
Extracting Timed Automata from Java Methods

Giovanni Liva, Muhammad Taimoor Khan, and Martin Pinzger
Software Engineering Research Group,

Alpen-Adria Universität Klagenfurt, Austria

Email: {giovanni.liva, muhammad.khan, martin.pinzger}@aau.at

Abstract—The verification of the time behavior in distributed,
multi-threaded programs is challenging, mainly because modern
programming languages only provide means to represent time
without a proper semantics. Current approaches to extract time
models from source code represent time only as a sequence of
events or require developers to manually provide a formal model
of the time behavior. This makes it difficult for developers to
verify various aspects of their systems, such as timeouts, delays
and periodicity of the execution.

In this paper, we introduce a definition of the time semantics
of the Java programming language. Based on the semantics, we
present an approach to automatically extract timed automata
and their time constraints from the Java methods source code.
First, we detect Java statements which involve time, from which
we then extract the timed automata that are directly amenable
to the verification of time properties of the methods.

We evaluated the accuracy of our approach on ten open
source Java projects that heavily use time in their source
code. The results show a precision of 98.62% and recall of
95.37% in extracting time constraints from Java code. Finally, we
demonstrate the effectiveness of our approach with five reported
bugs of four different Apache systems that we could confirm.

I. INTRODUCTION

Understanding programs that are large, distributed and

multi-threaded consume a large amount of developer’s time.

As presented by Dano et al. [1], reverse engineering a multi-

threaded program is, using their analogy, a trip down to
the Hades. Other studies [1], [2] show that comprehension

activities alone consume about 40%−60% of all the available

resources. This is mainly due to two reasons: (i) high staff-

turnover, and (ii) the frequent evolution of programs makes

it complicated to keep documentation up to date. Therefore,

an automated technique to reverse engineering models from

source code helps to understand and document multi-threaded

or distributed programs. A key aspect of such systems is the

usage of time, with integer values, to bound the waiting time

of when certain events may occur. The time is also used to set

execution timeouts or schedule events to occur periodically. A

common technique to model the time behavior and the time

constraints of these systems is the timed automata formalism.

The verification of time properties of the programs, modeled

as timed automata, have been intensively studied over the last

20 years. Timed automata is a formalism introduced by Alur

[3] that allows to model and analyze the timing behavior

of multi-threaded programs. For instance, Jayaraman et al.

[4] used the timed automata modelled by the developers to

monitor the subject system and to verify whether its execution

conforms to its specification. Hakimipour et al. [5] present an

approach to derive real-time Java programs from the timed

automata created by the users. Following the same idea,

Georgiou et al. [6] present a technique to translate timed

input/output automata into executable Java code.

Some recent approaches [7], [8] allow to extract a time

model automatically from the Java source code. However,

these approaches do not consider the semantics of the language

and fail to model the real-time domains that are involved in the

program, such as the time. They only retain time as a sequence

of events represented in a tree-like structure and fail to model

other time aspects of the program, such as timing delays.

Also, such models assume that a program execution can be

completely modeled as a sequence of states or system events.

These approaches have mainly two common shortcomings: (i)

they are based on informal semantics of time and thus are not

reliable, failing to detect the semantic inconsistencies in the

programs and (ii) the model is manually developed and thus,

it is error prone.

In contrast to the afore-mentioned approaches, we present

an approach that automatically extracts timed automata from

the Java methods source code based on our definition of

time semantics, which is directly amenable to verification.

Algorithm 1 shows the steps of our approach to extract the

timed automata. Based on our semantics of time, first we parse

a Java method and extract its time related statements. Second,

we map the extracted time statements into time constraints.

Finally, we extract states and transitions creating the timed

automata. The extracted timed automata permits to assure that

the methods contain a correct representation of time according

to the expected behavior. The timed automata extracted are

not directly amenable to the verification because they contain

expressions whose values are not known at compile time.

We infer and replace these values using dynamic analysis to

monitor the expressions during the execution of various test

cases. For each run of a test case we obtain a set of instances

of the timed automaton that can be used for verification of

safety and liveness properties, e.g., termination.

We manually evaluate the precision and recall of our ap-

proach in extracting timed automata from the source code

using a random sample of 400 Java methods. The results show

a precision of 98.62% and a recall of 95.37%.

Overall, the main contributions of this paper are:

• a semantics of the time for Java;

2017 IEEE 17th International Working Conference on Source Code Analysis and Manipulation

2470-6892/17 $31.00 © 2017 IEEE

DOI 10.1109/SCAM.2017.9

91

• an approach to automatically extract timed automata for

Java methods;

• and an evaluation of our approach with a random sample

of 400 Java methods.

The remaining of the paper is organized as follows: Section

II gives the time semantics for a subset of Java 8 methods

and Section III presents our approach for extracting timed au-

tomata from Java methods. Section IV presents the evaluation

and the discussion of the results are in Section V. Section VI

presents the related work. Finally, we conclude the paper in

Section VII.

II. SEMANTIC OF TIME IN JAVA

Modern programming languages, such as Java or C#, pro-

vide the possibility to explicitly represent time with built

in APIs, such as Java’s java.time.LocalDate or, im-
plicitly, using integer values from the domain of Z. There-

fore, these languages fail to detect time related semantic

inconsistencies in the programs and, it results in programs

failure or preemptive termination. For instance, a Java pro-

gram with the statement long now = startingTime -
10000, is syntactically correct and compiles but it may throw

an IllegalArguementException at run-time when the

variable now is used in a time method call. This could happen

because the Java compiler does not understand the semantics

of time and thus fails to prevent the variable now to be

negative.

Recently, Bogdanas and Roşu [9] present a complete seman-

tics definition for the Java 1.4 language, without considering

time. We address this limitation defining a time semantics

based on the implicit representation of the time in Java

programs. This is a pre-requisite of our analysis and it is

presented in the following section.

A. Time Related Java 8 Methods

As a first step, we manually analyzed the API documen-

tation of Java 8 SDK classes in the packages java.time,
java.net, java.util, and java.lang identifying the

methods that deal with time. From this analysis, we define

four categories of methods which involve time:

1) Return Time: The first category covers methods that

return an integer value that represents time, e.g., the static

currentTimeMillis() method of the System class

returns the current time in milliseconds.

2) Explicit Timeout: The second category covers methods

that contain a time parameter. For instance, the connect
method of the Socket class, if called with two parame-

ters, the second parameter specifies the maximum amount

of time for making a connection.

3) Explicit Wait: The third category of methods can poten-

tially block the execution of a thread forever. Examples

are the wait() method of the Object class or the

method get of the Future class.

4) Set Timeout: The last category is composed of meth-

ods which change their behavior with a time constraint

that is set by a preceding method call. For instance,

Algorithm 1 Create a Timed Automaton from a method

Input: m, Java method that deals with time

1: function GENERATE_TA(m)

2: E ← identify time variables and time method calls of

m
3: c← identify time statements based on E which define

a time constraint

4: s ← generate_states(m)
5: t ← generate_transitions(m)
6: A ← generate_automata(s, t, c)
7: return A

the connection method of the URLConnection
class by default has no upper limit for making a

connection. Instead, a timeout can be set by calling

the setConnectTimeout method before calling the

connection method.

Table I presents an excerpt of the analyzed Java 8 SDK

methods which involve time. In this paper, we focus on the first

three categories of time related methods. For the last category,

it is not always possible to correctly detect whether a specific

method call has or not has a specific timeout set by a preceding

method call using static analysis. We also exclude methods for

scheduling tasks in the future, such as provided by the Timer
class. We plan to address these limitations in our future work.

B. Semantics of Java Time Statements

Using our categorization, we introduce the semantics of time

for statements in Java programs. We start with introducing

the general concepts for representing time variables and time

related methods.

We model the time as positive natural number and we define

the set of time variables as V t, such that ∀v ∈ V t. value(v) ∈
N

+, where value(·) refers to the value held by the variable v.
We define M t

r as the set of methods that return time; M t
t as

the set of methods that contain a timeout parameter in their

signature; and M t
i as the set of methods that can potentially

block the execution of a thread forever.

We use operational semantic [10] to define the time seman-

tics of Java. A rule has some premises P that constitute the

preconditions to apply the rule. Judgments J1 and J2 are some

properties which are related to P . If the judgments hold, we

can conclude Q.

J1(x) � y J2(y) � z

P (x) � Q(z)

Given the time domain T defined by positive natural num-

bers, we define the rules T1, T2, and T3 to model the time

semantics of our three considered categories of methods. We

define val(·) as the function which returns the value of the

input expression that can be either a reference to a variable

or a method call. The rule T1 handles the assignment of time

returned by calls to methods of the category Return Time. It

is defined as:

92

Table I: Excerpt of time related methods extracted from the Java 8 SDK.

Return Time Explicit Timeout
Class Method Signature Class Method Signature
System nanoTime() SSLSocket connect(SocketAddress,int)
System currentTimeMillis() Timer schedule(TimerTask,Date)
Clock millis() Thread join(long)
Duration get(TemporalUnit) Thread join(long,int)
Duration getNano() Thread sleep(long)
Duration getSeconds() Thread sleep(long,int)
Duration toDays() Process waitFor(long,TimeUnit)
Duration toHours() FutureTask get(long,TimeUnit)

Indefinite Wait Set Timeout
Class Method Signature Class Method Signature
Object wait() InputStream read()
Future get() InputStream read(byte[])
FutureTask get() InputStream read(byte[],int,int)
Thread join() MulticastSocket receive(DatagramPacket)
Socket connect(SocketAddress) HttpURLConnection connect()
SSLSocket connect(SocketAddress) ServerSocket accept()
Process waitFor() DatagramSocket receive(DatagramPacket)
CountDownLatch await() SSLServerSocket accept()

x ∈ V t m ∈M t
rT1: 〈(V t,T), x = m(_)〉 � (V t[x\val(m(_))],T)

Rule T2 handles method calls containing a timeout repre-

sented by the variable t. It is defined as:

m ∈M t
tT2: 〈(V t,T), x = m(_, t, _)〉 � (V t,T+ val(t))

Finally, rule T3 handles calls to a method that could

potentially block the execution of a thread forever. It is defined

as:

m ∈M t
iT3: 〈(V t,T), x = m(_, t, _)〉 � (V t,T+∞)

In the following section, we discuss our approach based on

the definition of the semantics of time.

III. EXTRACTING TIMED AUTOMATA

Algorithm 1 shows the steps to construct timed automata

from a given Java source code. First, we collect variables

and methods calls which are time related and then, based

on the collected information we identify the statements that

define time constraints. The second step is presented in Section

III-B and the remaining steps to extract a timed automaton in

Section III-C. In this Section, we focus on the first step and

how to identify Java time statements.

A. Collecting time information

The time semantics presented in the previous section allows

us to create a set of rules to identify which Java statements

are time related. We call the quadruplet V t, M t
r , M

t
t , and M t

i

environment and we denote it with the letter E.

Initially, V t is empty, M t
r , M

t
t , and M t

i contain the fully

qualified names of the Java 8 SDK methods that we manually

collected and verified to be time related. The set M t
r is

extended by user specific methods that return time using the

following rule Rm: if a method called name with the list of

parameters pars and the method body S contains a return

statement that references a time variable or a call to a method

that returns time, it is added to the set M t
r .

〈(V t,M t
r ,M

t
t ,M

t
i), S〉 � (V t′,M t′

r ,M t
t ,M

t
i)

∃r : return(S).(isV ar(r) ∧ r ∈ V t′) ∨ (isCall(r) ∧ r ∈M t′
r)

Rm: 〈(V t,M t
r ,M

t
t ,M

t
i), name(pars) { S }〉

� (V t, {name} ∪M t
r ,M

t
t)

The function isV ar(·) returns true if the expression is a

reference to a variable. Similarly, isCall(·) returns true if the

expression is a method call. The function return(·) obtains

the return statements of the given method body S.
Next, we handle the list of statements that constitute the

method body. The general rule Rstms shows how to process

such a list statement by statement.

〈E,S′〉 � E′ 〈E′, S′′〉 � E′′
Rstms: 〈E, (S′;S′′)〉 � E′′

Depending on the statement type, we use a different rule to

process it. Due to space constraints, we present the definition

of only three types of statements, namely if, while loop, and

single programming statement. Moreover, we present only the

definition for the while loop since all other loop statements can

be easily converted to it. For the if and while loop statements

defined by the rules Rif and Rloop respectively, we first

process the guard B and then the list of statements inside

their bodies S′ and S′′, and respectively S.

〈E,B〉 � E0 〈E0, S
′〉 � E′ 〈E0, S

′′〉 � E′′
Rif : 〈E, (if (B) { S′ } else { S′′ })〉 � E0

〈E,B〉 � E′ 〈E′, S〉 � E′′
Rloop: 〈E, (while (B) { S })〉 � E′′

Single programming statements can further extend the en-

vironment E with variables that are time related. We consider

the following three types of single Java statements:

93

• The variable is assigned the result of a method that returns

time. This type is handled by the rule R1.

• The variable is used as timeout parameter in a Java

method call. This type is handled by the rule R2.

• The variable is used in a mathematical expression with

other time variables or time methods. This type is handled

by the rule R3.

We define pos(·) as the function that returns the position

of the input parameter in the method call. The function

timeoutpars(·) returns the set of indexes of the parameters

that define the timeout of the input method. R1 and R2 are

then defined as:

m ∈M t
r

R1: 〈(V t,M t
r ,M

t
t ,M

t
i), x = m(_)〉 � ({x} ∪ V t,M t

r ,M
t
t ,M

t
i)

m ∈M t
t ∧ pos(y) ∈ timeoutpars(m)

R2: 〈(V t,M t
r ,M

t
t ,M

t
i),m(_, y, _)〉 � ({y} ∪ V t,M t

r ,M
t
t ,M

t
i)

Regarding the mathematical expressions, we consider two

situations: expressions that contain only scalar values or time

variables modeled by rule Ra
3 and expressions that contain also

calls to methods that return time modeled by rule Rb
3. R3 is

then defined as the disjunction of Ra
3 and Rb

3.

[(y ∈ V t ∧ d ∈ V t) ∨ (y ∈ V t ∧ d ∈ N
+)

∨(y ∈ N
+ ∧ d ∈ V t)] ∧
 ∈ {+,−, ∗, /}

Ra
3 : 〈(V t,M t

r ,M
t
t ,M

t
i), x = y
 d〉

� ({x, y, d} ∪ V t,M t
r ,M

t
t ,M

t
i)

y ∈M t
r ∨ d ∈M t

r
 ∈ {+,−, ∗, /}
Rb

3: 〈(V t,M t
r ,M

t
t ,M

t
i), x = y
 d〉

� ({x, y, d} ∪ V t,M t
r ,M

t
t ,M

t
i)

In the next subsection, we present the rules to determine

under which condition the identified Java time statements

represent a time constraint.

B. Inferring Time Constraints

In this section, we introduce a set of rules to infer two

specific time related information from the source code: time

assignments and time constraints. These rules constitute the

second step of Algorithm 1. A time assignment is a statement

that assigns a time value to a variable. A time constraint is

a condition in the execution of a program that involves time.

Our approach supports three types of time constraints: Explicit

Timeout, Indefinite Timeout, and Time Expired. Explicit Time-

out comprises calls to methods from the set M t
t . Indefinite

Timeout comprises calls to methods from the set M t
i . Time

Expired comprises comparison expressions in the Java source

code that reference a time variable from V t or a call to a

method of the set M t
r that return time. We currently support

the following Java comparison operators ⊗:
⊗ ::= < | ≤ | == | ! = | > | ≥

1 p u b l i c c l a s s Cache {
2 i n t value ;
3 long lastRefresh ;
4 s t a t i c f i n a l i n t MAX_TIME = 10∗60∗1000; / / 10 minu t e s
5 p u b l i c Cache () {
6 value = readValue () ;
7 lastRefresh = System .currentTimeMillis () ;
8 }
9 p u b l i c i n t read () {

10 long now = System .currentTimeMillis () ;
11 i f (now − lastRefresh > MAX_TIME) {
12 value = readValue () ;
13 lastRefresh = System .currentTimeMillis () ;
14 }
15 re turn value ;
16 }
17 }

Listing 1: Example of a Time Expired constraint at line 11.

The execution of the statements inside the if body can be

performed only when enought time is passed (ten minutes).

Listing 1 presents an example of a Time Expired constraint

contained by the class Cache. The value of the cache in the

read() method is only updated if a certain amount of time

has passed. For this, the update is guarded by an if statement

in Line 11 that compares whether the amount of time passed

since the last refresh is larger than the amount of time specified

by the constant MAX_TIME.
In the following, we introduce the rules to extract the

three types of time constraints from the source code of

Java methods. Let E denote the environment quadruplet

(V t,M t
r ,M

t
t ,M

t
i). First, we parse all the classes of a Java

project applying the rules defined in the previous subsection

collecting all the methods that extend M t
r . We iterate until a

fix point is reached and no more methods are found. Then,

we determine all class attributes that are time related. They

represent the initial set V t of time variables.

Let Cg be the set of statements which define a time

constraint and Cu be the set of statements that assign a time

value to a variable. Our approach starts from analyzing the

method definition with rule Cm in which we first, compute

all time statements and then, we apply recursively our rules

to the list of statements S that constitute the method body.

Rule Cstms shows how to process such a list of statements,

collecting the time constraints.

〈E,S〉 � E′

〈(Cg, Cu, E
′), S〉 � (C′

g, C
′
u, E

′)
Cm: 〈(Cg, Cu, E), name(pars){ S }〉 � (C′

g, C
′
u, E

′)

〈(Cg, Cu, E), S′〉 � (C′
g, C

′
u, E)

〈(C′
g, C

′
u, E), S′′〉 � (C′′

g , C
′′
u , E)

Cstms: 〈(Cg, Cu, E), S′;S′′〉 � (C′′
g , C

′′
u , E)

Every type of statement is processed with a different rule.

Due to space constraints, we present only the rules for the

94

following statement types: if expression, while loop, boolean

expression, assignment, and method call.

If the while loop has time constraints in its guard B, they

are valid only inside the while body S. The same idea holds

for the if rule, in which we propagate the constraint found in

the guard B inside the if body S.

〈(Cg, Cu, E), B〉 � (CB
g , CB

u , E)

〈(CB
g , CB

u , E), S〉 � (C′
g, C

′
u, E)

Cwhile: 〈(Cg, Cu, E),while (B) { S }〉 � (C′
g ∪ CB

g , C′
u, E)

〈(Cg, Cu, E), B〉 � (CB
g , CB

u , E)

〈(CB
g , CB

u , E), S′〉 � (C′
g, C

′
u, E)

〈(Cg, C
′
u, E), S′′〉 � (C′′

g , C
′′
u , E)

Cif : 〈(Cg, Cu, E), if (B) { S′ } else { S′′ }〉
� (C′

g ∪ C′′
g , C

′
u ∪ C′′

u , E)

The boolean expression rule Cbool searches for instances

of the Time Expired constraint. We verify that at least a

time variable or a call to a method of M t
r is involved in the

comparison expression.

x ∈ V t ∨ x ∈M t
r ∨ y ∈ V t ∨ y ∈M t

r

 ∈ {<,<=,==, ! =, >=, >}
Cbool: 〈(Cg, Cu, E), x
 y 〉 � ({x
 y} ∪ Cg, Cu, E)

According to rule T2 of our time semantics, assignments

can update the value of time variables. Therefore, we check

if a variable is assigned the return value of a call to a method

of M t
r or the value of another time variable. We split the

check into three rules, Cupdate, C
′
update, and C ′′update. The

first rule covers the assignment with a simple method call and

the second rule covers the cases in which a method call is

involved in a mathematical expression. The third rule covers

the cases in which the value of a time variable is assigned to

another time variable with the possibility that it is involved in

a mathematical expression.

m ∈M t
rCupdate: 〈(Cg, Cu, E), x = m(_)〉 � (Cg, {x := m(_)} ∪ Cu, E)

m ∈M t
r ∧ d ∈ N+ ∧ ∈ {+,−, ∗, /}

C ′update: 〈(Cg, Cu, E), x = m(_) d〉
� (Cg, {x := m(_) d} ∪ Cu, E)

y ∈ V t ∧ d ∈ N+ ∧ ∈ {+,−, ∗, /}
C ′′update: 〈(Cg, Cu, E), x = y d〉

� (Cg, {x := y d} ∪ Cu, E)

The rule Ccall defines how to analyze method calls identi-

fying Explicit Timeout and Indefinite Timeout constraints. For

each method call, the rule checks the environment if the call is

to a method contained by M t
t or M t

i . If yes, the statement is

added to the list of statements which identify a time constraint.

m ∈M t
t ∨m ∈M t

i
Ccall: 〈(Cg, Cu, E),m(_)〉 � ({m(_)} ∪ Cg, Cu, E

′)

The next Section presents the last steps of Algorithm 1 in

which we extract the timed automaton states and transitions.

C. Constructing Timed Automata

We now present how we can map the constraints extracted

with our approach presented in the previous section to an

UPPAAL [11] timed automaton. UPPAAL is a model-checker

toolbox based on the theory of timed automata. It uses a

temporal logic named Timed Computation Tree Logic (TCTL)

[12], [13] as a query language to describe desired properties of

(networks of) timed automata. An UPPAAL timed automaton

is an extension of the classic timed automaton defined by

Alur and Dill [14] which has richer features, such as integer

variables and channels.

Let convert(·) be the function that creates the automaton

state given a code statement, and stm(·) be the function that

returns the code statement associated with the given automaton

state. Given a method M with the set of statements S, we

create the timed automaton A = 〈Σ, S, S0, C, I, T 〉 as follows:

• Σ = ∅
• S = {convert(stm) | ∀stm ∈ S}
• S0 = s s.t. s ∈ S is the conversion of the first statement

in S.

• C = {t0} where t0 is the variable used to track the

execution time for the Explicit Timeout constraints.

• (s, c) ∈ I iff in stm(s) we found the time constraint c.
• Let stm(s′) be the successor of stm(s) in the control

flow graph ofM. T is defined as follows:

– (s, s, ε, ∅, ∅) ∈ T ∧ (s, s′, ε, ∅, ∅) ∈ T iff stm(s) has an

Indefinite Timeout constraint.

– (s, s′, ε, t0, ∅) ∈ T iff stm(s′) has an Explicit Timeout

constraint and t0 is the unique clock variable that keeps

track of the execution time.

– (s, s′, ε, ∅, {c}) ∈ T iff stm(s) has an Explicit Timeout

or Time Expired constraint.

– (s, s′, ε, ∅, ∅) ∈ T otherwise.

The alphabet Σ is empty because we are interested only

in the time behavior of the automaton. We chose to use only

ε-transitions. The ε-transitions can introduce a problem with

branching instructions creating a nondeterministic automaton.

Since we are interested only in time properties of the code,

which branch is taken in an automaton run is not important.

However, branching instructions in the source code can appear

only within boolean expressions which can define Time Ex-

pired constraints. If a branching instruction has a Time Expired

constraint, the respective transition in the automaton is guarded

with such a time constraint. In this manner, the transition can

be taken only when the constraint is satisfied.

The set of states is composed of the same statements in

the source code modeled as committed states in UPPAAL. A

committed state enforces the execution of the automaton to

always take a transition if it is enabled. In this manner, the

95

Figure 1: The graph on the left depicts the timed automaton extracted from the source code presented in Listing 1. State names

represent the source code line numbers. The graph on the right depicts the same automaton with concrete values inferred from

executing the program.

automaton run will simulate the execution of the control flow

of the source code.

From the source code we extract time constraints and

assignments to time variables. Explicit Timeout constraints

are those method calls which have an upper bound limit in

their execution. We model this behavior creating a unique

clock variable t0 that keeps track of the execution time. If

a statement has a call to a method which defines an Explicit

Timeout constraint, we reset the value of the clock variable to

zero. Moreover, we enforce that at the end of the execution of

the method call, the clock variable must be smaller or equal

to the timeout value.

An Indefinite Timeout constraint is modeled with a tran-

sition that creates a self loop on the state that holds the

method call that defines the time constraint. In this manner,

the automaton can either stay in the same state or proceed to

the next one.

Time Expired constraints may contain multiple variables

and every distinct program variable that is assigned with a time

value is translated to an integer variable in the automaton. We

guard the respective transition with the same time expression

found in the source code. We do not model source code time

variables with clock variables in the automaton because they

do not have an equal semantic. In the source code, we do not

have the constraints that a clock variable has. Thus, we use

the integer theory of UPPAAL to model this behavior and the

statements of Cu which assign a time value to variables are

modeled as transition update.

In UPPALL, a transition can have a guard and an update

section. The guard contains the constraint that enables the

transition and the update contains the assignment of new

values to variables. When the transition is taken in a run of the

automaton, the assignments in the update section are executed.

The extracted timed automata contain expressions, whose

values are not know at compile time. In the following section,

we present our approach to infer the values of these expres-

sions through dynamic analysis.

D. Replacement of Expressions
We use UPPAAL to visualize and verify properties of

the automata extracted from source code. However, with the

approach presented in the previous section, the automata that

we extract are not directly amenable to verification, since not

all values of the expressions involving time can be derived by

our static analysis.
The graph on the left hand side of Figure 1 shows an

example of the automaton that we extract from the source code

of the method read() displayed in Listing 1. Since the values

of method calls to System.currentMillis() are not

known at compilation time we add wildcards (between curly

brackets) to mark such expressions. These wildcards need to

be replace later on to use the automaton for verification. Cur-

rently, developers need to manually replace the wildcards with

their values to verify the method under different scenarios.
The retrieval of such values is not always possible because

we do not provide any abstraction for the information defined

outside of the considered method. However, we provide a

dynamic analysis approach to monitor the program and obtain

proper values for the wildcards. As a first step, in the static

analysis, we record variables and method calls that are ref-

erenced in statements involving time. In particular, for each

expression we record the line number in the source code,

the fully qualified names of the class and method containing

that expression, an the expression itself. We implemented this

approach as an agent that can be injected into the execution

of the program. At the starting of the Java Virtual Machine,

the agent loads the list of recorded expressions and rewrites

the bytecode of the methods that contain those. In particular,

it inserts a logging statement after each expression and before

each termination point (e.g., return statement) of the method.

The log statements output the thread id, fully qualified names

of the class and method, line number in the source code, the

expression monitored, and the time value of the expression.

96

Table II: Selected Java projects used in the evaluation with

number of classes (NOC), number of methods (NOM), and

number of method with a method call to Java 8 SDK methods

implementing time (NOMT).

Project Version NOC NOM NOMT
ActiveMQ 5.14.0 4778 36864 1121
Airavata 0.15 3988 30112 77
DeepLearning4j 0.8.1 1611 12268 84
Flume 1.8.0 1014 6491 281
Hadoop 3.0.0-alpha2 12167 92467 1816
HBase 2.0.0 8831 113226 1009
Jetty 9.3.9.v20160517 3555 22171 487
Kafka 0.10.2.0 1277 7834 91
Lens 2.6.0-beta 976 7868 84
Sling 9 5427 32385 667
Total 43624 361686 5717

We parse the traces created for each execution of a method,

grouping them by thread id. For each thread and for each

method execution, we create the respective timed automaton

replacing the wildcards with the actual values. Moreover, we

check if there are cycles in the execution of the method

and if yes, we create an automaton for each loop iteration.

Since this potentially leads to many automata for a method,

we plan to investigate ways to aggregate such automata in

future work. The graph on the right hand side of Figure

1 depicts an instance of a timed automaton extracted for

the read() method with concrete values for the variables

now and lastRefresh. This automaton can be used with

UPPAAL to formally verify time properties of this method.

IV. EVALUATION

In this section, we present the evaluation of our approach

to extract Timed Automata from Java programs. For this, we

implemented our approach in a prototype tool1 that we used

to perform an empirical study on 400 Java methods. With the

results obtained from the empirical study, we aim to assess

the precision and recall of our approach. In addition, we

demonstrate how our approach can be used to detect bugs

related to time by analyzing 5 real bugs obtained from the

Jira issue tracker of the Apache Software Foundation.2

A. Experimental Setup

For the evaluation, we performed an empirical study with

10 open source Java projects listed in Table II. All of them

use multi-threading and distributed components. ActiveMQ is

a message broker and Airavata is a software suite to compose,

manage, execute, and monitor large scale applications and

workflows on computational resources. DeepLearning4J is a

Java based toolkit for building, training and deploying Neural

Networks. Flume is a distributed service for collecting and

aggregating log data and Hadoop is a map-reduce implemen-

tation. HBase is a distributed database based on the Hadoop

distributed file system. Jetty is a web server provided by

the Eclipse Foundation. Kafka provides a unified layer for

1https://github.com/rtse-project/extracting-time-automata
2https://issues.apache.org/jira/

Table III: Size distribution of the 400 methods used in the

manual evaluation.

Min Q1 Mean Q3 Max
Lines of Code 1 12 30.15 39 180
of Statements 1 12 27.62 35 191

handling real-time data feeds and, similarly, Lens provides a

unified analytics interface from different data sources. Sling is

a web framework that uses a Java Content Repository to store

and manage content.

Table II also shows descriptive statistics computed for each

project. The size of the projects varies from 976 to 12167

classes (column NOC), whereas Hadoop is the largest project.

Only a small fraction of these methods contain a call to a

time method of the Java 8 SDK as indicated by the numbers

in column NOMT. This is expected since developers tend to

wrap method calls using time with their own data structures.

The project with the largest number of time method calls is

Hadoop with 1816 and the project with the largest percentage

of methods containing a call to a time method is ActiveMQ

with roughly 3% of the methods.

Regarding the execution of the study, we randomly selected

400 from the 5717 methods which have at least one method

call to a Java API time method. Our sample set exceeds the

minimum number of 361 methods needed to obtain results

at a 95% level of confidence with a 5% margin of error. The

evaluation dataset contains methods that range from one single

line of code to 180. On average the number of statements for

a method is around 28 statements.

For each project, we first ran our prototype tool on the full

source code to populate the values for M t
r , as described in

Section III-B. Then, we applied our approach to the source

code of each selected method to extract their timed automata.

In total, extracting the timed automata for the given 400

methods required 57.463 seconds. All the tests were performed

on a machine with 2.5GHz Intel CPU with 16GB of physical

memory. The extracted timed automata were used to compute

the precision and recall of our approach as presented in the

following subsection.

B. Evaluation of Precision and Recall

We evaluated the precision and recall of our approach by

manually validating whether the extracted time information are

also found in the source code of each method. We compute

precision and recall of our implementation as:

Precision = 1− NTA wrongly extracted

NTA extracted

Recall = 1− NTA missed to extract

NTM extracted

We denote with NTA the number of time assignments and

time constraints extracted automatically by our approach and

with NTM the number of time assignments and time con-

straints manually extracted from the source code. Our manual

evaluation of the 400 methods obtained in total 756 time

constraints and time assignments compared to 723 constraints

97

and assignments extracted by our prototype tool. Overall, the

values show that our approach is able to extract timed automata

with a precision of 98.62% and recall of 95.37%.

Through the manual analysis we also discovered different

situations in which our approach failed to extract time infor-

mation. Currently, our analysis does not consider anonymous

class declarations and it does not examine the time statements

inside their methods. Furthermore, our prototype tool wrongly

interprets 10 string concatenation statements that use the "+"

operator to combine the different values. In the implemen-

tation, these assignment statements match the rules Ra
3 and

Rb
3. Since the result of these statements is a string and not an

integer, they should not be included in the timed automaton.

The next section presents how, through the application of

our approach to big open source projects, we were able to

confirm bugs which involve time.

C. Bugs in Apache Projects

In addition to the quantitative evaluation, we also performed

an initial assessment of the effectiveness of our approach

to detect bugs in the usage of time. For this, we manually

investigated the Jira issue tracker of Java projects of the

Apache Software Foundation seeking for bugs involving time.

We searched the Apache issue tracker for reports that contain

the keyword timeout applying filters to return bug reports

only for Java projects reported between January 1st and May

1st, 2017. We manually filtered the results removing the bug

reports that were not dealing with timing issue in the source

code. The filtering was necessary because the majority of the

bug reports request to adjust the timeout parameters for the

integration test suite. From the remaining list of bug reports,

we selected the first 5 reports, one from Flume, one from

HBase, two from Kafka, and one from Lens. 4 bug reports

come with an accepted patch attached to their reports. At the

moment of writing, one issue, namely FLUME-3044, was still

open with a proposed patch attached to it. Table IV presents

the list of bugs and their short descriptions taken from the

issue tracker.

The five bugs contain errors that are due to missing time

constraints to guard the execution of the methods. We divided

the issues into two categories:

• Missing Upper-bound: The method uses a loop to repeat

the execution of a piece of code. The loop, however,

misses a condition to guard its upper-bound execution

time leading to an endless execution of the loop. The bugs

KAFKA-3540, LENS-1032, and FLUME-3044 belong to

this category.

• Indefinite Wait: The method performs a call to a method

of the third category presented in Section II-A that

potentially can block the execution of a thread forever.

The bugs KAFKA-4306 and HBASE-17341 belong to

this category.

To evaluate our approach, we applied it to both, the buggy

and the patched code, extracting a timed automaton for each

method modified by the bug fix. Furthermore, we instrumented

the unit tests of each project to run the agent presented in

Table IV: List of bugs taken from the Apache issue tracker.

We present id, version affected, and a small summary of the

issue description.

BUG ID Version Description

KAFKA-3540
3

0.10.1.0

Close the consumer, waiting indefinitely
for any needed cleanup. That is not
acceptable as it creates an artificial
deadlock which directly affects systems
that rely on Kafka A/I essentially
rendering them unavailable.

KAKFA-4306
4

0.10.1.0

If brokers are not available and we try to
shut down connect workers, sink
connectors will be stuck in a loop
retrying to commit offsets forever.

LENS-1032
5

2.5.0-
beta

We should provide option to kill the
query upon timeout for users who are
not interested in result beyond timeout.

HBASE-17341
6

2.0.0

In ReplicationSource.terminate(), a
Future is obtained from
ReplicationEndpoint.stop(). Future.get()
is then called, but can potentially hang
there if something went wrong in the
endpoint stop().

FLUME-3044
7

1.7.0

There are several method call in kafka
sink with no timeout params, in some
cases, kafka sink will await forever if no
interruption.

Section III-D. We combined the extracted traces with the timed

automaton to create several instances of the automaton.

For the bugs of the first category, we checked the transitions

of the extracted automaton verifying that the loop statements

does not contain a time constraint. Concerning the bugs of the

second category, we used our agent to generate the different

instances of the automaton. Then, we loaded these instances

into UPPAAL and formally verified that each automaton can

always terminate. We did this by executing the formula A <>
si, where si is a state that allows the method to terminate

correctly. The formula checks whether in every possible path

the location si can be eventually reached from the starting

state. Our findings confirm the presence of all issues and the

correctness of the proposed patches.

V. DISCUSSION & THREATS TO VALIDITY

This section discusses the results of our study and lim-

itations of our current approach. Furthermore, we discuss

potential threats to validity of our findings.

3https://issues.apache.org/jira/browse/KAFKA-3540
4https://issues.apache.org/jira/browse/KAFKA-4306
5https://issues.apache.org/jira/browse/LENS-1032
6https://issues.apache.org/jira/browse/HBASE-17341
7https://issues.apache.org/jira/browse/FLUME-3044

98

A. Discussion

Based on our semantics introduced in Section II, we defined

a set of rules to extract time assignments and time constraints

from the source code of Java methods in Section III-A and

Section III-B, respectively. From this information a timed

automaton is constructed which is directly amenable to verifi-

cation of time properties of the program, in our case methods.

With our approach such automata can be automatically derived

from source code, in contrast to existing approaches, that only

model time as a sequence of events (e.g., [8]) or require

developers to manually extract a timed automaton (e.g., [4]).
Developers can use our automata to check the time behavior

of methods. For fully exploiting the formal verification power

of the existing tools, such as UPPAAL, developers need to

provide the values for the parameters in the automaton that

could not be resolved by our approach. We simplify and

support the verification process by providing an agent as part

of our prototype tool implementation that can be attached to

the program execution to monitor and extract concrete values

for these parameters. The resulting instances of an automaton

enable, for instance, the verification of safety and liveness

properties. In our evaluation, we used this approach to verify

that a method can always terminate correctly avoiding infinite

loop executions.

Currently, there are some limitations in the extraction of

timed automata from source code of a method. We do not

consider calls to methods that schedule tasks in the future and

methods that have a timeout set by a preceding method call.

Furthermore, we currently do not consider anonymous classes

and methods contained by them.

B. Threats to Validity

In the following section, we discuss threats to the internal

and external validity of our evaluation and how we addressed

them in our experiments.

Internal Validity. The internal validity threat indicates the

reliability of our prototype implementation. We mitigated this

threat testing the prototype tool manually and with unit tests.

For the manual analysis, we randomly selected 400 methods

to evaluate the precision and recall of our approach. The size

of our sample set is larger than the minimum number (361)

required to obtain results at a 95% confidence level with

a 5% margin of error. Moreover, we show the usability of

our approach and its application on 5 bugs taken from open

source Apache projects. Our approach exhibits the existence

of the bugs and also validates the correctness of the proposed

patches. The statistics presented in Table II show that, on

average, only roughly 2% of the methods of the projects

contain a call to a time method of the Java 8 SDK. Developers

tend to wrap those method calls with their own data structures.

To mitigate this phenomena, in our approach we collect

the user defined methods which return time. However, we

currently do not consider user defined methods that accept

a timeout as parameter or could wait endlessly for an event.

Moreover, we can address the wrapping of time method call

only for the readable source code. Calls to a method defined

in a third part library that wraps a time method call are not

detected. Furthermore, in our analysis we do not consider a

specific set of time methods found in the Java 8 SDK which

are methods that change their behavior with a time constraint

that is set by a preceding method call. We do not consider them

because it is not always possible to correctly detect whether a

specific method call has or not has a specific timeout set by

a preceding method call using static analysis.

External Validity. The external validity threat concerns the

generalization of the results to other software projects. We

mitigated this threat by choosing ten open source Java projects

of different size and of different communities to improve

the generalization of our results. We also implemented our

approach with a prototype tool that can be applied to other

Java projects to extend our studies. Furthermore, based on our

formal semantics of time, our approach can also be adapted to

other programming languages, such as C#, that use a similar

semantics of time as used by Java.

VI. RELATED WORK

One of the main contribution of this paper is a semantics

to determine which Java statements are time related. In the

domain of semantics for the Java programming language,

Bogdanas and Roşu [9] present a formal semantics for Java

version 1.4 based on their K-Framework [15]. They formalize

the language syntax and how the Java Virtual Machine (JVM)

interprets the bytecode. Similarly, the Real-Time for Java

Expert Group [16] provide a specification, called RTSJ, that

enforces a specific semantics for the Java Virtual Machine

and introduces a new set of APIs. They specify how the

JVM should interpret specific classes to enable the creation,

verification, analysis, execution, and management of Java

threads for real time programs.

The second contribution of this paper is an approach to

extract timed automata from source code. There are existing

works that translate source code to timed automata. Cicirelli et

al. [17] present a library for UPPAAL that is able to reproduce

the semantics of major Java concurrent and synchronization

mechanisms. Yang et al. [18] present a tool that translates

the Simulink Stateflow into UPPAAL timed automata for

verification. With the verification power of UPPAAL, their

approach manages to find design defects that are missed by

the Simulink Design Verifier. Timed automata can also be

used as basic design specification to verify properties in the

program. The approach presented by Jayaraman et al. [4]

takes as input a network of timed automata provided by

developers. The network is used as base knowledge of the

subject real-time system. They monitor the execution of the

program verifying its behavior conforms to the network of

timed automata provided by the developers. In an analogous

way, Hakimipour et al. [5] and Georgiou et al. [6], propose

a technique to automatically generate a program from timed

automata. Hakimipour et al. use a timed automaton to produce

an RTSJ program that is executable on both single- and multi-

processor platforms. Georgiou et al. present an technique to

99

translate timed input/output automata into distributed exe-

cutable Java programs.

In the domain of verifying properties of source code, NASA

developed Java Pathfinder [19], a framework for verification

and debugging of Java programs. The tool is used to verify

properties of Java programs with a focus on race conditions.

It converts the bytecode of a program into the Promela

language for model checking. Similarly, Henzinger et al. [20],

create a framework for verifying properties of C programs for

the mutex API. Bandera [21] automatically extracts a state

machine from Java source code amenable to verification. In

all the previous approaches, the models represent the control

and data flow of a program without taking in account time.

The work of Walkinshaw [8] describes an extension of an

existing state machine inference technique in which it accounts

for temporal properties of the subjected system. However, it

does not consider time explicitly but only representing it as

a sequence of events as they happened in the execution of a

program.

VII. CONCLUSION

In this paper, we presented an approach to automatically

reverse engineer timed automata from Java methods source

code. We first introduced a definition of the semantics of time

in the Java programming language and then presented the

different steps of our approach to first identify Java statements

related to time, second, infer time constraints, and lastly, to

use this information to create the timed automata for Java

methods. We implemented our approach in a prototype tool to

evaluate its precision and recall to extract the time information

in the source code from 400 Java methods randomly selected

from 10 open source Java projects. The manual evaluation of

extracted automata obtained a precision of 98.62% and recall

of 95.37%. Furthermore, we presented 5 examples of real bug

reports obtained from the Jira issue tracker of the Apache

Software Foundation. We used our approach to verify the

existence of the bugs as well as the correctness of their patches.

As prerequisite of our approach, we define the time semantics

of the Java language. With our defined semantics, we can

verify that a program behaves correctly with respect to the

time semantics. It enables the identification of a new category

of problems such as identify and detect (i) code smells which

involve time and (ii) time invariants required and assured by

methods. Future work will be dedicated on the investigation

of these topics and in improving the accuracy of our approach.

For the latter, we plan to address the limitations that we

found in our evaluation. Furthermore, our approach can be

easily generalized to other programming languages. Currently,

the base knowledge of time methods is given only for the

Java language. Extending the studies to other programming

languages, such as C/C#, is subject to our future work.

ACKNOWLEDGMENT

This research is funded by the Austrian Research Promotion

Agency FFG within the FFG Bridge 1 program, grant no.

850757.

REFERENCES

[1] P. Dano and A. Bollin, “Down to hades and back - experiences gained
in comprehending a distributed legacy system,” in Proceedings of the
International Scientific Conference on Informatics. IEEE, 2015, pp.
85–90.

[2] K. H. Bennett and V. T. Rajlich, “Software maintenance and evolution:
a roadmap,” in Proceedings of the Conference on the Future of Software
Engineering (FOSE). ACM, 2000, pp. 73–87.

[3] R. Alur, “Timed automata,” in International Conference on Computer
Aided Verification (CAV). Springer, 1999, pp. 8–22.

[4] S. Jayaraman, D. Hari, and B. Jayaraman, “Consistency of java run-time
behavior with design-time specifications,” in International Conference
on Contemporary Computing (IC3). IEEE, 2015, pp. 548–554.

[5] N. Hakimipour, P. Strooper, and A. Wellings, “Tart: Timed-automata to
real-time java tool,” in International Conference on Software Engineer-
ing and Formal Methods (SEFM). IEEE, 2010, pp. 299–309.

[6] C. Georgiou, P. M. Musial, and C. Ploutarchou, “Tempo-toolkit: Tempo
to java translation module,” in International Symposium on Network
Computing and Applications (NCA). IEEE, 2013, pp. 235–242.

[7] D. Lo, L. Mariani, and M. Pezzè, “Automatic steering of behavioral
model inference,” in Proceedings of the the 7th joint meeting of the
European software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering (ESEC/FSE).
ACM, 2009, pp. 345–354.

[8] N. Walkinshaw and K. Bogdanov, “Inferring finite-state models with
temporal constraints,” in Proceedings of the IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE Computer
Society, 2008, pp. 248–257.

[9] D. Bogdanas and G. Roşu, “K-java: A complete semantics of java,” in
Proceedings of the ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL). ACM, 2015, pp. 445–456.

[10] G. D. Plotkin, “A structural approach to operational semantics,” 1981.

[11] K. G. Larsen, P. Pettersson, and W. Yi, “Uppaal in a nutshell,” Interna-
tional Journal on Software Tools for Technology Transfer (STTT), vol. 1,
no. 1-2, pp. 134–152, 1997.

[12] G. Behrmann, A. David, and K. G. Larsen, “A tutorial on uppaal,” in
Formal Methods for the Design of Real-Time Systems. Springer, 2004,
pp. 200–236.

[13] C. Baier, J.-P. Katoen, and K. G. Larsen, Principles of model checking.
MIT press, 2008.

[14] R. Alur and D. L. Dill, “A theory of timed automata,” Theoretical
computer science, vol. 126, no. 2, pp. 183–235, 1994.

[15] G. Roşu and T. F. Serbănută, “An overview of the k semantic frame-
work,” The Journal of Logic and Algebraic Programming, vol. 79, no. 6,
pp. 397–434, 2010.

[16] G. Bollella and J. Gosling, “The real-time specification for java,”
Computer, vol. 33, no. 6, pp. 47–54, 2000.

[17] F. Cicirelli, A. Furfaro, L. Nigro, and F. Pupo, “Modelling java concur-
rency: an approach and a uppaal library,” in Federated Conference on
Computer Science and Information Systems (FedCSIS). IEEE, 2013,
pp. 1373–1380.

[18] Y. Yang, Y. Jiang, M. Gu, and J. Sun, “Verifying simulink stateflow
model: timed automata approach,” in Proceedings of the IEEE/ACM
International Conference on Automated Software Engineering (ASE).
ACM, 2016, pp. 852–857.

[19] K. Havelund and T. Pressburger, “Model checking java programs using
java pathfinder,” International Journal on Software Tools for Technology
Transfer (STTT), vol. 2, no. 4, pp. 366–381, 2000.

[20] T. A. Henzinger, G. C. Necula, R. Jhala, G. Sutre, R. Majumdar, and
W. Weimer, “Temporal-safety proofs for systems code,” in International
Conference on Computer Aided Verification (CAV). Springer, 2002, pp.
526–538.

[21] J. Hatcliff and M. Dwyer, “Using the bandera tool set to model-check
properties of concurrent java software,” in International Conference on

Concurrency Theory (CONCUR). Springer, 2001, pp. 39–58.

100

