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Abstract—When software is maintained and evolved the build
configuration also needs to be updated. Knowing when to update
the build configuration is typically done manually with the risk
of missing an update and breaking the build. To mitigate this
risk, previous work has investigated prediction models to help
developers to identify commits that will likely involve an update
of the build configuration.

In this paper, we investigate whether we can improve these
existing prediction models by taking into account detailed in-
formation on source code changes and commit categories. Our
main hypothesis is that such detailed information on changes will
significantly improve the prediction of build co-changes.

To that extent, we extract information on changes from 10
Java open source projects and use a random forest classifier
to train models that predict build co-changes within and across
projects. Our results show significant improvements over existing
prediction models: the AUC for intra- and cross-project predic-
tion improves by 11.54% and 9.46% respectively. In addition,
we investigate advanced resampling techniques to explore the
effect of unbalanced data on our models. The results show that
SMOTE can particularly improve prediction models with low
performance that were trained on unbalanced data. Our models
improve the prediction and enable a better understanding of
build co-changes.

I. INTRODUCTION

As today’s software engineering projects get more and more

complex, also the way how to build a project increases in

complexity. Similar to the maintenance of source and test code,

the build configuration needs to be maintained [1] to avoid

breaking the build and slowing down the development process.

Indeed, Seo et al. [2] identify neglected build maintenance as

the most common root cause for build breakage. Kerzazi et
al. found that such build breakages can be expensive [3].

To that extent, it is crucial to understand when changes to

a build configuration are needed, meaning when changes in

the source and test files also involve a change in the build

files. Addressing this issue, McIntosh et al. [4] propose to

use machine learning to train models to predict build changes

based on prior build changes and changes in the source and

test files. This approach has been further investigated by Xia et
al. [5] to assess the possibility of performing such predictions

across projects.

In this study, we aim to enhance their model by using

source code change and commit categories. We use Change

Distiller [6], [7] to obtain the source code change categories.

Change Distiller parses two consecutive versions of a Java

file and creates their ASTs. The two ASTs are compared

using a tree-differencing algorithm [8]. The differences in the

ASTs are then mapped to their corresponding source code

change categories. For the categorization of commit messages,

we follow the approach of Hattori et al. [9], who divide

commits into four categories based on the content of the

commit message.
Using the source code change and commit categories, and

the basic attributes of [4] computed for ten Java open source

projects, we train intra- and cross-project prediction models

with the random forest classifier. For intra-project prediction,

the data of a single project is split into training and test

sets, whereas for cross-project prediction, one project is used

for training the classifier and another project is used for

testing the model. We also investigate various resampling

methods to deal with the issue of unbalanced data for training

prediction models. Finally, we report on two examples of

source code changes that involved changes in build files to

better understand the potential impact of code changes on the

build configuration.
With the results of our study, we aim to answer the

following three research questions:

(RQ1) To what extent can source code change and commit
categories improve intra- and cross-project build
co-change prediction?
Source code change and commit categories signif-

icantly improve the model for predicting build co-

changes. Compared to the models presented by McIn-

tosh et al. [4], the average AUC value for intra-project

prediction improves from 0.78 to 0.87 or 11.54%.

Regarding cross-project prediction, compared to the

models presented by Xia et al. [5] our results show an

average improvement of the AUC values from 0.74 to

0.81 or 9.46%.

(RQ2) To what extent can advanced resampling methods
improve the performance of build co-change pre-
diction?
Advanced resampling methods (e.g., SMOTE [10])

improve the performance of intra- and cross-prediction

models. In particular, the prediction models with the

weakest performance among the studied Java projects
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yield the largest improvement. For instance, the AUC

value for the Hadoop project improved from 0.73

to 0.89 for intra-project prediction. For cross-project

models that are trained using Hadoop data, the AUC

value when testing using the Karaf project improved

from 0.50 to 0.88.

(RQ3) Which attributes of our models are important
to predict build co-changes within and across
projects? Number of Files, Method Body Changes,

and Prior Build Co-Changes are the most important at-

tributes for building intra- and cross-project prediction

models, directly followed by the commit categories

Management, Forward Engineering, and Reengineer-
ing.

By answering these research questions, we make the fol-

lowing main contributions: (1) An improved model for build

co-change prediction with source code change and commit

categories; (2) an evaluation of the models for intra- and cross-

project prediction; (3) an evaluation of advanced resampling

methods for addressing the issue of unbalanced data in the

training set; and (4) a qualitative study to understand the

impact of source code changes on build co-changes.

The remainder of the paper is organized as follows: Section

II sums up the related work about build systems and prediction.

Section III describes our data extraction process. Sections IV,

V, and VI present the results of our analyses, which address

our three RQs. In Section VII we discuss the threats to validity

and we draw conclusions in Section VIII.

II. RELATED WORK

In this section, we discuss prior studies on build systems

and change prediction.

Build Systems. Several prior studies have focused on ana-

lyzing build maintenance. For example, Kumfert et al. [11] and

Hochstein et al. [12] show that build maintenance generates

a ”hidden overhead” on software development. Furthermore,

Adams et al. [1] claim that source and build code tend

to co-evolve and show this tendency in a study with the

Linux kernel. Furthermore, McIntosh et al. confirmed the

observations of Adams et al. in Java build systems [13],

ANT build systems [14], and also for other languages [15].

Xia et al. [16] and Zhou et al. [17] focus on detecting and

automatically inferring missing dependencies. Further studies

aim at understanding build changes and predicting build co-

changes, such as McIntosh et al. [4] within a project and Xia

et al. [5] across projects.

There are also tools that support build maintenance. Adams

et al. [18] propose a reverse engineering tool called MAKAO

based on building a dependency graph. Tamrawi et al. [19]

present SYMake, which aims to visualize dependencies in

Makefiles. Furthermore, MkDiff by Al-Kofahi et al. [20]

extracts the semantics of build specification changes. Hardt

et al. [21], [22] present a tool called Formiga which is used

to automate build changes or to assist in build refactoring of

ANT build files.

Change Prediction. A large body of research exists that

uses prediction methods, in particular machine learning, to

understand various characteristics of software engineering.

For instance, Hassan et al. [23] predict the passing of a

certification process by using decision trees. Ratzinger et al.
[24] use classification algorithms to predict the need of future

refactoring. Ibrahim et al. [25] predict whether a developer

should contribute to an email discussion. Knab et al. [26]

predict defect densities in source code files. Furthermore,

Romano et al. [27] use classifiers to identify change-prone

Java interfaces. Finally, Giger et al. [28] use fine-grained

source code changes for predicting future bugs.

We motivate our research by acknowledging that source

code changes have already been used for various prediction

models and the fact that source code and build code co-evolve.

We claim that source code changes are indicators for build co-

changes and investigate this in this paper.

III. PREDICTING BUILD CO-CHANGES

In this section, we present our approach to predict build

co-changes. The approach is split up into two main parts:

Data Extraction and Data Analysis. The data extraction part

deals with the extraction of work items from source code

repositories and the calculation of various measures used for

building the prediction models. The data analysis part builds

the prediction models and measures their performance. Figure

1 shows an overview of our approach. Below we describe each

part in detail.

A. Data Extraction

At the beginning of our data extraction, we clone a source

code repository and retrieve the log information on each

commit from the master branch. We currently support software

projects that use git1 as source code repository and Maven2 as

build system (see Section III-C). Next, we iterate over each

commit and perform the following steps:

File Type Classification. In our approach, we distinguish

between build, source, and test files. As Maven provides a

strong convention for the repository structure, we directly rely

on this project layout. Build files are all files named pom.xml.

Source and test files are distinguished by investigating their

respective location in the project folders. Files located in the

folder src/main are considered source files. Files located

in the folder src/test are considered test files. We do not

handle other files as our proposed model does not make use

of metrics calculated with other files.

Change Extraction. One of the most important parts of

the process is the change extraction. This step extends the

approach of McIntosh et al. [4]. We compare each commit

with the preceding (parent) commit and extract the fine-

grained source code changes of the Java files. We use Change

Distiller [7], [8] for extracting those changes. Change Distiller

parses two consecutive versions of a Java file and creates an

AST for each of them. Then, it compares the two ASTs and

1https://git-scm.com
2https://maven.apache.org
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Fig. 1. Overview of our approach for predicting build co-changes

extracts the differences using a tree-differencing algorithm.

Change Distiller is able to extract source code changes down to

the AST level, such as the insertion of a method invocation,

the change of a method return type, or the change of an if

condition. Changes to the build files are extracted by checking

whether a commit references pom.xml files that are added,

deleted, or modified. The source code, test code, and build file

changes are stored into a database that we call Change DB

together with commit meta data (compared revisions, time,

author, and commit message).

Work Item Aggregation. Because earlier studies, such as

McIntosh et al. [29], have shown that commits are too fine-

grained to properly represent a development task, we group

commits that are logically coupled into work items. We use a

similar approach for identifying work items as proposed by

McIntosh et al. [29] by parsing the commit messages and

searching for patterns3 that identify a work item in the issue

tracking system. We group commits by linking work items

with their respective commits in our database.

Work Item Summarizer. This step calculates the various

attributes for each work item as shown in Table I. Aiming

at improving existing prediction models, we calculate the

basic attributes proposed by McIntosh et al. [4] and add

our measures of commit categories and source code changes.

Regarding the commit categories, we implement the approach

by Hattori et al. [9] who use keywords to divide commits

into four categories: Forward Engineering, Reengineering,

Corrective Engineering, and Management. For each work item,

we investigate the commit messages and count the matched

keywords for each category.

For source code changes, we use a similar approach. Fluri

et al. provide a taxonomy of fine-grained source code changes

and categories [6]. We adopt this taxonomy to cover all change

types that Change Distiller is capable of extracting, resulting in

ten source code change categories. Then, for each work item,

we count the number of changes in each category. Compared

to the approach by McIntosh et al. [4], these attributes are

computed on fine-grained source changes explaining the at-

tribute ’(Source/Test File modified)’ in more detail. We argue

3E.g.: HADOOP-[number] or HBASE-[number]; where [number] stands
for a sequential number given by the issue tracking system

TABLE I
WORK ITEM ATTRIBUTES USED TO BUILD PREDICTION MODELS

Attribute Category Name Abbrev.

Source Code Change
Categories [6]

Class Body Changes CBC

Method Body Changes MBC

Structure Statements SST

Access Modifier Changes AMC

Attribute Declaration Changes ADC

Class Declaration Changes CDC

Final Modifier Changes FMC

Method Declaration Changes MDC

Documentation Changes DOC

Unclassified Changes UNC

Basic Model
Attributes [4]

Number of Files NF

Prior Build Co-Changes PBC

(Source/Test) File added (S/T)FA

(Source/Test) File deleted (S/T)FD

(Source/Test) File renamed (S/T)FR

Commit Categories
[9]

Corrective Engineering CE

Forward Engineering FE

Management MA

Reengineering RE

that this more detailed information leads to better prediction

models. We also measure the other attributes of the basic

model that was proposed by McIntosh et al. [4], which are

’(Source/Test) File added, deleted, and renamed’, as well as

’Number of Files’ and ’Prior Build Co-Changes’. ’Number of

Files’ represents the total number of added/changed/deleted

files in a work item. For ’Prior Build Co-Changes’, we select

the maximum ratio of all files in the work item that were build

co-changing in previous work items.

Finally, we label a work item as build co-changing if at least

one pom.xml in that work item has been added, deleted, or

changed.

B. Data Analysis

The data analysis part splits the data into a training and a test

set. Then, the optional step of applying resampling methods

to the training set is executed. With the resulting data set

we train a random forest classifier for binary classification.

The classifier is evaluated on the test set based on which

we compute the F-measure, AUC, and MCC to quantify the
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performance of our prediction models. Below, we describe

these steps in detail.

Training/Test Set separation. For the validation of our

prediction models, we split the data into a training set and a

test set. The split is different for intra-project prediction and for

cross-project prediction. For intra-project prediction, we use

repeated random sub-sampling. For each project, we repeat the

experiment 100 times to achieve reliable performance metrics

and to minimize the influence of selecting instances for the test

set. In each run, we randomly select 90% of the work items in

a project for training and the remaining 10% of work items for

testing the prediction model. The values of the performance

metrics are averaged over the 100 runs. This validation strategy

has been used in several previous studies, such as Pinzger et al.
[30]. For cross project prediction, we use all work items of one

project as the training set and the work items of another project

as test the set. This is repeated for all possible combinations

of different projects.

Resampling. Similar to the systems studied by McIntosh

et al. [4], our subject systems listed in Table II show an

imbalanced number of work items that build co-changed.

Since this affects the performance of prediction models, we

experiment with several advanced resampling techniques to

achieve an equal distribution of work items that did build co-

change and that did not. Section V presents the details on

the resampling techniques and their effect on the prediction

performance.

Classifier Construction. Since we aim to predict whether

a work item will need a build co-change or not, we construct

a binary classifier using the random forest algorithm [31].

The random forest classifier generates many decision trees.

Each decision tree is built with a random subset of all model

attributes. The classifier calculates a classification decision for

each of the trees and then aggregates the partial results to a

total classification result. We selected random forest since this

algorithm has been used in many previous empirical studies

[4], [5], [32], [33], and tends to have good predictive power

[34].

Classifier Evaluation. We apply the classification model to

the test set and output the results in the following confusion

matrix.

Classified As

Actual Category Change No Change

Change a b

No Change c d

Based on this matrix, we compute the following perfor-

mance metrics:

• Precision (P): Ratio of work items correctly classified as

build co-changing (a) out of all work items classified as

build co-changing (a+c), i.e., P = a
a+c .

• Recall (R): Ratio of work items correctly classified as

build co-changing (a) out of all work items that actually

did build co-change (a+b), i.e., R = a
a+b .

• F-Measure: The harmonic mean of precision and recall,

i.e., F = 2 · precision·recall
precision+recall

• Area under ROC-Curve (AUC): The area under the

curve plots the true positive rate ( a
a+b ) against the false

positive rate ( c
c+d ) for various values of the chosen

threshold used to determine whether a work item is

classified as build co-changing. Values of AUC range

from 0 (worst classifier performance) to 1 (best classifier

performance) where 0.5 indicates that the classifier is no

better than random guessing.

• Matthews Correlation Coefficient (MCC): Measures

the quality of a binary classification and is considered a

good metric for measuring the performance of classifiers

[35]. It is calculated as MCC = a·d−c·b√
(a+c)·(a+b)·(d+c)·(d+b)

and values range from -1 (total disagreement) to +1

(perfect classifier) whereas 0 means the classifier is no

better than random guessing.

We use these performance metrics to compare our approach

with the approaches of McIntosh et al. [4] and Xia et al. [5].

C. Studied Systems

To evaluate the proposed model and approach, we selected

Java open source projects of different sizes and domains that

satisfy the following constraints:

• uses git as source code management system;

• uses Apache Maven as its build system;

• satisfies the Maven Standard Directory Layout;4

• provides at least two years of evolution data;

• shows similar distribution of commits and work items
We investigated several subject systems and finally selected

10 projects for our experiments. Table II lists the selected

systems and their properties that are relevant for this study.

Among the systems, we selected Java frameworks, such as

Hibernate Search, Karaf, Camel, and Wicket, as well as

end-user systems, such as Jenkins, ActiveMQ, Wildfly, and

Roo. Furthermore, we selected two projects from the Hadoop

system, namely Hadoop and HBase.

Regarding the links between commits and change requests,

we compared the distribution of commits and work items per

month. Similar to McIntosh et al. [4] we used beanplots [36]

to visualize the distribution of commits and work items per

month. Figure 2 shows the shape of the distributions for each

project. We selected projects that show similar distributions of

commits and work items over time, meaning that commits are

adequately linked to work items. A bad linkage would lead

to a biased data set which is a known problem for building

prediction models [37], [38].

IV. IMPROVING BUILD CO-CHANGE PREDICTION

In this section, we address the first research question: (RQ1)
To what extent can source code change and commit categories
improve intra- and cross-project build co-change prediction?
By comparing our results to those of McIntosh et al. [4]

and Xia et al. [5], we show that fine-grained source code

changes and commit categories can lead to improved models

4https://maven.apache.org/guides/introduction/
introduction-to-the-standard-directory-layout.html
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TABLE II
COMMIT PROPERTIES OF THE STUDIED PROJECTS

ActiveMQ Hadoop HBase Camel
Hibernate

Wicket Wildfly Karaf Roo Jenkins
Search

First Commit 2007 2011 2011 2007 2008 2006 2010 2010 2009 2012
Project Files 11045 21027 8346 9594 7456 33377 33804 4638 5676 9126

Commits 6768 10753 8008 4929 3899 12814 16924 3929 4878 6031
Work Items 2542 9441 6209 1336 1217 3623 5628 2018 2094 970

Commits with Work Items 60% 98% 94% 60% 83% 44% 52% 83% 95% 31%
Build Co-Changing Work Items 375 543 397 266 400 130 1314 915 281 109

Not Build Co-Changing Work Items 2167 8898 5812 1070 817 3493 4314 1103 1813 861
Build Co-Change Ratio 15% 6% 6% 20% 33% 4% 23% 45% 13% 11%

Fig. 2. Comparison of commits and work items per months (black denotes
commit distribution and gray denotes work item distribution)

for predicting build co-changes within and across projects. In

the following, we first present the results for the case of intra-

project prediction and then for cross-project prediction.

A. Intra-Project Prediction

We apply our approach to the selected Java open source

projects to extract the data, measure the metrics, and train

the prediction models using the random-forest classifier. For

the comparison with the approach presented by McIntosh et
al. [4], we first compute the models with the basic model

attributes that we then extend with our measures of the

commit and source code change categories as listed in Table I.

Concerning the validation of the prediction models, we use

a repeated random sub-sampling approach as described in

Section III.

Table III shows the results of the classification models

computed with our approach and the approach of McIntosh

et al. [4]. The metric values have been averaged over the 100

runs. At the bottom of the table, we also present the minimum,

maximum, and average values over all projects. Figure 3 shows

a detailed comparison of the results with box-plots.

TABLE III
PERFORMANCE METRICS OF PREDICTION MODELS COMPUTED WITH OUR

APPROACH (O) AND THE APPROACH OF MCINTOSH et al. [4] (M).

Project
F-measure AUC MCC

M O d M O d M O d
ActiveMQ 0.57 0.60 0.10 0.84 0.902 0.75 0.52 0.551 0.19

Hadoop 0.14 0.172 0.29 0.62 0.732 0.95 0.22 0.252 0.29
HBase 0.08 0.182 0.74 0.56 0.742 1.00 0.12 0.272 0.76
Camel 0.61 0.652 0.33 0.86 0.912 0.70 0.56 0.622 0.38

Hib. Search 0.65 0.722 0.62 0.77 0.892 0.95 0.52 0.632 0.67
Wicket 0.57 0.59 0.09 0.86 0.932 0.54 0.58 0.61 0.09
Wildfly 0.64 0.692 0.59 0.85 0.902 0.94 0.58 0.632 0.55

Karaf 0.82 0.842 0.32 0.91 0.932 0.62 0.69 0.722 0.44
Roo 0.34 0.532 0.79 0.72 0.872 0.95 0.36 0.522 0.71

Jenkins 0.60 0.702 0.40 0.81 0.912 0.57 0.56 0.692 0.56
MIN 0.08 0.17 0.09 0.56 0.73 0.54 0.12 0.25 0.09

MAX 0.82 0.84 0.79 0.91 0.93 1.00 0.69 0.72 0.76
AVG 0.50 0.57 0.43 0.78 0.87 0.80 0.47 0.55 0.47

1p < 0.05; 2p < 0.001: significance level of the Two-Tailed Mann-Whitney U-Test
d: effect size computed with Cliff’s Delta

Looking at the performance metrics and the box-plots, we

can see that the prediction models computed with our approach

outperform the models computed with the approach by McIn-

tosh et al. [4]. Regarding the F-measure, we can improve the

minimum value from 0.08 to 0.17 and the maximum value

from 0.82 to 0.84 with an average increase from 0.50 to

0.57. The minimum AUC enhances from 0.56 to 0.73 and

the maximum value from 0.91 to 0.93 resulting in an average

improvement from 0.78 to 0.87. For the MCC metric, we

observe similar behavior. Minimum MCC increases from 0.12

to 0.25, maximum from 0.69 to 0.72, and the average improves

from 0.47 to 0.55.

To test whether the improvements obtained with our predic-

tion models are not by chance, Table III shows the results of

a Two-Tailed Mann-Whitney U-Test and the Cliff’s-Delta d.

Except the F-measures for the projects ActiveMQ and Wicket,

and the MCC value of Wicket, the differences are statistical

significant. For Cliff’s Delta d, the effect size is considered

negligible for d < 0.147, small for 0.147 ≤ d < 0.33, medium

for 0.33 ≤ d < 0.47, and large for d ≥ 0.47 [39]. Looking at

the AUC values, the effect sizes of all projects are considered

large. For the F-measures the difference is considered large for

4 out of 10 projects, the MCC values show a large difference

for 5 out of the 10 projects.

Based on these results, in particular the large improvement

of the AUC values, we can answer the first research question
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(a) F-measure (b) AUC (c) MCC

Fig. 3. Comparison of F-measure, AUC, and MCC values of prediction models computed with McIntosh et al.’s [4] basic (M) and our attribute set (O)

for the case of intra-project prediction:

Source code change and commit categories significantly
improve the model for intra-project prediction of build co-
changes resulting in a gain of the average AUC of 11.54%
compared to the model of McIntosh et al. [4].

B. Cross-Project Prediction

For this experiment, we use the same data set as before

but apply a different method for obtaining the training and

test sets. In particular, we use each project once for training

the random forest classifier. The resulting prediction model is

then tested with the data of each of the other nine projects.

For instance, we train a prediction model with the Hadoop

work items and then test the model on the sets of work items

of each other project. The values of performance metrics are

averaged over all tested projects.

Table IV lists the average F-measure, AUC, and MCC

values that are computed for each project when it is used

to train a prediction model (Source) evaluated with the other

nine projects, and when it is used for testing the prediction

models that are built with each of the other nine projects

(Target). Looking at the Source values, we can see that, except

Hadoop, HBase, Roo, and Jenkins, each project can be used

to train prediction models with an average F-measure ≥ 0.51,

AUC ≥ 0.85, and MCC ≥ 0.45. As a target, only Hibernate

Search and Wildfly have an average AUC ≤ 0.79. Regarding

the F-measure of using projects to test prediction models (i.e.,
targets), only the projects Hadoop and HBase have values <
0.40.

Table V lists an excerpt of the detailed cross-project pre-

diction results. Several prediction models show high values

for the performance metrics. For example, training a model

with the data of Wildfly and testing it on Karaf reaches an

F-measure of 0.80, an AUC of 0.92, and an MCC of 0.70.

We can observe a similar performance for using Camel as

training set and Karaf as test set (F-measure of 0.80, AUC of

TABLE IV
PERFORMANCE METRICS OF CROSS-PROJECT PREDICTION. EACH PROJECT

IS USED TO TRAIN (SOURCE) AND TEST (TARGET) PREDICTION MODELS

Project
Source Target

F-measure AUC MCC F-measure AUC MCC
ActiveMQ 0.58 0.88 0.52 0.38 0.80 0.38

Hadoop 0.16 0.64 0.22 0.31 0.81 0.30
HBase 0.20 0.76 0.27 0.34 0.81 0.33
Camel 0.56 0.87 0.50 0.44 0.80 0.45

Hibernate Search 0.56 0.86 0.51 0.46 0.75 0.39
Wicket 0.51 0.85 0.47 0.40 0.86 0.42
Wildfly 0.58 0.87 0.52 0.43 0.79 0.42

Karaf 0.52 0.86 0.45 0.52 0.82 0.47
Roo 0.24 0.70 0.25 0.43 0.84 0.39

Jenkins 0.22 0.83 0.26 0.43 0.85 0.41
MIN 0.16 0.64 0.22 0.31 0.75 0.30

MAX 0.58 0.88 0.52 0.52 0.86 0.47
AVG 0.41 0.81 0.40 0.41 0.81 0.40

TABLE V
DETAILED CROSS PREDICTION RESULTS (EXCERPT)

Source Target F-measure AUC MCC
Camel Wildfly 0.67 0.87 0.58
Wildfly Karaf 0.80 0.92 0.70

Hibernate Search Wicket 0.56 0.92 0.54
Camel Karaf 0.80 0.91 0.67

ActiveMQ Wicket 0.55 0.94 0.53
ActiveMQ Karaf 0.80 0.92 0.70

0.91, and MCC of 0.67). In total, there are 90 combinations

of projects that we investigated. Four combinations show F-

measures ≥ 0.75 having three of those with F-measure ≥ 0.80.

38 combinations achieve an AUC ≥ 0.85 with 9 combinations

having an AUC ≥ 0.90. Concerning MCC, 6 combinations

have an MCC ≥ 0.6 having 2 projects with an MCC ≥ 0.7.

Comparing our results with the average performance values

for cross-project prediction reported by Xia et al. [5], we note

an improvement of the F-measure from 0.40 to 0.41 and a

significant improvement of the AUC value from 0.74 to 0.81

(9.46%). This underlines the predictive power of commit and

source code changes categories also for cross-project build
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co-change prediction. Based on these results, we can answer

RQ1 for the case of cross-project prediction:

Source code change and commit categories improve the
model for cross-project prediction of build co-changes result-
ing in a gain of the average AUC of 9.46% when compared
to the model of Xia et al. [5].

V. APPLYING ADVANCED RESAMPLING METHODS

Most classifiers, including random forest, focus on cor-

rectly classifying the majority class because this yields better

classification performance. Thus, classifier performance on

minority class instances tends to suffer. As shown in Table II,

build co-changing work items are the minority class. Indeed,

our data set is unbalanced with respect to the work items

that build co-changed. In this section, we address this issue

and investigate several resampling methods to answer the

second research question: (RQ2) To what extent can advanced
resampling methods improve the performance of build co-
change prediction?

He et al. [40] provide an overview of state-of-the-art meth-

ods for advanced resampling to achieve a more balanced data

set for training prediction models. This overview includes

Synthetic Minority Over-sampling TEchnique (SMOTE) [10],

Edited Nearest Neighbors (ENN) [41], and TomekLinks [42].

SMOTE creates artificial instances with respect to the model

attributes. ENN and TomekLinks remove instances that are

prone to diminish the classifier performance. Batista et al.
[43] investigated the performance of those methods and com-

binations of them. Based on their results, they recommend

combinations of SMOTE with either ENN or TomekLinks.

Below, we report on the results that we obtain by repeat-

ing previous experiments on intra- and cross-project predic-

tion with the various resampling methods. In the remainder

of the paper, we refer to the methods as NO=no resam-

pling, S=SMOTE, T=TomekLinks, E=ENN, ST=SMOTE and

TomekLinks, and SE=SMOTE and ENN. We apply the resam-

pling only to the training data set and compare the performance

of resulting prediction models using the F-measure, AUC, and

MCC.

A. Intra-Project Prediction

Table VI shows the results when applying resampling

for training intra-project prediction models to our selected

projects. Similar to Section IV we use repeated random sub-

sampling with 100 runs to validate the prediction models.

Values have been averaged over the 100 runs.

Comparing the values, we observe the highest improve-

ments for Hadoop and HBase. Note, the prediction models

that we computed for these two projects showed the lowest

performance in our experiments before. The F-measure for

these projects increases from 0.17 to 0.43 (Hadoop) and from

0.18 to 0.40 (HBase). Their AUC increases from 0.73 to 0.89

(Hadoop) and from 0.74 to 0.87 (HBase). Similarly, their MCC

increases from 0.25 to 0.39 (Hadoop) and from 0.27 to 0.37

(HBase). For the other projects, the resampling methods lead

to no or only a small improvement. For some projects, the

values show even a small decrease in the performance, such

as the AUC values for the ActiveMQ project.

Regarding the resampling methods, the SMOTE (S) alone

or in combination with either TomekLinks (ST) or ENN (SE)

show the best performance. This supports the recommendation

of Batista et al. [43] to use SMOTE combined with ENN or

TomekLinks. In particular for the Hadoop and HBase projects,

they lead to a considerable improvement of the F-measure,

AUC, and MCC. For instance, using SMOTE (S), the F-

measure of Hadoop increases from 0.17 to 0.43, the AUC

from 0.73 to 0.89, and the MCC from 0.25 to 0.39. Using

TomekLinks (T) or ENN (E), only small improvements (if at

all) are observed.

Comparing the averages, we see the highest improvement

is achieved through SMOTE (S) and SMOTE in combination

with TomekLinks (ST) or ENN (SE). For S, ST, and SE, the

average F-measure increases from 0.57 to 0.61, for S and SE

the average AUC increases from 0.87 to 0.90, and to 0.89 for

ST. Regarding the average MCC, the resampling methods do

not show an improvement. Based on these results, we answer

RQ2 for the case of intra-project prediction:

Advanced resampling methods improve the classifier perfor-
mance of intra-project prediction. The biggest improvement
is obtained with SMOTE or combinations of it and for
models with low performance.

B. Cross-Project Prediction

We apply the advanced resampling techniques to cross-

project prediction. We train the classifier with the resampled

data of each project as the training set and use each of the other

projects as the test set. Note, the test set is never resampled.

We then compare the performance of the resulting prediction

models using the F-measure, AUC, and MCC. As we retrieve

a large amount of data from this experiment, we only present

the results when using Hadoop as source project to train the

prediction models in Table VII. These models show the biggest

improvement in the performance obtained through resampling.

The results of the other projects are available online.5

We can see that SMOTE (S) and combinations of SMOTE

with ENN (SE) and TomekLinks (ST) improve classification

performance. For instance, when predicting Karaf, the F-

measure increases from 0.11 to 0.71 (ST), the AUC from

0.50 to 0.88 (S), and the MCC from 0.17 to 0.59 (ST). The

cross-project prediction from Hadoop to Wildfly show similar

improvement - the F-measure increases from 0.16 to 0.61 (ST,

SE), the AUC value from 0.57 to 0.84 (S, ST, SE), and the

MCC from 0.23 to 0.55 (ST, SE). Using TomekLinks or ENN

alone does not lead to such large improvements in the case

of Hadoop. The average values of Table VII show similar

results. The average F-measure can be raised from 0.17 to 0.52

(S,ST,SE), the average AUC from 0.65 to 0.84 (S,ST,SE), and

the average MCC from 0.23 to 0.46 (S,ST,SE).

5http://serg.aau.at/bin/view/ChristianMacho/DataAndTools
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TABLE VI
F-MEASURE, AUC, AND MCC FOR INTRA-PROJECT PREDICTION PER RESAMPLING METHOD AND PROJECT

F-measure AUC MCC
Project NO S T E ST SE NO S T E ST SE NO S T E ST SE

ActiveMQ 0.60 0.59 0.60 0.61 0.60 0.61 0.90 0.88 0.89 0.89 0.88 0.88 0.55 0.53 0.54 0.56 0.52 0.55
Hadoop 0.17 0.43 0.23 0.19 0.43 0.43 0.73 0.89 0.75 0.78 0.88 0.88 0.25 0.39 0.28 0.27 0.39 0.39
HBase 0.18 0.40 0.20 0.17 0.40 0.39 0.74 0.87 0.74 0.73 0.87 0.86 0.27 0.37 0.28 0.27 0.36 0.36
Camel 0.65 0.65 0.69 0.67 0.64 0.67 0.91 0.90 0.91 0.90 0.89 0.91 0.62 0.59 0.63 0.61 0.55 0.59

Hibernate Search 0.72 0.72 0.72 0.71 0.72 0.70 0.89 0.89 0.88 0.89 0.88 0.87 0.63 0.60 0.60 0.60 0.60 0.57
Wicket 0.59 0.55 0.55 0.60 0.52 0.53 0.93 0.95 0.93 0.94 0.93 0.95 0.61 0.54 0.56 0.61 0.52 0.52
Wildfly 0.69 0.69 0.70 0.70 0.70 0.70 0.90 0.90 0.90 0.90 0.89 0.89 0.63 0.62 0.64 0.64 0.61 0.61

Karaf 0.84 0.84 0.84 0.84 0.84 0.84 0.93 0.93 0.93 0.93 0.93 0.93 0.72 0.73 0.72 0.72 0.71 0.72
Roo 0.53 0.52 0.53 0.52 0.53 0.52 0.87 0.86 0.87 0.87 0.87 0.87 0.52 0.46 0.50 0.50 0.47 0.46

Jenkins 0.70 0.67 0.69 0.67 0.67 0.67 0.91 0.91 0.91 0.91 0.92 0.91 0.69 0.65 0.67 0.66 0.65 0.63
AVG 0.57 0.61 0.58 0.57 0.61 0.61 0.87 0.90 0.87 0.87 0.89 0.90 0.55 0.55 0.54 0.54 0.54 0.54

TABLE VII
F-MEASURE, AUC, AND MCC FOR CROSS-PROJECT PREDICTION PER RESAMPLING METHOD FOR THE HADOOP PROJECT

F-measure AUC MCC
Target Project NO S T E ST SE NO S T E ST SE NO S T E ST SE

ActiveMQ 0.13 0.44 0.16 0.13 0.44 0.44 0.66 0.83 0.67 0.66 0.83 0.83 0.23 0.40 0.25 0.23 0.39 0.39
HBase 0.20 0.40 0.25 0.22 0.39 0.40 0.66 0.84 0.66 0.66 0.85 0.85 0.27 0.36 0.31 0.29 0.35 0.36
Camel 0.24 0.51 0.28 0.25 0.55 0.53 0.65 0.82 0.65 0.65 0.83 0.82 0.31 0.51 0.35 0.32 0.53 0.51

Hibernate Search 0.14 0.61 0.19 0.19 0.61 0.62 0.52 0.78 0.52 0.52 0.78 0.78 0.17 0.50 0.19 0.21 0.50 0.50
Wicket 0.28 0.53 0.33 0.29 0.50 0.50 0.71 0.89 0.70 0.71 0.89 0.88 0.35 0.52 0.36 0.36 0.48 0.48
Wildfly 0.16 0.60 0.20 0.18 0.61 0.61 0.57 0.84 0.57 0.57 0.84 0.84 0.23 0.54 0.25 0.25 0.55 0.55

Karaf 0.11 0.70 0.15 0.13 0.71 0.70 0.50 0.88 0.50 0.50 0.87 0.87 0.17 0.58 0.20 0.18 0.59 0.58
Roo 0.28 0.41 0.30 0.30 0.42 0.42 0.83 0.83 0.83 0.82 0.83 0.83 0.35 0.35 0.36 0.37 0.34 0.35

Jenkins 0.02 0.48 0.09 0.02 0.47 0.47 0.71 0.85 0.72 0.72 0.86 0.85 -0.01 0.42 0.15 0.03 0.40 0.41
AVG 0.17 0.52 0.22 0.19 0.52 0.52 0.65 0.84 0.65 0.65 0.84 0.84 0.23 0.46 0.27 0.25 0.46 0.46

We can answer the second research question RQ2 for the

case of cross-project prediction:

SMOTE and combinations of SMOTE with TomekLinks and
ENN can improve cross-project prediction. Projects with low
original performance benefit the most.

VI. CHARACTERISTICS OF THE PREDICTION MODEL

In this section, we set out to answer our third research

question: (RQ3) Which attributes of our models are important
to predict build co-changes within and across projects?

To answer this question, we first analyze the importance of

each attribute in our intra- and cross-prediction models. We

measure the importance using the mean decrease in the Gini

coefficient, a measure of how each variable contributes to the

homogeneity of the nodes and leaves in the resulting random

forest [31]. Furthermore, we provide anecdotal evidence ob-

tained through a manual analysis of selected changes in the

source code that involved changes in the build files.

A. Importance of Attributes

First, we deal with the variable importance of the model

attributes that we obtain from the random forest classifier.

Figure 4 shows the box-plots of the Mean Decrease in the

Gini coefficient (MDG) from the 100 runs of the intra-project

prediction experiment for the two projects ActiveMQ (a) and

Roo (b), and over all the ten projects (c).

According to the box-plots depicted in Figure 4a, the two

attributes Number of Files and the Prior Build Co-Changes

are most important for predicting build co-changes in the Ac-

tiveMQ project. They are followed by Method Body Changes
and Corrective Engineering commit category. Regarding the

values output for the Roo project depicted by Figure 4b, we

spot the Management and Reengineering commit categories as

most important attributes. They are closely followed by Num-
ber of Files and Method Body Changes attributes. Furthermore,

the attributes Source File Deleted, Prior Build Co-Changes,

and Forward Engineering are of value in these models to

predict build co-changes. These results indicate that attributes

from all three categories are important for building co-change

prediction models.

To analyze the overall importance of the attributes, we

aggregate the values of the MDG over all ten of the studied

projects as shown in Figure 4c. Based on these box-plots, we

observe that Number of Files is the most important attribute

followed by Method Body Changes and Prior Build Co-
Changes. Furthermore, the three commit categories Manage-
ment, Forward Engineering, and Reengineering, as well as

the Source File Deleted attribute are of value for predicting

build co-changes. In contrast, attributes denoting changes in

the access and final modifiers, attribute and class declaration,

unclassified source code changes, as well as renaming of

source and test files do not significantly impact the prediction.

The analysis of the models from the cross-prediction ex-

periments obtains similar results. This is expected because the

training of the random forest classifier is done with almost the

same training set - instead of using 90% of the work items

for training the classifier, it is trained with all work items

of a project. In summary, our results confirm the findings of
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(a) ActiveMQ (b) Roo (c) Overall

Fig. 4. Mean decrease Gini coefficient for attributes (see Table I) of intra-project prediction models for ActiveMQ (a), Roo (b), and over all ten projects (c)

McIntosh et al. [4] (i.e., Number of Files and Prior Build
Co-Changes are important) but also add that Method Body
Changes and commit categories help to significantly improve

the prediction models.

B. Build Co-Change Examples

In addition to the quantitative analysis of the prediction

models, we manually analyzed a number of work items. We

focused on work items that exhibit Method Body Changes
and analyzed the changes in the source and build files by

browsing them with the SourceTree tool.6 Below, we report

on two representative examples, the first adding a dependency

to a third party Java library and the second one removing an

unused dependency.

Concerning the first example, we analyzed the commit

3a6d67e8f95320bea91b7c7106173c9b34773bc57

of the ActiveMQ project containing the following change in

the ActiveMQServiceFactory.java file.

ResourceXmlApplicationContext ctx =
new ResourceXmlApplicationContext(...)

to

OsgiBundleXmlApplicationContext ctx =
new OsgiBundleXmlApplicationContext(...)

In this change, the instance of the

class ResourceXmlApplicationContext
is replaced by an instance of the class

OsgiBundleXmlApplicationContext to create a

context object. The replacing class is provided by the

spring-osgi-core library, which was not included in

the ActiveMQ classpath. This Method Body Change involved

the addition of the dependency to spring-osgi-core

6https://www.atlassian.com/software/sourcetree
7http://tinyurl.com/glkgazw

library in the pom.xml file denoting a build co-change.

<dependency>
<groupId>org.springframework.osgi</groupId>
<artifactId>spring-osgi-core</artifactId>
...

</dependency>

If the developer would not have updated the build file, the

next Maven build would have failed due to the missing library.

Testing the intra-project prediction models with only this work

item, our models can predict the build co-change with an

average Precision of 0.66.
The second example stems from the Karaf project in

which a developer replaced the Property class from the

org.apache.felix.utils library with the standard Java

Property class (see the commit8). The two Method Body

Changes and one Class Body Change involved an update of the

pom.xml file in which the developer removed the dependency

to the org.apache.felix.utils library. This change

would not have led to an immediate build breakage, but in

terms of having a clean project the removal of the dependency

makes sense, for instance to minimize the chance of having

class incompatibilities due to transitive dependency resolution.
Based on the analysis of the attribute importance of

our prediction models and the manual analysis of build

co-changes, we answer the third research question RQ3:

Number of Files, Method Body Changes, and Prior Build
Co-Changes are the most important attributes for building
intra- and cross-project prediction models, directly followed
by the commit categories Management, Forward Engineer-
ing, and Reengineering.

VII. THREATS TO VALIDITY

Regarding the validity of our results, we identify the fol-

lowing threats to the construct, internal, and external validity.

8http://tinyurl.com/hm3oy6s
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Construct Validity. A first threat to construct validity

stems from our approach to aggregate commits to work items.

We use search patterns to identify work items in the issue

tracking systems and might miss linking commits to work

items if they do not match our search patterns. We mitigate

this issue by using bean-plots to compare the distribution of

commits and work items over time selecting only projects that

graphically show similar distributions, indicating that commits

are adequately linked to work items (see Figure 2). This

approach has also been used in the previous study by McIntosh

et al. [4].

A second threat is due to the algorithms that we use to

measure our new attributes to train and test our prediction

models. We used Change Distiller to extract source code

change categories that might not extract all possible changes

in source files. Change Distiller has been intensively evaluated

in previous studies [8], [28], which show that it covers most of

the changes occurring in Java projects. Furthermore, Change

Distiller handles changes that cannot be mapped by assigning

them to the Unclassified Changes category. Regarding the

commit categories, we use the heuristics of Hattori et al. [9]

that have been evaluated with nine open source projects.

Internal Validity. One threat to internal validity relates

to our selection of training and test sets. We address this

threat by using repeated random sub-sampling, repeating the

experiments 100 times with randomly selected training and

test sets to minimize bias in our results.

A second threat is due to our selection of attributes to

explain build co-changes. We might have overlooked other

attributes that could help to explain build co-changes and may

improve the prediction models. Similar to McIntosh et al.
[4], we selected metrics that cover a wide range of change

characteristics and added further attributes to describe source

code change and commit categories.

Finally, several of our systems, such as Wicket, have a low

build co-change ratio. Classifiers like random forest focus on

correctly classifying the majority class because this yields bet-

ter overall classification performance. We addressed this threat

by investigating three state-of-the-art resampling methods that

improved the performance of our prediction models.

External Validity. The main threat to external validity

concerns the generalizability of our results, since we per-

formed the experiments with ten Java open source projects

that use Maven as their build tool. We mitigated this threat

by selecting a range of different projects of different size

comprising Java frameworks and end-user systems. However,

further experiments with industrial systems, systems written in

other programming languages and systems using other build

tools instead of Maven are needed.

VIII. CONCLUSIONS

Software systems change and several of these changes

require accompanying changes to the build system. A missing

build co-change can lead to build breakage which costs time

and money [3]. In this paper, we propose an improved model

for predicting build co-changes. We extended the prior work

of McIntosh et al. [4] with source code change and commit

categories and achieved the following results:

• (RQ1) Source code change and commit categories sig-

nificantly improve the model of McIntosh et al. [4] for

intra-project prediction and the model of Xia et al. [5]

for cross-project prediction.

• (RQ2) Resampling applied to better balance the training

data set improves the models for intra- and cross-project

prediction of build co-changes. In particular, projects

with poor unrebalanced prediction performance benefit

the most from rebalancing.

• (RQ2) SMOTE [10] and combinations with ENN [41] or

TomekLinks [42] yield the best minority class improve-

ment.

• (RQ3) Number of Files, Method Body Changes, and

Prior Build Co-Changes are the most important attributes

for building intra- and cross-project prediction models,

directly followed by the commit categories Management,
Forward Engineering, and Reengineering.

Future work. The proposed models are trained to predict

possible build co-changes. We plan to extend this study to

verify the study with a larger number of projects as well

as with industrial projects to investigate a broader range of

projects. Furthermore, we want to use the prediction models

to predict the number of build co-changes and the category

of the build co-change. This can give developers hints on

where to start for build co-changing. We also plan to identify

typical patterns of the co-evolution of source-/test code and

the build system code. Furthermore, we plan to investigate

improvements of our prediction models, such as by adding

information from issue tracking systems.
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