct meetings create a
sense of responsibility with API consumers. However, we could not
identify an external communication channel to mitigate the challenge.

de Toledo et al. (2021) identified poor REST API design as tech-
nical debt. It results in API instability, regular breaking changes, and
increased difficulty in maintaining backward compatibility with newer
versions, which is similar to our study’s findings. Bogart et al. (2021)
identified technical debt as a major driver for breaking changes from
developer interviews. At some point, developers had to break the
interface to introduce a clean version. Research on API maintainability
and usability recommended following API standards, providing clear
deprecation messages, and providing up-to-date documentation and
usage examples (Lamothe et al., 2021).

5.6. Governmental service providers are uncooperative

Some participants (6/17) encountered problems as consumers of
governmental services. These participants discussed ministries of gov-
ernments in multiple European countries. Some participants (5/17)
criticized that governments do not provide a direct line of communica-
tion and contact partners are hardly available. Instead, they introduce
breaking changes on short notice or do not notify consumers in advance
at all. ‘‘Sometimes they don’t do it, they just change their service. [I found
out] when the application crashed’’ C1-P1. Some participants (5/17)
experienced an unwillingness to cooperate. Governmental services shut
down with a fixed date, and consumer requests were disregarded.
Furthermore, they regularly changed agreed-upon API specifications
during development, and errors in the API were not investigated until
consumers sent an example proving their claim. ‘‘You have to prove
to them that they are wrong because they always say that you are doing
something wrong’’ C3-P1. Consequently, the participants face challenges
in understanding the governments’ API changes as consumers (cf. Sec-
tion 5.2.2). To reduce the impact of such changes, many participants
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who consume governmental services abstract these external systems (cf.
Section 4.7) (4/6).

We explain the uncooperative behavior with governments providing
their services as a courtesy instead of a paid product with an underlying
service agreement. ‘‘If the ministry offers an API where you can upload
your tax data, you don’t pay for it. They offer it’’ C12-P1. Hence, they
introduce breaking changes with aggressive obsolescence (Lübke et al.,
2019), prioritizing the provider’s opportunity costs over the consumers’
regular migration costs. This freedom allows governments to avoid
most of the challenges we identified.

5.7. Event-driven communication evolution is disregarded

Finally, we discovered that participants refrained from discussing
evolution strategies for event-driven communication. More than half of
the participants using this communication technique (7/13) explicitly
mentioned the challenge of versioning event-driven communication
via message-oriented middleware, e.g., message queues and publish–
subscribe. Especially, the architects (6/7) including both principal ar-
chitects discussed this issue. They highlighted that protocols do not
support versioning natively, and the lightweight frameworks do not
implement versioning out of the box. Creating new queues for each
version or utilizing message fields to store the version tags requires
more manual intervention than versioning of REST APIs, where the
frameworks automatically handle the version information in the URI
or message header. Moreover, the asynchronous nature of event-driven
communication requires subscribers to accept old message versions
even after all producers migrated, because old messages might still wait
in the queue for later processing. This prolonged backward compat-
ibility requirement further degrades the API design (cf. Section 5.5).
Consequently, the participants either migrate all producers and sub-
scribers simultaneously and accept potential message loss (3/13), or
start implementing their own version negotiation protocol once the
message volume becomes too large or external components are in-
volved (5/13). ‘‘So, we basically have a small protocol for this version
negotiation to ensure that the systems can talk to each other’’ C2-P2.
Interestingly, only one participant mentioned Apache Avro16 to help
with message serialization and versioning.

Baškarada et al. (2020) discovered that very few practitioners had
experience with event-based architectures after conducting 19 inter-
views. Also, de Toledo et al. (2021) discovered developers preferred
complex REST API calls over event-driven messaging and classified it
as an inadequate use of APIs. This supports our finding that developers
are less confident with event-driven communication and its evolu-
tion. Knoche and Hasselbring (2021) used Apache Thrift17 and Apache
Avro to define a custom description language for REST API message
versioning and translation. This approach targets only the message
structure and, hence, could be adapted for messages of event-driven
communication in the future.

6. Tight organizational coupling and consumer lock-in

Based on our qualitative findings, we constructed an overall theory
of two important underlying problems in microservice API evolution,
especially for publicly accessible REST APIs. We found that while the
identified strategies mitigate some of the challenges, they simultane-
ously raise further ones. Eventually, they result in tight organizational
coupling and consumer lock-in. We visualize the relations between
strategies and challenges in Fig. 2 and describe the two resulting
problems in the following.

16 https://avro.apache.org/docs/1.11.1/.
17 https://thrift.apache.org.
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Fig. 2. The relationships for a subset of strategies (light grey) and challenges (dark
grey) resulting in two underlying problems (dashed).

6.1. Tight organizational coupling

While developers must accept and deal with breaking API changes
during the software evolution process (cf. Section 4.2), they encounter
challenges with understanding the impact of changes (cf. Section 5.2)
and communicating with other teams (cf. Section 5.4). While tools
like openapi-diff extract structural changes between two API versions,
providers miss tools for automatically extracting API changes from
changes in their implementation, especially behavioral changes, forcing
them to assess the change impact manually. ‘‘They [providers] also make
changes to the interface, breaking changes, without even them knowing, so
they just made mistakes. We have to tell them, hey, do you know that you
changed your interface?’’ C3-P1. Moreover, the providers cannot fully
anticipate the potential impact of changes on consumers due to miss-
ing consumer documentation or accessibility. The change notifications
might not reach all consumers or are forgotten, e.g., when contained in
a larger mail or verbally mentioned during a meeting. If the consumers
do receive a list of all the breaking API changes, they must review them
and, again, assess the impact on their own system manually. These
challenges complicate the truly independent API evolution in loosely
coupled systems and organizations. Many participants (10/17) reported
that their system or a consuming system broke before because the
other end did not correctly assess or notify the breaking API changes.
‘‘Fortunately that is quite rare, but maybe it happens once a year [in
production]’’ C6-P1. ‘‘I would say maybe once a year, maybe twice. [...]
Obviously, more often in the test system’’ C3-P2. End users encountering a
resulting failure typically report it to the developers of the system they
are interacting with and hold them accountable, independently of the
root cause.

As coping strategies, providers try to stay backward compatible (cf.
Section 4.3), introduce breaking changes as new API versions (cf. Sec-
tion 4.4), and closely collaborate with other teams during the migration
(cf. Section 4.5). The close collaboration works well for cooperative
teams and system-internal event-driven communication, and helps to
resolve failures during integration and in production more quickly. As
a downside, it shifts the overhead towards organizational communica-
tion and regular meetings, and creates implicit knowledge distributed
between team members. ‘‘You see, the whole topic is really organizational-
heavy, organizational and planning-heavy. [...] The technical part is then

just doing it’’ C12-P1. We call this problem tight organizational coupling.

https://avro.apache.org/docs/1.11.1/
https://thrift.apache.org
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6.2. Consumer lock-in

Communication often lacks clarity (cf. Section 5.4) for external and
uncooperative consumer teams, making close collaboration impossible.
Instead, providers try to stay backward compatible (cf. Section 4.3)
and introduce breaking changes as a new API version (cf. Section 4.4).
However, multiple versions increase the source code and API size and
complexity by continuously adding functionality or workflows to the
initial design. A dynamic API design improves structural backward
compatibility but often shifts the problem, i.e., further increases the
complexity and creates semantic breaking changes instead of structural
ones. ‘‘And these are often the problems that are only noticed once it [the
ystem] is not working anymore. And you don’t know why’’ C12-P1. The
ncreasing source code complexity requires extensive regression testing
o ensure compatibility with old API versions. ‘‘Before releasing, we run
ach and every test we have - and this is a quite huge test suite - over
he last release version again to make sure nothing did break in between,
ince the last release’’ C5-P2. These old API versions could be shut down
nce all consumers migrated their calls. ‘‘So you have to reach out to
veryone who’s using your API and hope for the best. Hope that they will
pdate’’ C3-P1. Still, many consumers rely on the API version they
ntegrated with and do not migrate to the new version (cf. Section 5.3).

This migration reluctance forces providers to maintain an increas-
ngly large number of API versions with every breaking change. ‘‘We
ant to get rid of some things in our API that we already removed for newer
ersions or refactored for newer versions, but we just can’t because this
ustomer is still using it’’ C5-P2. Hence, the API cannot evolve sustainably
nd continuously degrades the initial API design, maintainability, and
sability (cf. Section 5.5). We call this problem consumer lock-in because
he consumers force their providers to continue supporting all outdated
PI versions in use. It complicates the development of new features
hich would break existing calls or workflows, and increases the

mplementation and maintenance overhead and the technical debt with
ach additional API version. ‘‘The cost of these workarounds that we do,
don’t know. I don’t dare to estimate that’’ C2-P1.

We observed that participants avoid the consumer lock-in internally,
where they regularly break the API and migrate the calls themselves
(cf. Section 4.6). Governmental services avoid both tight organiza-
tional coupling and consumer lock-in by regularly introducing breaking
changes (cf. Section 5.6). This gives full freedom to the provider but
dissatisfies the consumers and is hence unfeasible in the context of
business relationships.

7. Discussion

This section proposes two research directions to address the two
main challenges that result in tight organizational coupling and con-
sumer lock-in. Furthermore, we discuss the threats to the validity of
our study.

7.1. Open research directions

We propose two open research directions aiming at mitigating both
underlying problems of API evolution, tight organizational coupling
and consumer lock-in. Considering the two main causes, we propose
automating the change impact analysis to improve change notification
accuracy and trustworthiness and researching effective ways to com-
municate changes to other teams to improve notification reliability and
clarity.

7.1.1. Automating change impact analysis in MSA
The manual change impact analysis challenge (cf. Section 5.2)

leads to tight organizational coupling and hesitant consumer migrations
resulting in consumer lock-in. Multiple approaches constructed SDGs
statically (Laverdière et al., 2015; Ma et al., 2019) or dynamically (Liu
et al., 2019; Guo et al., 2020) to perform change impact analysis on
14
the service level. As a limitation, they do not consider individual API
calls or behavioral breaking changes. Other approaches trace method
invocations at runtime (Cai and Thain, 2016; Popescu et al., 2012;
Cai and Fu, 2022) to construct more detailed call graphs. However,
they require access to the runtime environment of the services, which
is not available for external consumers and again would require tight
organizational coupling. A different approach proposed by Chaturvedi
and Binkley (2021) identifies changed WSDL operations based on the
source code’s structural and behavioral changes.

Based on the approach by Chaturvedi and Binkley (2021), we
motivate researchers to split the change impact analysis based on the
service boundaries: first, analyzing the impact of the provider’s source
code changes on the provider’s APIs, and second, the impact of the
provider’s API changes on the consumers’ source code. This enables
providers to publish a complete list of API changes and allows con-
sumers to migrate on their own terms, reducing the tight organizational
coupling. Furthermore, an accurate change impact analysis mitigates
the risk of unexpected changes breaking the system during migration
and therefore increases consumers’ trust and reduces their hesitation to
migrate, which currently results in consumer lock-in.

7.1.2. Providing effective change communication for teams
The communication challenge (cf. Section 5.4) leads to the back-

ward compatibility requirement and consumer lock-in. Similar to our
results, multiple studies (Espinha et al., 2015; Sohan et al., 2015;
Bogart et al., 2021) identified e-mails and online platforms, e.g., Twit-
ter and homepages, as the main communication channels for change
notifications. Bogart et al. (2021) found that most developers felt over-
whelmed by the number of change notifications and rather participated
in planned migrations, where providers felt personally obligated to help
resolve breaking changes. Hora et al. (2018) found that deprecated
library APIs, which produce warning messages during development,
caused 50% more reactions than deprecated REST APIs.

Hence, we motivate the research of effective and efficient communi-
cation approaches for providers to communicate API changes in MSA.
‘‘Yeah, for example, a system where you register your APIs and where
you can publish updates. For example, where you can say, hey we are
removing this field, and it automatically notifies everyone that needs these
APIs’’ C3-P3. Addressing the communication challenge alleviates con-
sumer lock-in by reliably notifying affected consumers with customized
change logs instead of flooding them with a generic list of changes
that are potentially incorrect on arrival. Reliable and targeted change
notifications that require less time to understand motivate consumers
to review and implement them.

7.2. Threats to validity

In this section, we describe the threats to the validity of our
study (Wohlin et al., 2012), their implications, and explain our miti-
gation strategies.

7.2.1. Construct validity
We may have misinterpreted participants’ answers or misunder-

stood their terminology. We added multiple background questions to
our interview guide to mitigate this threat (Wohlin et al., 2012). The
questions set the context and clarified the terminology used by the
interviewer and participant during each interview, e.g., what they con-
sider a microservice, API, endpoint, team, or consumer. Furthermore,
we scheduled enough time to conduct each interview, allowed the
participants to speak freely, asked follow-up questions, and repeated
important statements back to them to make sure we understood them
correctly (Adams, 2015). Finally, we shared the study results with
all 17 participants for feedback and validation (Runeson et al., 2012).
We received 13 responses, whereof two participants had minor re-
marks which we incorporated, and the others fully agreed with our
interpretations.
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7.2.2. Internal validity
Our study design may have generated incorrect or incomplete re-

sults. We mitigated this threat by following guidelines for qualitative
studies (Seaman, 2008; Adams, 2015), e.g., asking open-ended non-
judgemental questions during the interviews, encouraging participants
to speak freely, and improving the interview guide after gaining in-
sights from previous interviews. We finished each interview with the
open question ‘‘Do you have additional thoughts you want to express?’’
to encourage the participants to discuss any additional topics they
considered essential for us.

Another threat to the internal validity is that we did not consider
the details of individual APIs that the participants maintain, e.g., the
API size or usage frequencies. Such API details might influence the
applicable strategies and perceived challenges. While many participants
discussed that working around breaking changes (cf. Section 4.3.1) and
exposing multiple API versions (cf. Section 4.4.2) increases the API size
over time, we do not know their actual magnitudes, e.g., the number of
REST API endpoints or message queues. The challenge of understanding
change impacts (cf. Section 5.2) and the maintenance and usability
degradation (cf. Section 5.5) may exacerbate with increasing API sizes
and complexities. Still, both challenges are already acknowledged by
many participants throughout multiple companies and system archi-
tectures. Similarly, we did not explicitly ask for the usage frequencies
of the participants’ APIs. However, only one participant mentioned
increased performance when discussing event-driven communication,
and another participant found excessive requests a networking chal-
lenge. Hence, we presume that this API detail would not significantly
influence our results as the participants did not primarily consider the
frequency of use when discussing microservice API evolution strategies
and challenges. Instead, they focused on the design and organizational
topics, independent of the runtime usage.

As a third threat, we did not consider the number and type of
consumed systems from the consumer perspective. While we explicitly
asked participants about the consumed APIs, we learned that they often
did not know the details and removed the question during the analysis.
However, these details would enrich some of our results by better
setting them into relation. For instance, only some participants (6/17)
abstract external APIs they consume (cf. Section 4.7), but we do not
know the total number of participants consuming company-external
APIs. Similarly, we do not know the total number of participants con-
suming governmental services (cf. Section 5.6). A lower total number
of potentially affected participants would indicate a higher support
and relevancy of these findings. From the provider perspective, we
did not explicitly ask for the number and type of consumers. How-
ever, the participants discussed the types of consumers whenever they
considered it noteworthy. For instance, they observed that company-
external consumers are more cautious and reluctant when migrating to
a new API version (cf. Section 5.3) and communication with company-
external or unfamiliar teams lacks clarity (cf. Section 5.4). However,
some findings could benefit from additional context, e.g., how exactly
the participants collaborate with different types of consumers (cf. Sec-
tion 4.5) or if company-internal consumers rely on API compatibility as
often as external ones (cf. Section 5.3). We propose a follow-up study
investigating such specifics of the identified strategies and challenges
as future work.

Finally, due to our iterative study design, the participants could
not estimate the severities of the individual challenges. We did not
have the complete findings during earlier interviews, and decided to
reduce observer bias (Glaser and Strauss, 1967) by avoiding leading
questions during later interviews. Instead, we included interview quotes
to convey the subjective importance expressed by participants. We then
used the qualitative results to construct our overall theory based on the
most prominent strategies and challenges.
15
7.2.3. External validity
Our study results may not be generalizable to other teams and

organizations. To mitigate this threat, we sampled practitioners from
11 companies with various industry fields and sizes, and whereof 8 are
international companies. Similarly, our 17 interview participants have
diverse educational backgrounds, years of experience, and technical
roles. We achieved this by contacting colleagues with diverse technical
roles and backgrounds in multiple industry fields during the snowball
sampling process (Baltes and Ralph, 2022). We further mitigated the
study’s threat to external validity by conducting interviews until our
results became stable throughout the various companies and interview
partners, indicating theoretical saturation (van Rijnsoever, 2017). We
did not report on strategies and challenges mentioned by less than five
participants or three companies, i.e., less than a quarter each. One
challenge missed this threshold by one participant: low-quality docu-
mentation of external APIs (4/17). Finally, we grounded our findings
by connecting them to previous and related works, thereby supporting
and strengthening the results.

7.2.4. Reliability
We may have generated subjective and unreproducible results. We

mitigated this threat by formulating and continuously refining an in-
terview guide (Adams, 2015). Additionally, we tested the questions’
clarity with a pilot interview. We followed established coding guide-
lines (Corbin and Strauss, 1990; Goodrick and Rogers, 2015) to analyze
the interview transcripts and create the codes, categories, and overall
theory. Furthermore, we applied researcher triangulation to reduce
subjective bias (Runeson et al., 2012). Therefore, the second and third
authors independently analyzed two random interviews and we dis-
cussed the identified codes and categories, further refining them until
we reached a coder agreement (Campbell et al., 2013). In this paper, we
only reported results mentioned by at least five interview partners from
at least three companies to mitigate observer bias. Finally, we provide
a replication package (Lercher et al., 2023) containing the interview
guide and final code book.

8. Related work

In the following, we report on existing literature with a focus on
studies that investigated API evolution strategies and challenges. Note,
we present and discuss further literature related to the individual com-
munication techniques, evolution strategies, and evolution challenges
that we identified during our study in the corresponding sections.

API evolution is extensively studied. Though, Lamothe et al. (2021)
found that 63.9% of analyzed survey papers focused on API evolution in
Java libraries. Dig and Johnson (2006) introduced the terms breaking
and non-breaking changes when studying Java API changes. They
proposed five strategies for introducing backward-compatible changes.
Deprecation instead of deletion of functionality allows consumers to use
previous versions while marking them as outdated. Delegation forwards
outdated method calls to successor methods. Naming conventions,
e.g., version numbers in method and class names, help developers to
navigate versioned APIs. Runtime switches dynamically load old library
versions instead of raising runtime errors. Interface querying allows
consumers to request a specific method version via a facade object. Bog-
art et al. (2021) conducted interviews and surveys with developers and
identified several strategies to reduce or delay consumer-side breaking
change impacts. Providers maintained old interfaces to prolong the
transition period for consumers. They released major and minor ver-
sions for features and fixes in parallel. Consumers then decided when
to migrate to the next major version. As a resulting challenge, providers
had to maintain several separate interfaces, called opportunity cost.
Wu et al. (2016) analyzed Java API changes, and they and Bogart
et al. (2021) recommended consumers to encapsulate external API
dependencies within a facade object to reduce the dependencies and,
hence, the change impact.
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Li et al. (2013) discovered that REST APIs are more change-prone
than Java APIs after conducting an empirical study. Furthermore, they
identified six additional challenges for REST API evolution compared
to source code evolution, e.g., deleted methods are not recoverable
since previous versions are not accessible after shutdown and REST
APIs require authorization over the network. Lamothe et al. (2021)
concluded their literature survey with the need for web API evolution
research. Aksakalli et al. (2021) identified synchronous communication
with REST and event-driven publish–subscribe communication as the
most preferred communication patterns in MSA. They concluded that
both approaches are oftentimes combined: REST APIs publish explicit
interfaces to the outside world, while publish–subscribe communication
loosely couples the internal service architecture for state-changing
operations.

Zimmermann et al. (2020) introduced the microservice API pat-
tern (MAP) framework for API design and evolution. They proposed
five evolution patterns: running multiple versions in parallel, limited
and unlimited lifetime guarantees for backward compatibility, exper-
imental previews without promising stability, and aggressive obsoles-
cence, i.e., shutting down previous versions with a fixed date (Lübke
et al., 2019). Espinha et al. (2015) interviewed 6 developers who
criticized that early API versions are unstable and change regularly
without notice. They formulated basic recommendations, such as stay-
ing backward-compatible, exposing some stability status information,
and monitoring the system to identify the consumers per feature.
Similarly, Wu et al. (2016) recommended Java API providers should
publish their API stability expectations. Sohan et al. (2015) investigated
REST API evolution strategies and found both strategies of running
single and multiple concurrent versions in practice. They identified
the disconnected source code, documentation, and change log artifacts
as challenging because developers must manually link all artifacts to
identify the changes and their impact. The authors recommended gen-
erating customized change logs per consumer. Neumann et al. (2021)
analyzed 500 REST APIs and found that almost half of them auto-
matically generate documentation, e.g., with Swagger UI. The other
half provides textual information in varying granularity, complicating
automated change identification and impact analysis.

Baškarada et al. (2020) investigated microservice opportunities and
challenges by interviewing 19 practitioners. Amongst other organiza-
tional challenges, they reported that API changes require intensive com-
munication and coordination. Furthermore, they found that very few
practitioners had experience with event-driven communication. Chen
et al. (2021) conducted a grey literature review for microservice API
technologies and concerns. They identified three concerns regarding
API gateway design, API versioning, and API testing and test case gen-
eration. Wu et al. (2022) analyzed microservice-related StackOverflow
questions and identified technical communication as the major chal-
lenge in the service construction phase. In the governance phase, they
identified further challenges, including defining API standards and API
gateway design. The proposed solution strategies for these challenges
included utilizing event-driven communication and creating GitHub
examples for API usage scenarios. de Toledo et al. (2021) interviewed
25 practitioners about architectural technical debts in microservice
systems. Interview partners acknowledged that poor REST API design
results in API instability, regular breaking changes, and increased diffi-
culty of maintaining backward compatibility. The authors proposed the
API-first approach as a solution, which also reduces the tight coupling
between services. Zhang et al. (2019) interviewed 13 companies and
found that inappropriate service boundaries lead to tight coupling
and regular changes. The multiple parallel versions then increased
the debugging complexity. Similarly, Bushong et al. (2021) reported
that the system design has a direct impact on microservice evolution
and proposed detecting antipatterns in source code and identifying
technical debt as future research directions. Koçi et al. (2023) analyzed
16

web APIs based on the consumers’ behavioral patterns and proposed
corresponding API changes, such as merging two endpoints usually
called consecutively into a single one.

In summary, related works reported on the strategies for back-
ward compatibility and versioning to support outdated consumers and
recommended the API-first approach. Regarding the challenges, they
reported on communication and coordination overheads when mi-
grating API changes, the importance of the API design’s quality, and
increased code complexity and technical debt when supporting multiple
versions. However, they did not present and discuss the underlying
reasons for the challenges or how to solve them sustainably. In this
work, we formulated a comprehensive list of strategies and challenges
for microservice API evolution actively used in practice. We discovered
that close communication and collaboration between teams is not
only a well-known challenge but an actively performed and expected
strategy in MSA. We further identified that the collaboration strategy
results from the manual change impact analysis challenge and leads to
the problem of tight organizational coupling. Moreover, we discovered
that the established strategies for compatibility and versioning create
a new problem of consumer lock-in. In turn, the consumer lock-in
degrades the API design and increases technical debt without any
resolution strategy. To the best of our knowledge, we are the first to
formulate such a comprehensive list, to define the problems of tight or-
ganizational coupling and consumer lock-in including their underlying
challenges, and to propose open research directions addressing them.

9. Conclusion

The microservice API evolution process suffers from the loose cou-
pling between services and leads to communication overheads and
backward compatibility necessity. In this work, we conducted semi-
structured interviews with 17 developers, architects, and managers
in 11 companies and reported their strategies and challenges for API
evolution.

In summary, we discovered six strategies and six challenges for
REST and event-driven communication techniques. The strategies
mainly focus on API backward compatibility, versioning, and close
collaboration between teams when introducing breaking changes. The
challenges illuminate the manual change impact analysis efforts, inef-
fective communication of changes, and consumer reliance on outdated
API versions. From our findings, we formulated relationships between
the strategies and challenges and discovered two underlying prob-
lems in the microservice API evolution process. Tight organizational
coupling undermines the loose technical coupling of services by regu-
larly requiring communication and collaboration between development
teams. Consumer lock-in increases technical debt and degrades the API
design over time by enforcing continuous support for outdated API
versions without a clear resolution strategy. We proposed two relevant
research directions to mitigate these two problems.

Future work includes studying the evolution of event-driven com-
munication in particular, which many participants disregarded during
our study. Furthermore, based on our insights, we propose a new
study that investigates the two underlying problems in microservice API
evolution and evaluates approaches to mitigate them.
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