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Abstract—Automated program repair has the potential to reduce the developers’ effort to fix errors in their code. In particular, modern
programming languages, such as Java, C, and C#, represent time as integer variables that suffer from integer overflow, introducing
subtle errors that are hard to discover and repair. Recent researches on automated program repair rely on test cases to discover
failures to correct, making them suitable only for regression errors. We propose a new strategy to automatically repair programs that
suffer from timestamp overflows that are manifested in comparison expressions. It unifies the benefits of static analysis and automatic
program repair avoiding dependency on testing to identify and correct defected code. Our approach performs an abstract analysis over
the time domain of a program using a Time Type System to identify the problematic comparison expressions. The repairing strategy
rewrites the timestamp comparisons exploiting the binary representation of machine numbers to correct the code. We have validated
the applicability of our approach with 20 open source Java projects. The results show that it is able to correctly repair all 246 identified
errors. To further validate the reliability of our approach, we have proved the soundness of both, type system and repairing strategy.
Furthermore, several patches for three open source projects have been acknowledged and accepted by their developers.
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1 INTRODUCTION

SOFTWARE failures are expensive and they consume the
majority of developers time [1], nonetheless most of

these software failures are predictable and avoidable [2].
Researchers have proposed several analysis techniques of
source code to reduce software maintenance and fixing
effort to remove implementation errors.

A technique to reduce the developers’ effort to fix a de-
fected implementation is automated program repair. Briefly,
an automated program repair approach performs some
transformation of the source code to remove an existing
error. This technique is performed in two steps: first it
identifies statements in the source code that contain errors
and then, it repairs them. The modern repair techniques [3],
[4], [5], [6], [7], [8] often use test cases to (i) construct models
of the correct behavior of a program to identify the errors
to repair; and to (ii) validate their proposed repairs. Thus,
such techniques require developers to write reproducible
and deterministic tests that point out the error subjected
to the repair. This helps to solve issues due to regression
errors but it is not feasible for new yet-undiscovered faults.
Other approaches, such as Randoop [9], [10], Agitator [11],
or Evosuite [12] help developers to automatically create test
cases for discovering new errors. The generated tests stress
functionalities of the program with random sequences of
input values and method invocations for the class under
test. They help developers achieve a high coverage [13] and,
hopefully, discover previously unknown defects that can be
addressed by the automated program repair techniques.
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It is well known that relying on testing for the identifi-
cation of errors has a shortcoming: they show the existence
of errors but they do not provide insight about what is their
root cause. Therefore, testing activities have been comple-
mented with static analysis [14] that considers the semantics
of the code. This type of technique performs symbolic exe-
cution or an abstract interpretation of the program aiming
at finding errors as early as possible before shipping the
program to the customers. Huge software companies, such
as Google [15], [16], Facebook [17], [18], and Microsoft [14],
[19] are pushing the integration of static analysis tools in
their development cycle. With the popularity of continuous
integration and continuous delivery systems (CI/CD), it is
important to automatically prevent faults and these tools fit
perfectly in this software development practice. For every
release of the software, a verification pipeline is executed
where the provided tests and static analysis tools are exe-
cuted. If at any point errors are found, the building process
is terminated and the executable is not delivered to the
users. Moreover, the results of the verification pipeline are
sent to developers to help them fix the identified bugs.

Identifying and repairing errors in a program is challeng-
ing, even more when the error stems from bad handling of
timing of events. Modern programming languages, such as
Java, C, and C#, offer APIs to manipulate and model time as
timestamp using integer variables. Recent works [20], [21],
[22] show how the timestamp representation is fragile in
the context of mainstream programming languages. Integer
Overflows due to manipulation of timestamps could be
dangerous and exploited to violate the security offered by
modern operating systems. Recently, two vulnerabilities1,2

due to timestamp overflows were discovered in the Linux
kernel. An example of the problems inherited by manip-
ulating time via timestamp is presented in Listing 1 that

1. https://nvd.nist.gov/vuln/detail/CVE-2018-12896
2. https://nvd.nist.gov/vuln/detail/CVE-2018-13053
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1 public T acquire(long time, TimeUnit unit)
throws TimeoutException, IOException {

2 long endTimeMs = mClock.millis() + unit.
toMillis(time);

3 ...
4 long currTimeMs = mClock.millis();
5 try {
6 if (currTimeMs >= endTimeMs || !mNotEmpty.

await(endTimeMs - currTimeMs, TimeUnit.
MILLISECONDS)) {

7 throw new TimeoutException("Acquire
resource times out.");

8 }
9 }

10 ...
11 }

Listing 1: Excerpt of method acquire that contains a times-
tamp overflow error.

shows a bug of Alluxio,3 discovered and repaired with
our approach. The method acquire accepts a timeout
parameter that expresses the maximal amount of time that
the caller is willing to wait for acquiring a resource. The
method implements the acquisition with a while true loop
(omitted) that iterates until either the resource is acquired
or it times out throwing an exception. Variable endTimeMs
(see line 2) contains the expiration date that is used to verify
whether the request times out. It is computed as the sum of
current time and the timeout parameter. Since timestamp
stores the milliseconds that have been passed since January
1st 1970, those values are inherently huge and can easily
overflow. In fact in the timestamp comparison at line 6, if
the variable endTimeMs previously overflowed in line 2,
the method wrongly returns the timeout exception without
waiting for the resource to be available for the expected
amount of time.

We propose a novel approach to automatically repair
programs that suffer from timestamp overflows errors that
are manifested in comparison expressions. It combines the
benefits of static analysis and automatic program repair
and it can be easily integrated into the CI/CD pipeline
of a project, without depending on testing to identify and
repair the defected code. Our approach performs an abstract
analysis over the time domain of a program using the formal
time semantics of a programming language to support a
Time Type System (TTS). We show the applicability of our
approach to the Java language using the time semantics
presented by Liva et al. [20]. One peculiarity of the time
semantics is that it can be used to identify those program
variables that store time values, called time variables. Time
variables in Java use the integer representation with either
the int or long data types to store numbers that represent
time values. A Java program can handle the time either by
looking at the moment when one or more events occur, or
by computing the difference between two events. For this
reason we refine the time analysis in [23] by recognizing two
different types of time variables: Timestamp and Duration.
If we interpret the (real) time as a line, then Timestamp
values are used to represent arbitrary points along this
line, while Duration values can be used to represent an
interval between two points. Timestamp variables are prob-

3. https://github.com/Alluxio/alluxio/pull/7320

lematic because they store huge numbers and they can easily
overflow. Thus, we aim to repair comparison expressions
between Timestamp values. We exploit TTS to find frag-
ile Timestamp comparisons in Java programs, such as the
example presented in Listing 1, that can be automatically
repaired.

We have implemented the approach in an open source
prototype tool4 that we have applied to 20 open source Java
projects to study the applicability of our approach. In our
evaluation, we answer the following research questions:
• RQ1: What is the precision and recall of TTS in inferring

time types?
• RQ2: What is the correctness of the patches created by

our approach?
• RQ3: What is the usefulness of the patches created by

our approach?
With the first research question, we aim to discover empiri-
cally the precision and recall of our time type system to infer
the time types of expressions. The second research question
is used to assess if the patches can remove the errors and
finally, we investigate with the feedback of developers if the
patches can be accepted as repair. The results of our eval-
uation show that TTS has a precision of 100% and a recall
of 99.97% in identifying timestamp comparisons. Moreover,
all of the proposed patches are correct and several of them
have been acknowledged and accepted by the developers of
three projects. In summary, this paper makes the following
contributions:
• an extension of the formal time semantics for the Java

programming language;
• a time type system;
• an evaluation of the approach with 20 open source

projects;
• several errors repaired that have been accepted by the

developers of three open source projects.
The remainder of the paper is organized as follows:

Section 2 presents an overview of our approach; Section 3
details the definition of the time type system and Section
4 presents our repair approach. In Section 5 we evaluate
our approach and we discuss implications, limitations, and
threats to the validity of our experiments in Section 6.
Section 7 gives an overview of the related works and we
conclude the paper in Section 8.

2 APPROACH

Figure 1 presents the two steps of our approach to re-
pair timestamp comparisons. In the first step, presented
in Section 3, our approach analyzes the source code of a
program to extract the time information. First, it applies
the time semantics presented by Liva et al. [23] to identify
time expressions in the source code. Then, this information
is processed by our Time Type System (TTS) that extracts
the time type of each expression. These operations are
applied recursively until a fix point is reached and no more
additional time expressions are identified in the source code.
Notice that since the time semantics is complete [23], all
time variables and statements will be processed by TTS.
The output of this step is the source code annotated with

4. https://git.io/fNiBz
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Fig. 1: Overview of our approach to repair timestamp com-
parisons.

the time type information and the list of statements that
perform a comparison between two timestamp expressions
that we call Timestamp comparisons.

Given the list of comparisons and the source code anno-
tated with time types, the second step repairs all timestamp
comparisons that could have overflow problems using the
technique described in Section 4.

3 TIME TYPE SYSTEM

Our approach extends the formal time semantics of the Java
programming language proposed by Liva et al. [23] to sup-
port a Time Type System (TTS). One peculiarity of the time
semantics is that it can be used to identify those program
variables that store time values, called time variables. In
addition to the date/time APIs provided by the Java JDK
and other libraries, time variables can be declared using the
int or long data types. Furthermore, such time variables
(and expressions) can be used in a program to store two
semantically different information:

1) Duration: the value of the expression specifies a scalar
amount of time;

2) Timestamp: the value of the expression specifies a
specific point in time.

If we interpret the (real) time as a line, then Timestamp
values are used to represent arbitrary points along this line,
while Duration values can be used to represent an interval
between two points. This distinction is mandatory for our
purposes since our repair strategy seeks for expressions
that compare Timestamp values that can suffer from integer
overflow problems.

In the following subsections, we introduce a type system
to infer the two time types for time expressions in programs.

3.1 Time Semantics Extension
The syntax and definition of the time type system abstracts
from the definition of a specific programming language.
In this manner, it can be used for multiple programming
languages providing the mapping between the specific con-
structs offered by the programming language to our time
type system syntax. However, since we show the applica-
bility of our approach for the Java programming language
using the time semantics defined by Liva et al. [23], we

Methods m ::= i(x1, , xn){ s }

Statements s ::= e x = e if (b) then s1 else s2

while (b) s s1; s2 return e

Expressions e ::= n x e1 + e2 e1 − e2 e1 × e2

e1 ÷ e2 obj.m(e1, , en) b

min
max

(e1, e2)

Booleans b ::= e1 < e2 e1 <= e2 e1 >= e2

e1 > e2 b1 && b2 b1 || b2

Fig. 2: Programming language grammar supported by the
Time Type System (TTS).

present examples that map Java constructs to the syntax
of the time type system. Through a manual analysis of the
Java 8 time APIs, the authors have formally defined the
semantics of four types of time methods that can be used
in Java. On top of this analysis, they have defined rules that
infer program variables which store time values, called time
variables, and statements that deal with time, called time
statements. From [23], we are interested in only the methods
that use, or can modify, time variables, namely methods
that: (i) return time values (RT ) and (ii) accept time as a
parameter (ET ). We extend their analysis dividing the RT
methods into two more fine-grained categories:

• RTt as the set of RT methods that return a Timestamp
value;

• RTd as the set of RT methods that return a Duration
value;

Furthermore, we refine also the set of ET methods
of the Java time APIs, for which we manually anno-
tated each time parameter with its time type. For the
remaining of the paper, with ET we refer to this ex-
tension. An example of our refinement is the method
java.lang.Object.wait(long timeout) that we cat-
egorized as ET method and we assigned the parame-
ter timeout the type Duration. As another example, the
method java.lang.System.nanoTime() is categorized
as RTt since it returns a Timestamp value.

Based on this semantics of manually categorized Java
time methods, TTS recursively analyzes the source code of a
project until a fix point is reached, i.e., no more time methods
are identified. In each iteration, TTS extends the three sets
of time methods and when a new time method is found,
TTS processes the source code again since the method might
be used to discover new time variables, statements, and
methods.

3.2 Syntax Rules

Figure 2 presents a subset of the generic programming
language supported by TTS described using rules in Backus-
Naur form. It presents the most interesting cases of the lan-
guage with methods, statements, expressions, and boolean
comparisons. Here, i represents an identifier for method
names and obj for object names, n represents a numerical
literal, and x ranges over program variables.
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Γ0 := ∀ni=1isT imeV ar(xi)→ Γ[xi 7→ DoT ] Γ0 ` s a Γ′

Γ ` i(x1, , xn){ s } a Γ′
[METHOD]

Fig. 3: Methods.

Γ `s1 :τ ′a Γ′ Γ′ `s2 :τ ′′a Γ′′

Γ ` s1; s2 a Γ′′
[STM]

Γ `e :τ a Γ′[e 7→ τ ]

Γ ` return e : τ a Γ′
[RET]

Γ ` b a Γ′ Γ′ ` s a Γ′′

Γ ` while (b) s a Γ′′
[WHILE]

Γ ` e :τ a Γ′[e 7→ τ ]

Γ ` x = e :τ a Γ′[x 7→ τ ]
[ASSIGN]

Γ ` b a Γ′ Γ′ ` s1 a Γ′′ Γ′ ` s2 a Γ′′′

Γ ` if (b) then s1 else s2 a Γ′′ ∪ Γ′′′
[IF]

Fig. 4: Statements.

Methods m. We elide many details of the definition of
a program and we represent it just as a list of methods.
To simplify the exposition, we remove all the information
regarding packaging, visibility, type hierarchy, and global
variables. Nevertheless, the details of how our approach
handles a Java class are briefly presented in Section 3.3.
Each method m is composed of an identifier i, a list of
variables (x1, , xn) that represent its input parameters and
a sequence of statements s.

Statements s. We include here the syntax for the assign-
ment, if, while, and return statements. The other conditional
and loop statements typically provided in programming
languages are handled in a similar way. The rule for the
assignment statement assigns the expression e to variable
x. The rules for the if and while statements contain a
boolean expression b. Concerning the if statement, if b is
true, the sequence of statements s1 is executed otherwise s2.
Concerning the while statement, if b is true, the sequence of
statements s is executed. The rule for the return statement
returns the expression e.

Expressions e. Regarding literals n, the rule consid-
ers only integer values. Furthermore, our syntax supports
method calls in the form obj.m(e1, , en), the basic mathe-
matical operations, and min/max operations.

Booleans b. We support all the boolean operators for the
comparison of timestamps. Note that equality checks do not
suffer from overflow comparison problems and therefore,
we skip them. We also include the logical conjunction and
disjunction of boolean expressions.

3.3 Type Inference Rules
Our approach accepts as input a well-typed program and
outputs the program annotated with the time type informa-
tion. The type inference rules describe how TTS assigns a
time type to literals, variables, and expressions. The rules are
expressed via operational semantics [24] and they consist of
a set of premises and a conclusion. Both premises and the
conclusion are judgments. A judgment has the form e : τ
which means e has type τ . In the context of the paper, τ
refers to a time type. Judgments include a type environment
Γ that contains the set of type bindings from variables and
expressions to their respective time types. Since assignments
can change the binding of a variable to a new time type,
we designed our type system to be flow-sensitive which is
achieved by inserting an output environment Γ′ in addition
to the input environment. For the sake of readability, we

Γ0 := Γ ∀ni=1
Γi−1`ei:τaΓi

Γi−1`ei:τaΓi[ei 7→τ ]

Γ′0 := Γn ∀(i,τ)∈PosType(m) Γ′i−1`ei:τaΓ′i[ei 7→τ ]

Γ`obj.m(e1, . . . , en)aΓ′n
[ET]

m ∈ RTτ Γ ` obj.m(e1, . . . , en) a Γ′

Γ ` obj.m(e1, . . . , en) : τ a Γ′
[RT]

n ∈ int ∨ n ∈ long
Γ ` n :D a Γ

[LITERAL]

Γ ` e1 : τ a Γ′ Γ′ ` e2 : τ a Γ′′

Γ ` min
max

(e1, e2) : τ a Γ′′
[MIN-MAX] x ∈ Γ τ := Γ(x)

Γ ` x : τ a Γ
[VAR]

Γ ` e1 : τ ′ a Γ′

Γ′ ` e2 : τ ′′ a Γ′′


1©∨ 2© : � = −
2©∨ 3©∨ 4© : � = +
4© : � = ×
4© : � = ÷

Γ ` e1 � e2 : τ0 a Γ′′
[INT]

1© : τ ′ = τ ′′ → τ0 := D 2© : τ ′ = T ∧ τ ′′ = D → τ0 := T
3© : τ ′ = D ∧ τ ′′ = T → τ0 := T 4© : τ ′ = D ∧ τ ′′ = D → τ0 := D

Fig. 5: Expressions.

Γ0 = Γ ∀ni=1Γi−1 ` bi a Γi � ∈ {||, &&}
Γ ` b1 � · · · � bn a Γn

[BOOL]

Γ ` e1 : τ a Γ′

Γ′ ` e2 : τ a Γ′′
� ∈ {<,<=, >=, >}

Γ ` e1 � e2 a Γ′′
[COMP]

Fig. 6: Booleans.

have shortened the names of time types Timestamp and
Duration with T and D, respectively.

Example. The following shows an example of a typing
rule consisting of two premises e1 and e2. The rule is read as:
given that e1 has type Duration and e2 has type Timestamp
in the type environment Γ, then the sum of the expressions
e1 and e2 has type Timestamp. Therefore, variable x has
type Timestamp in the output environment Γ′.

Γ ` e1 :D a Γ Γ ` e2 :T a Γ

Γ ` x = e1 + e2 :T a Γ[x 7→ T ]

The reasoning of the rule is based on the notion that if
we add some time to a date, the result is still a date but
in the future. Moreover, since the expression is assigned to
variable x, the resulting environment extends Γ with a new
mapping between x and its time type T .

Figure 3 presents the starting point of our analysis. The
extended time semantics could detect that a class attribute or
a parameter of a method is time related. In fact, the function
isT imeV ar returns true if the expression in input is a refer-
ence to a time variable. However, it is not possible to know a
priori the exact time type of the time parameters/attributes
because they do not always have an initialization expression
that can be used to infer their time type. Therefore, we
introduce the DoT time type which expresses that a time ex-
pression is of type Duration or Timestamp. Time parameters
of a method and time attributes of a class are initialized in
the environment with the type DoT as defined in rule METHOD

by the environment Γ0. Through the analysis of the code,
TTS tries to infer their precise time types, choosing between
Duration and Timestamp.
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Γ ` e1 : τ ′ a Γ′ Γ′ ` e2 : τ ′′ a Γ′′

τ0 :=


τ ′ τ ′ 6= DoT ∧ τ ′′ = DoT
τ ′′ τ ′′ 6= DoT ∧ τ ′ = DoT
DoT otherwise

Γ ` min
max

(e1, e2) : τ0 a Γ′′
[DOT-MIN-MAX]

Γ ` e1 : τ ′ a Γ′

Γ′ ` e2 : τ ′′ a Γ′′


1©∨ 2©∨ 3©∨ 4© : � = −
4©∨ 5©∨ 6©∨ 7© : � = +
2©∨ 8© : � = ×
2©∨ 8© : � = ÷

Γ ` e1 � e2 : τ0 a Γ′′
[DOT-INT]

1© : τ ′ = T ∧ τ ′′ = DoT → τ0 := DoT 2© : τ ′ = D ∧ τ ′′ = DoT → τ0 := D
3© : τ ′ = DoT ∧ τ ′′ = T → τ0 := D 4© : τ ′ = DoT ∧ τ ′′ = D → τ0 := DoT
5© : τ ′ = T ∧ τ ′′ = DoT → τ0 := T 6© : τ ′ = D ∧ τ ′′ = DoT → τ0 := DoT
7© : τ ′ = DoT ∧ τ ′′ = T → τ0 := T 8© : τ ′ = DoT ∧ τ ′′ = D → τ0 := D

Fig. 7: DoT Expression Type Inference.

Figure 4 presents the rules for handling basic statements.
Rule STM shows how a sequence of statements is processed
one after the other. Rule RET unpacks the expression of a
return statement and analyzes it recursively. Conditional
and cyclic execution statements may have a timestamp
comparison in their guard. Rules IF and WHILE first process
the guard and then each of their sequence of statements
independently. Finally, rule ASSIGN updates the environment
adding (or updating) the time type of the variable x. Vari-
able declarations are handled as assignment expressions.

Figure 5 shows the rules for handling expressions. For
every method call TTS verifies if it belongs to a time method
of the extended time semantics. If the called method con-
tains a time parameter in its signature, rule ET processes each
argument recursively and updates the type environment
accordingly. The rule uses an auxiliary function posType
that returns for the method m the set of positions for its
arguments that are expected to be time related and their
expected time types. If the call is to a method that returns
a time value, rule RT returns the time type of the expression
performing a look-up in the sets of time methods. Further-
more, TTS considers every numeric literal that appears in an
expression as Duration type. The time type system supports
the most common mathematical operators that can be used
with the integer types described by the INT rule. Depend-
ing on the operator used, we consider four different cases.
TTS is designed to accept only correct operations between
time values. In fact, operations such as the sum between
two timestamp values is not accepted because the sum of
two dates is not a meaningful operation. The subtraction
operator, instead, accepts two timestamp values and the
operation results in a Duration time type. Moreover, TTS
supports also the functions max and min. Developers tend
to use such functions to sanitize the input of time variables
[21]. These functions return a time type equal to the time
types of their arguments. Finally, rule VAR performs a lookup
in the type environment for a time variable and its time type.

The rules for handling boolean expressions are presented
in Figure 6. They do not return any time type but their
expressions can modify the environment and they are the
code locations where timestamp comparisons appear. Rule
BOOL shows that each boolean expression connected by a
boolean operator is processed left-to-right following the
Java specification [25]. Expressions that compare time, as

depicted by rule COMP, must have the same time type on
both sides of the comparison.

The remaining rules describe how TTS handles DoT
expressions and they are presented in Figure 7. The general
idea of these rules is to infer the precise5 type whenever
it is possible. For instance, in rule DOT-MIN-MAX if the first
argument is of type DoT and the second argument is of
Duration, TTS infers that the first argument is of type
Duration and it updates the type environment accordingly.
The update of the environment is performed by analyzing
the expression and obtaining the correct type for all the DoT
time variables through the unification via pattern matching
[26] with the cases of the rules that do not accept the DoT
time type.

Example. Consider the following piece of code:
1 void foo(long time){
2 //{time : DoT}
3 long now = System.nanoTime();
4 //{time : DoT, now : T}
5 long tmp = (time - now) * 1000;
6 //{time : T, now : T, tmp : D, 1000 : D}
7 Thread.sleep(tmp);
8 //{time : T, now : T, tmp : D, 1000 : D}
9 }

Through the application of our time semantics, the pa-
rameter time is marked as a time variable. Through the
rule METHOD, the type environment contains an entry for this
parameter mapping it to the type DoT. The first statement
in Line 3 matches the rule ASSIGN and the right-hand-side of
the assignment the rule RT. Through the extended time se-
mantics, TTS infers that the method call has type Timestamp
because its signature is in RTt. Thus, it adds an entry to the
type environment for variable now mapping it to the type
Timestamp. Analyzing the right-hand-side of the assign-
ment statement in Line 5, rule INT matches the multiplication
case. The INT rule then analyzes both operands where the
second operand, being a scalar value, has type Duration.
The first operand, instead, is a subtraction referencing the
variable time that has type DoT. Therefore, rule DOT-INT

matches with 3© of the first case assigning the subtraction
the type Duration. Since there is a match of a DoT rule,
TTS tries to infer the appropriate time type for the time
parameter. Currently, TTS has the expression DoT −T = D
that it tries to match with the cases of the rule INT. This
rule has two cases for the subtraction operator, but the latter
does not match because it requires a Timestamp type on the
right-hand side instead of a Duration. Then, 1© of rule INT is
the only case that matches and therefore, TTS infers that the
parameter time has type Timestamp.

Unfortunately, it is not always possible to infer a concrete
type for DoT variables. The following code presents an
example of such a case:

1 long fee(long time){
2 //{time : DoT}
3 long ms = TimeUnit.toMillis(100);
4 //{time : DoT, ms : D}
5 return (time - ms);
6 //{time : DoT, ms : D, return : DoT}
7 }

The environment is initialized with the parameter time
of DoT time type. After the first statement, the environment

5. Either Timestamp or Duration
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7 6 5 4 3 2 1 0

v= 0 1 1 1 1 1 1 0 = 126

sign magnitude

7 6 5 4 3 2 1 0

w= 0 0 0 0 0 1 1 1 = 7

7 6 5 4 3 2 1 0

x= 1 0 0 0 0 1 1 0 =−122

+

=

Fig. 8: Example of an integer overflow due to the two’s
complement representation.

contains the information that variable ms has type Duration.
Analyzing the expression of the return statement, the time
type system matches rule DOT-INT with 4© of the first case.
When TTS tries to infer the correct type for variable time
using the cases of rule INT, both cases of the subtraction
match. Since there is no unique case that matches, TTS is
not able to infer the correct type because both Timestamp
and Duration are valid types for this expression.

4 REPAIRING TIMESTAMP COMPARISON

Looking at the example presented in Listing 1, the condi-
tion currTimeMs >= endTimeMs might wrongly throw
a TimeoutException because the value for the variable
endTimeMs might overflow. Such a comparison is there-
fore called linearly unstable according to the linear stability
principle [27]. The reason lies in how the Java Virtual Ma-
chine (JVM) handles overflows and arithmetic operations.
Java uses the standard representation of two’s complement
[28] to represent integer numbers. The first bit in a two’s
complement representation indicates the sign of the number,
where 1 represents a negative and 0 a positive number. The
part from the second bit until the end of the binary repre-
sentation is called magnitude. Figure 8 shows an example of
an integer overflow in the two’s complement representation.
Variables v, w, x use 8 bits to represent integer numbers in
the range from -128 to 127. The sum of v (126) and w (7)
causes an integer overflow resulting in -122 stored to x. The
two’s complement representation is therefore not linearly
stable because a small perturbation on the input value can
lead to an unexpected large change in the result. In our
example, the sum of 7 and 126 leads to -122 that is way
different from the expected result, namely 133.

As argued in the introduction, the integer values of
timestamps are typically large so that mathematical opera-
tions, such as the plus-operation, while syntactically correct,
are prone to integer overflows. Regarding the example
presented in Listing 1, we can express the comparison
with a mathematical equivalent but more stable expression:
endTimeMs - currTimeMs <= 0. In terms of our time
type system, our approach rewrites the comparison between
two Timestamps to a comparison between two Durations

7 6 5 4 3 2 1 0

x= 1 0 0 0 0 1 1 0 =−122

7 6 5 4 3 2 1 0

y= 0 0 0 0 1 0 0 1 = 9

7 6 5 4 3 2 1 0

0 1 1 1 1 1 0 1 = 125

−

=

Fig. 9: Example of how to exploit the two’s complement
representation to cancel an integer overflow.

while preserving its semantics. Although mathematically
equivalent, the two expressions differ due to the two’s
complement representation used by computers [29]. If one
of the two Timestamps suffered from an overflow, the sub-
traction will likely lead to an integer underflow that cancels
the overflow. Figure 9 continues the example presented
in Figure 8. If after the overflow stored in x, there is a
comparison such as if (x < y), the statement will return
true (−122 < 9), although the programmer expects it to be
false because the expected comparison 133 < 9 is false.
On the contrary, if the code contains the condition rewritten
as x - y < 0, it will return, as expected, false because
the subtraction −122 − 9 results in an integer underflow,
namely 125, that compensates for the previous overflow. The
condition 125 < 0 then returns, as expected, false.

We call normal form for Timestamp comparisons, a com-
parison in the form:

expr1 − expr2 < 0 (1)

Then, we can express the problem of rewriting the compar-
ison between two Timestamp expressions as a refactoring
problem that improves the program’s design, while preserv-
ing its current behavior [30], [31]. The behavior of a program
is specified by the developers or it can be obtained from
the program itself through the execution of the test suite.
However, tests may not give the complete picture, therefore
we call the behavior extracted through the execution of
the tests the observable behavior. In our approach, we alter
the program’s behavior only for the currently unobserved
behavior that contains errors. Note that, we only present
the case for the < operator. Other relational operators that
check for inequality, i.e., ≤, >,≥, follow analogously the
approach.

A common technique to specify a refactoring problem is
using Hoare triples [32] that are composed of three parts:
precondition, procedure, and postcondition. We define our
refactoring problem with a defensive implementation [33]
using the following Hoare triple:

true

{if pre(P) then change(P)}
(Pre(P) ∧ Post(P,P ′)) ∨ (¬Pre(P) ∧ P ′ = P),

(2)
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where P ′ refers to the result of the refactoring procedure
over the program P ; Pre(P) is the function that protects
the refactoring from generating a wrong program reject-
ing every program that the refactoring specification cannot
handle; and Post(P,P ′) is the function that validates the
correctness of the refactoring procedure that is applied to
the program P ; pre(P) is the implementation of the func-
tion Pre(P); and change(P) is the implementation of the
function that rewrites any Timestamp comparison into the
normal form. The precondition in our case is true, because
the validity of the application of the refactoring procedure
is part of the action that is implemented by the refactoring
procedure in the refactoring tool. The postcondition ensures
that only if the application of the refactoring procedure is
possible, the output contains the correct changes.

Post(P,P ′) = wellFormed(P) ∧ wellFormed(P ′) ∧
obsBehavior(P) = obsBehavior(P ′)

(3)

Equation 3 shows how the refactoring procedure can be
validated. The output program P ′ should exhibit the same
observable behavior of the input program and should be
well formed, i.e., it does not introduce any syntactical error
and it can successfully compile and execute the test suite.

Based on Hoare triples, the above formalization defines
the necessary conditions under which a refactoring tool
correctly changes a program. However, different refactoring
(and repairing) tools can be developed by realizing different
implementations of the functions Pre(P) and change(P).
Although easy to express, the function Pre(P) and its im-
plementation pre(P) are in practice a major problem, such
as demonstrated in [34], [35], [36], [37], [38], [39], [40], [41],
[42]. For our purpose, Pre(P) requires that the comparison
is performed between two expressions that have type Times-
tamp. We use TTS to check the precondition of the problem.
If fulfilled, which means TTS identified a comparison be-
tween two Timestamp expressions, our approach refactors
it by rewriting the comparison expression into its normal
form. Finally, our approach verifies the post-condition using
the build system of a project: first it verifies that the modified
program compiles and is well-typed (wellFormed); second,
it executes the test suite to verify that the refactoring did not
change the observed behavior.

5 EXPERIMENTS

In this section, we present the experiments we have per-
formed to evaluate our approach to repair timestamp com-
parisons. We address the following three research questions:
• RQ1: What is the precision and recall of TTS in inferring

time types?
• RQ2: What is the correctness of the patches created by

our approach?
• RQ3: What is the usefulness of the patches created by

our approach?
The next subsections describe the setup of the experi-

ments and how we performed them.

5.1 Setup
We have implemented our approach in an open source
prototype tool used to answer the three research questions.

For the dataset creation, we queried GitHub for Java projects
and we ranked them based on their number of stars. We
manually filtered the results retaining projects that use
distributed components or communication protocols over
the network to enhance the likelihood of timestamp com-
parisons. From the resulting list, we randomly selected 5
projects that have less than 1500 stars, 10 projects that have
between 1500 and 5000 stars, and 5 projects that have more
than 5000 stars. Our search resulted in a dataset comprising
20 Java projects that vary in size, vendor, and domain.

For each project, we downloaded the source code of
the latest release. Table 1 lists the 20 projects together
with descriptive statistics of their size, number of tests,
and statement coverage. We have verified that each project
is configured for reporting the statement coverage. If no
coverage support was defined, we added the Cobertura6

plugin into the build script using its default configuration
to compute the statement coverage score. Regarding the
projects size, the number of classes per project varies from
124 to 27, 208 containing from 716 up to 205, 432 methods
that in total comprise 9, 590, 951 SLOC. The number of tests
per project varies from 162 up to 150, 648 resulting in a
total of 302, 616 tests. Regarding the coverage, Airavata is
the project with the lowest coverage, namely 8.25%. Elastic-
job has the highest coverage of 87.84%. On average, the
provided tests cover 51.93% of the projects’ source code.

Our prototype tool analyzed the 9, 590, 951 SLOC in
11.72 hours.7 The AWS project alone took most of the
time, namely 7 hours. Although AWS is 68% bigger than
Camel in terms of SLOC, it required 86% more time to
compute. This means that the run time required by our
prototype is not linearly increasing with the size of a project.
In fact, it depends on how the source code is structured.
We observed that the AWS project has many if-then (and
switch) statements that are expensive operations for TTS:
when analyzing a branching instruction, TTS creates a new
copy of the environment for each branch which is a time
and memory consuming operation.

5.2 RQ1 - Identifying Timestamp Expressions
With the first experiment, we want to investigate if the
definition of TTS is adequate to correctly infer the time types
of expressions. Since TTS can be proved to be sound but not
complete, we studied its empirical precision and recall.

To have an estimate value for the recall, we ran our
prototype tool on the source code of each project apply-
ing the time semantics to identify the time variables that
appears on the left-hand-side of an assignment expression.
Then, we used TTS to compute their time types. We counted
the number of time variables for which TTS inferred a time
type (Duration or Timestamp) and the number of variables
for which it could not (they have type DoT). The results
of this experiment are presented in the columns #Time
Var, #Typed, and #DoT of Table 1. Over all projects, TTS
identified 1, 069, 598 time variables and for most of them,
namely 1, 069, 265, it infers a time type, i.e., either D or
T. Only for 333 time variables (0.03%) it could not infer

6. http://cobertura.github.io/cobertura/
7. All experiments have been conducted on a computer with a 2.5

GHz Intel CPU and 16 GB of physical memory running macOs 10.13.5.
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TABLE 1: Results of the application of our approach on the 20 Java projects showing the short commit hash (# Hash), classes
(# Classes), methods (# Methods), test and their coverage (# Tests), single line of code (SLOC), the seconds required for the
analysis (Time), the number of time variables identified (# Time Var), the number of time variables that are assigned with a
Time Type (# Typed), the number of time variables for which TTS was not able to decide between Duration or Timestamp
time type (# DoT), and finally the number of patches produced (# Patches).

Name # Hash # Classes # Methods # Tests SLOC Time [s] # Time Var # Typed # DoT # Patches
Activemq ccf56875b 5,100 44,072 20,450 (30.41%) 421,839 473.63 31,094 31,071 23 23
Activiti 917246113 2,103 15,381 3,968 (60.68%) 139,672 203.48 11,266 11,266 0 0
Airavata 391843a00 9,320 70,875 162 ( 8.25%) 711,587 1,146.17 131,439 131,439 0 1
Alluxio 2bf790f505 3,364 24,975 4,270 (45.85%) 233,897 223.00 36,854 36,833 21 8
Atmosphere d51726dcc 500 4,101 504 (55.16%) 35,843 35.86 4,074 4,072 2 0
Aws-sdk-java 5984638d0b 27,208 205,432 2,586 (57.33%) 1,795,234 28,091.57 186,336 186,335 1 9
Beam 3b03106b55 3,844 21,404 8,930 (66.64%) 210,960 201.79 19,548 19,543 5 1
Camel 497fa7760e1 20,024 116,080 47,704 (40.68%) 1,065,292 4,696.54 77,766 77,760 6 6
Elastic-job dbb79ef4 611 2,497 1,842 (87.84%) 26,418 19.17 1,942 1,941 1 0
Flume 7d3396f2 995 6,705 2,288 (48.00%) 85,750 52.29 9,086 9,075 11 8
Hadoop 128dd91e100 12,597 100,635 10,830 (51.16%) 1,267,414 1,955.95 121,859 121,715 144 35
Hazelcast 02e3fbf737 7,663 59,294 11,035 (76.57%) 649,789 736.54 37,383 37,355 28 1
Hbase 44f8abd5c6 9,535 128,928 4,614 (34.11%) 1,201,149 1,995.11 248,935 248,895 40 51
Jetty 65528f76c5 3,781 25,554 12,742 (45.65%) 342,602 301.51 26,568 26,559 9 8
Kafka c74acb24e 1,896 14,007 9,331 (71.87%) 149,644 119.29 16,440 16,429 11 19
Lens cdd7b099 1,036 8,114 2,432 (53.83%) 99,523 75.88 10,622 10,613 9 9
Nanohttpd f1cb85c 124 716 478 (75.25%) 7,532 4.25 742 742 0 0
Neo4j a41464ed3ba 9,158 61,407 150,648 (53.61%) 680,986 770.02 43,814 43,804 10 18
Sling 73fe13fa28 6,022 38,049 7,078 (35.80%) 433,384 1,046.44 50,845 50,834 11 49
Twitter4j cf6afc3e 418 4,642 724 (40.00%) 32,436 41.63 2,985 2,984 1 0
SUM - 125,299 952,868 302,616 (51.93%) 9,590,951 42,190.12 1,069,598 1,069,265 333 246

the time type, resulting in an overall recall of 99.97%. For
instance, in HBase 248, 895 time variables were typed and
only for 40 time variables, TTS was not able to infer their
time types. For Airavata, TTS inferred for all the 131, 439
time variables their time types.

Regarding the precision, we randomly selected 400 out
of the 1, 069, 265 time variables to obtain results with 95%
level of confidence and 5% margin of error. For these time
variables, we manually assessed their time types based on
the assignment expression. Then, we ran TTS and verified
that its output is aligned with the manual results. The man-
ual analysis was performed by the authors of the paper and
by an external developer with an inspection of the source
code that contains each of the 400 selected time variables.
The manual inspection was performed using the IntelliJ8

editor and its slicing and point to features to navigate the
code. They first analyzed the expression that assigns a value
to the time variable and then used IntelliJ to backward
slice the code to assess that the correct type was indeed
inferred w.r.t. the classification of time method of the Java
APIs (see Section 3.1). Analyzing the 400 time variables,
309 (77.25%) were manually categorized with Timestamp
type and 91 (22.75%) with Duration type. For all the vari-
ables, TTS computed the same time type obtained with the
manual analysis. Based on this result, we conclude that TTS
has an empirical precision of 100% in inferring time types.

5.3 RQ2 - Patch Correctness
For ActiveMQ, Atmosphere, Elastic-Job, NanoHttpd, and
Twitter4j our prototype tool was not able to find errors and
create a patch to repair them. However, for the other 15
projects it was able to propose 246 patches. From the previ-
ous research question, we know that TTS infers correctly
the time types of expressions. To further verify this, we
manually assessed, using the aforementioned methodology,
that each side of all faulty comparisons identified by TTS

8. https://www.jetbrains.com/idea/

is indeed a Timestamp expression. We confirmed that all
the 246 comparisons to repair are between Timestamps
expressions and they represent the input for our second
evaluation.

In this evaluation, we investigated if the repair preserves
the program semantics while removing potential overflow
errors. According to the problem definition presented in
Equation 3, the post condition assures that the repaired pro-
gram is well formed and the observable behavior is main-
tained i.e., the patch does not introduce any new error in the
program. To evaluate if our patches do not break the post
conditions, we applied each proposed patch one at a time.
After each patch application, we ran the test phase of the
build system of the project to verify that the post condition
for the repaired program holds. We ran the tests without any
additional configuration or parameter. We used the report
of Cobertura to confirm that each repaired statement was
executed by at least one test. The build system first, assures
that the program is well formed through the compilation of
the source files and second, that the observable behavior is
maintained through the execution of the test suite. For all
the 246 patches, the build system executed the 302, 616 tests
without any error. This shows that our approach correctly
repairs the 246 errors without introducing any side effect
that can alter the program’s behavior in other parts of the
system.

5.4 RQ3 - Patch Usefulness
In addition to the previous assessments, we also studied
the usefulness of the patches in two different ways. First,
the first author of the paper, an independent researcher, and
an external developer, who have several years of academic
and professional experience in developing Java applications,
verified through a manual control- and data-flow analysis
if the Timestamp comparisons identified by TTS are indeed
subjected to overflow errors. Second, we applied the patches
to the projects and submitted them as pull-requests to obtain
the feedback from the original developers of the projects.
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The manual data- and control-flow analysis has been
performed independently by each researcher and by the
developer, analyzing the faulty comparisons identified by
TTS to assess that they required to be repaired. The analysis
has been performed in the same manner as presented in
Section 5.2. Then, all participants came together and dis-
cussed the results. For each discrepancy in their results, they
analyzed together the code to reach a consensus agreement.
They have discovered that 41 of the 246 repaired time
comparisons are not suffering from errors due to overflow.
Therefore, our fix is not strictly necessary. In the 41 cases,
the developers handle the potential overflow in the source
code. For instance, TTS identified the following problematic
if-condition in the Hadoop project:

if (cacheExpiryTimeStamp >= 0 &&
cacheExpiryTimeStamp < now)

Variable now holds the current system clock value and there-
fore it is certain that the variable always stores a correct,
i.e., not overflowed, time value. Variable cacheExpiry-
TimeStamp, instead, holds the result of a mathematical op-
eration on timestamps that could overflow. The developers
of Hadoop have protected the code against the overflow
by adding the condition cacheExpiryTimeStamp >= 0
to the if-condition. The overflow itself then is handled in the
else-branch.

Regarding the evaluation with developers, we selected
three projects namely, ActiveMQ, Alluxio, and Kafka. The
restriction to these three projects was necessary because, for
getting pull-requests accepted, it is mandatory to create a
test harness for every failure detected. The creation of the
test harness is time consuming since it requires to be familiar
with the projects and their source code. At the moment of
writing we were able to create and submit 3 pull-requests
including the test-harnesses to the three projects. In total,
the 3 pull-requests fix 24 errors in timestamp comparisons.
We obtained feedback on all our pull-requests that we used
to evaluate the usefulness of our patches. The developers of
ActiveMQ responded with ”Good catch!” and the ones from
Alluxio with ”Really cool fix!”. In both projects, they accepted
our patches and merged the pull-requests.3,9 In the Kafka
project, instead, our pull-request10,11 started a discussion
on how to best handle timestamp overflows. While they
acknowledged our solution, they also found that a more
readable and maintainable solution to this issue is needed.
They suggested to rewrite the logic of the program, if
possible, avoiding mathematical operations that could lead
to an overflow. For the moment, however, the developers
decided to accept our pull-request and to roll-out the better
fix in the next releases. Furthermore, another developer of
the project proposed12 to centralize the handling of time
manipulation with a specific class that correctly implements
all the logic necessary to modify and compare time values.

Based on these results we can answer research question
RQ3 as follows: our approach showed evidence that it can
aid developers to repair Timestamp comparison and it can
be integrated into the deployment pipeline where develop-
ers can push unsafe code that is automatically repaired.

9. https://github.com/apache/activemq/pull/284
10. https://github.com/apache/kafka/pull/5078
11. https://github.com/apache/kafka/pull/5183
12. https://github.com/apache/kafka/pull/5087

6 DISCUSSION

In this section, we discuss the outcome of our evaluation
and its implication for researchers and practitioners. Fur-
thermore, we discuss the limitations of our approach and
the potential threats to validity of our empirical studies.

6.1 Summary of Results

With our three research questions, we studied three aspects
of our approach. The first research question is designed to
investigate the ability of our proposed time type system to
identify Timestamp comparisons. Since identifying compar-
isons is trivial, we studied the ability of TTS in inferring the
correct time type for source code expressions. The results
show that among the 20 projects, it is able to infer a time
type with a recall of 99.97% and a precision of 100%. The
second and third research questions, instead, are designed
to investigate the repairing correctness and usefulness of our
approach. First, we assessed that the patches are correctly
repairing the errors without introducing new ones. Second,
we published our 24 repairs as 3 pull-requests in the project
repositories to get the feedback from the developers. Our
patches have been applied to three different versions of
Apache ActiveMQ and after the discussion in our pull-
request, the developers of Apache Kafka have been working
on refactoring the full system to change how timestamp
comparisons are performed. This confirms the usefulness
of our approach.

6.2 Implication of Results

Concerning the implications on the research in this area,
the definition of a time type system opens a possible fur-
ther area of research. We envision researchers using the
definition of our time type system to study the evolution
of time APIs and how they are refactored or changed by
evolving the software project. In fact, changing the Hoare
triple that defines the problem, our approach can target
different problems related to time properties. Furthermore,
existing taxonomies and studies on code smells and anti-
patterns can be extended by considering time types.

Our solution can be applied to any language that uses
the two’s complement representation. We use Java only as
case study to show the applicability of our approach. There-
fore, researchers on compilers definition and development
could integrate the ideas of TTS and directly provide out-
of-the-box better basic types to express time values in the
program. This would improve static checkers that can be
run on the source code before producing the machine code.
Furthermore, TTS can be used to identify semantic errors
in time related expressions. For instance, a multiplication
between Timestamp values is a valid Java operation but
it constitutes an error that is identified by TTS. How-
ever, we conjecture that in our experimental validation,
we never encountered such errors because we addressed
mature projects. The investigation of the usefulness of TTS
inside an IDE to help developers identify such errors while
coding is left for future studies. Our results have also sev-
eral implications for practitioners. Developers can use our
approach in their continuous integration and continuous
delivery pipeline. When a commit is pushed into the version
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control system, our approach can process the commit and
automatically apply the transformation on timestamp com-
parisons. If it is too expensive to apply for every commit,
they could introduce it only in the nightly or weekly build.
Moreover, it can help developers discuss the logic of their
system and consider to refactor the code as it happened with
the developers of Apache Kafka.

6.3 Limitations
In our approach, we present a static analysis technique that
infers time types for time expressions. In principle, our
time type system is sound, which implies that it assures
the typical timed-”nonstuckness” property, i.e., any well-
typed program cannot get stuck w.r.t. time. In other words, it
establishes the fact that the time variables, as determined by
the typing rules defined in Section 3.3, contain time values.
The proof of the soundness follows from the given typing
rules based on the time semantics of Java [23]. The detailed
proof is discussed in [43]. However, our approach is not
complete, i.e., it cannot avoid all overflow errors due to the
finite arithmetic of computers. If the result of an expression
is too big to be stored into the finite amount of bits available,
there is no sort of the operations that will prevent the
overflow. Nevertheless, we have investigated empirically
via means of precision and recall the theoretical limitation
of our approach. The result shows that, it can infer the time
types of expressions with a precision of 100% and a recall of
99.97%. Another limitation of our approach is a lack of data-
flow analysis. In fact, we repair 41 Timestamp comparisons
that are not strictly necessary because developers already
thought about a possible overflow and handled it with
ad-hoc code. Even though it is not strictly necessary, the
repair does not affect the correctness of the program but it
introduces an extra operation to perform. Further studies
are necessary to evaluate how these repairs are seen by
developers.

6.4 Threat to Validity
In the following section, we discuss threats to the internal
and external validity of our evaluation, and how we ad-
dressed them in our experiments.

Internal Validity. One threat to the internal validity
concerns the reliability of the prototype. We mitigated this
threat formalizing TTS and proving its soundness to as-
sure that the approach is designed correctly. Moreover, we
mitigated errors in the implementation with manual and
unit tests. Furthermore, we computed the precision of our
approach with a manual analysis. Among the 1, 069, 598
time variables that are assigned with time expressions, we
randomly selected 400 that we have manually investigated.
The size of our sample set exceeds the minimum number
of 384 required to obtain results at a 95% confidence level
with a 5% margin of error. Moreover, we mitigated possi-
ble threats to validity of the different manual evaluations
performing the experiments independently by the different
authors of the paper, the independent researcher, and the
external developer.

In the first research question we based our computation
of precision and recall on the number of time variables iden-
tified in the source code. Therefore, our computed values are

valid w.r.t. the precision and recall of the defined formal
time semantics. However, the formal time semantics has
shown an empirical precision and recall of 100% in iden-
tifying time variables and time statements. This mitigates
potential threats to the validity of our results.

Equation 3 shows that TTS works on the basis that the
input program is well typed. In our studies we always used
a version of the project that is compilable, i.e., well typed,
so the time type inferred are trustworthy. The assumption
of having compilable source code is realistic since it is rare
that a commit cannot be compiled [44]. Furthermore, we
evaluated if the synthesized patches introduce any new
error relying on the test suite of the projects. Therefore, if
not enough tests are provided by developers there could be
a chance that an unwanted side effect is generated by one
of our patches and it passes unnoticed. However, this does
not threaten our studies because we have proved in [43] that
our repair strategy repairs possible time overflows without
altering the program’s intended behavior, i.e., the refined
expression is formally proved to be semantically equivalent
to the original expression.

External Validity. Threats to the external validity of
our studies concern the generalization of the results. We
mitigated this threat by choosing open source Java projects
that differ in vendor, size, and domains. Moreover, we
implemented our approach in a prototype tool that is pub-
licly available online.4 Other researches can freely use our
tool and apply it to other case studies and extend our
results. Furthermore, our approach is based on how ma-
chines encode integer numbers with the two’s complement
representation. Therefore, our technique can be extended to
other programming languages, such as C and C#, that use
the same encoding and a similar time semantics.

7 RELATED WORK

The main contribution of this paper is a technique that
automatically repairs programs. In this domain, multiple re-
searches address this problem with a generate-and-validate
approach. When a test fails, the repairing strategy generates
a patch and then, it validates or refuses it based on the
outcome of the test suite. This kind of repairing approaches
rely on building the set of all possible changes, called search
space, that can be applied to repair the defected code.
Long et al. [6] studied how changing the search space for
existing techniques, the repairing success rate changes. They
discovered that including information taken from outside
of the test suite enables these systems to successfully iden-
tify more correct patches. Le et al. [45] propose a genetic
algorithm to repair defects. The algorithm can be run in a
cloud environment with an average cost of 8$ per patch,
solving 50% of the discovered faults. Instead, Nguyen et al.
[3] propose an approach that creates a constraint problem
from the source code based on the tests execution. Then,
it generates a patch that satisfies such constraint problem.
A common shortcoming of these techniques is that they
overfit the problem and generate patches that pass the test
cases rather than repairing the code. Recent researches start
to use semantic information to repair the program without
overfitting. Ke et al. [5] process a large corpus of projects to
extract snippets of code that are encoded as SMT constraints
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that are stored in a database. When a fault is discovered
during the execution of a test, they derive the input-output
relationship and query the database. The results of the
query are used to synthesize a more accurate patch. Instead,
Mechtaev et al. [8] present an approach that synthesizes a
patch from a formal specification of the requirements of
the project. Tonder and Le Goues [46], similarly to our
approach, introduce a method that does not rely on testing
to discover faults to repair. They model a program via an
intermediate language that performs operation on a heap.
Users can specify properties that must hold in the heap.
Every time a property does not hold, their approach syn-
thesizes a patch using the code where the property holds.
However, this approach suffers from false positives due to
its approximate analysis of loops and clean up functions.
Furthermore, since a patch is generated from other code
snippets, it might contain side effects that can introduce
errors. In contrast, our approach is guaranteed to fix an error
without altering the program semantics.

In the domain of overflow detection, Beckert and
Schlager [47] propose the KeY specification for the Java
language that combines the semantics of the infinite integer
with the semantics of finite integer used by machines. De-
velopers can write the specification of their software with
KeY and then prove properties using Dynamic Logic. This
work is suited to model check integer properties and it does
not automatically identify or repair the program. Instead,
Brumley et al. [48] present the definition of a type system
that formally specifies the semantics for multiple undefined
behaviors of the C99 language. The type system is used to
identify integer expressions with undefined behavior and
their approach inserts checks after them that detect integer
attacks, such as integer under- and over-flows. Following
a similar idea, Dietz et al. [49] present IOC, a tool that is
part of the Clang toolchain to compile C/C++ programs on
Mac OS and iOS. Their tool analyzes the LLVM [50] code
representation of a C/C++ program and it identifies unde-
fined behavior for integer operations. The main difference
to our approach is that these approaches stop the program
execution when integer errors occur without repairing the
program. The work of Cocker and Hafiz [51] solves mul-
tiple integer overflow problems. They define three different
operations that rewrite the source code of a C program to
protect its runtime to suffer from integer problems. Their
technique introduces and replaces common mathematical
operations with calls to auxiliary library functions. The
library correctly implements the mathematical operations
and in case of overflow, it returns a runtime exception.
Those transformations are security-oriented and thus, they
broke the expected behavior of the program. This differs
from our approach because we perform transformations that
preserve the expected behavior of the program.

The closest related work is presented by Logozzo and
Martel [52]. They proposed an approach that repairs integer
overflows for arithmetics expressions. However, their work
has some limitations. It works only on sum expressions and
does not supports a full-fledged programming language.
It cannot handle side-effects so modern programming lan-
guages cannot be targeted. Finally, it requires users input to
specify templates for the expressions to repair. In contrast,
our approach performs a full-fledged static analysis on the

source code without requiring any user inputs.

8 CONCLUSION

In this paper, we presented a static analysis approach to
automatically repair programs that does not rely on testing
for discovering faulty code. Our approach repairs programs
that suffer from problematic timestamp comparisons and
we show its applicability for the Java programming lan-
guage. We introduce a Time Type System (TTS) that is built
on top of a time semantics of the programming language.
TTS is used to identify the timestamp comparisons to repair.
These comparisons are rewritten in a form that exploits how
machines encode numeric values to produce a mathematical
equivalent but more stable expression for comparing times-
tamp values. We performed three experiments on 20 open
source projects to evaluate (i) the precision and recall of
TTS in identifying timestamp comparisons, (ii) the correct-
ness of the synthesized patches, and (iii) their usefulness
for developers. The results show that our approach can
identify timestamp comparisons with a precision of 100%
and a recall of 99.97%. Furthermore, all the patches created
correctly repair the 246 identified errors. We performed a
manual analysis over the 246 patches and we discovered
that for 41 of them, developers already knew the problem
and handled it with ad-hoc code. We also published several
patches for three of the 20 projects as pull-requests. All of
them were acknowledged and accepted by the developers
of the projects. Future work will be devoted to add a
data-flow analysis to TTS to correctly find the errors that
developers are aware of and are handled with ad-hoc code.
Furthermore, our approach is general and can be applied
to other programming languages. We plan to extend its
support to more programming languages, such as C++ and
C#. Moreover, we plan to study with an industrial partner
how developers perceive our approach when it is integrated
into their continuous integration and continuous delivery
pipeline.
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at Universitá degli Studi di Udine. In 2015 he
received his M.Sc. degree cum laude in the joint
program between Universitá degli Studi di Udine
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