
The Journal of Systems and Software 209 (2024) 111916

A
0

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

DValidator: An approach for validating dependencies in build
configurations✩

Christian Macho ∗, Fabian Oraze, Martin Pinzger
University of Klagenfurt, Klagenfurt, Austria

A R T I C L E I N F O

Keywords:
Dependency management
Apache Maven
Answer set programming
Build engineering

A B S T R A C T

Reusing components is a well-established practice in modern software engineering and brings many advantages,
such as a reduction of development costs and time. However, there are still several problems when reusing
software components, such as the management of the dependencies of a project. Modern build systems provide
dependency managers to support developers when dealing with dependencies. But even with this tool support,
dependency management is an error-prone task which can lead to dependency hell if it gets out of control.

In this paper, we propose DValidator, an approach that considers dependencies on project level and
method call level for validating dependencies in build configurations. First, DValidator encodes a project’s
dependency graph as specified in a build configuration and its call graph into a representation using Answer
Set Programming (ASP). Then it uses Clingo as a solver to detect problems with the dependencies in that build
configuration. In a preliminary evaluation with four open source Maven projects we show that our approach
can detect selected dependency smells in less than eight seconds. Next steps concern the investigation of our
approach for automatically improving dependency configurations, such as automatically repairing dependency
smells and conflicts.

Editor’s note: Open Science material was validated by the Journal of Systems and Software Open Science Board.
1. Introduction

Reusing existing software components for developing applications
is best practice and has many benefits, such as reduced development
time and the usage of well tested components (Frakes and Kang,
2005). Modern build systems, such as Apache Maven1 or Gradle,2 offer
various ways to include existing components from software reposi-
tories (Valiev et al., 2018). One of the most frequently used ways
in CI/CD workflows (Humble and Farley, 2010) is through the de-
pendency management system that resolves, downloads, and includes
software components that are declared as dependency, for instance in a
build configuration file (Shahin et al., 2017). In turn, projects that are
declared as dependency may also have dependencies to other projects
which must be obtained by the dependency management system. Note
that in this work, we use the Apache Maven terminology and refer to
software components as projects.

While reusing software projects has many benefits, it also brings
disadvantages and additional maintenance effort (Kerzazi et al., 2014).

✩ Editor: Heiko Koziolek.
∗ Corresponding author.
E-mail addresses: christian.macho@aau.at (C. Macho), fabian.oraze@aau.at (F. Oraze), martin.pinzger@aau.at (M. Pinzger).
URLs: https://mitschi.github.io/ (C. Macho), https://pinzger.github.io/ (M. Pinzger).

1 https://maven.apache.org/
2 https://gradle.org/
3 https://www.npmjs.com/

One of the disadvantages is the total number of projects that are
requested and included, because this number can grow exponentially
(Bavota et al., 2013), and managing those can become challenging
(Capilla et al., 2019b,a; Mäkitalo et al., 2020). Another disadvantage
concerns updating dependencies to recent versions which can also
become a challenge, especially when many versions need to be kept
up to date (Di Cosmo et al., 2008). If these maintenance activities
are neglected (Kerzazi et al., 2014), a project can ultimately land in
a state that is called the ‘‘dependency hell’’ (Fan et al., 2020; Tanabe
et al., 2018; Abate et al., 2020; Chen et al., 2021), indicating that
the dependencies require substantial rework and effort to return to a
manageable state.

While recent research has contributed towards better support to
manage dependencies, the core problem, i.e., selecting the ‘‘right’’
dependencies, is still not solved (Abate et al., 2020; Kikas et al., 2017)
and needs further attention. A trending direction to support developers
in managing dependencies involves representing them as models or
logic programs and using solvers. For example, Gebser et al. (2011a)
vailable online 28 November 2023
164-1212/© 2023 The Authors. Published by Elsevier Inc. This is an open access ar

https://doi.org/10.1016/j.jss.2023.111916
Received 12 May 2023; Received in revised form 6 October 2023; Accepted 19 No
ticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

vember 2023

https://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
mailto:christian.macho@aau.at
mailto:fabian.oraze@aau.at
mailto:martin.pinzger@aau.at
https://mitschi.github.io/
https://pinzger.github.io/
https://maven.apache.org/
https://gradle.org/
https://www.npmjs.com/
https://doi.org/10.1016/j.jss.2023.111916
https://doi.org/10.1016/j.jss.2023.111916
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2023.111916&domain=pdf
http://creativecommons.org/licenses/by/4.0/


The Journal of Systems & Software 209 (2024) 111916C. Macho et al.

X
p
s
p
a
d
p

provide aspcud, a tool that supports the dependency management for
Linux dependencies. Moreover, Ignatiev et al. (2014) proposed a hybrid
approach, combining an exact and an approximate solving strategy
to optimize dependency selection. Recently, Pinckney et al. (2023)
proposed MaxNPM, an approach that can replace the standard de-
pendency management tool in npm3 environments with an enhanced
version. All three mentioned approaches leverage models and solvers to
improve the dependency selection. However, these works only consider
dependencies on a project level that are explicitly declared but neglect
more detailed dependencies between projects, such as through method
calls. Moreover, the produced dependency configurations of these ap-
proaches cannot ensure that all method calls are satisfied as they do not
take method calls into account. Hence, the solving strategies solely rely
on additional information about the (in-)compatibility of the project
dependencies.

In this paper, we present DValidator, a novel approach that also
considers method calls between projects as dependencies in addition
to explicitly declared dependencies on project level. This results in
a more comprehensive model that enables a more accurate analysis
and validation of projects dependencies. The proposed model is an
ASP-based (Gebser et al., 2014) model combined with Clingo (Gebser
et al., 2011b) as its solver that is capable of modeling dependency
configurations, while respecting more detailed dependencies, such as
method calls.

In this work, we focus on investigating the potential of our model to
validate existing configurations and to identify problems in dependency
configurations, for example, duplicated dependencies. In future work,
we plan to investigate the potential of our model to generate high-
quality dependency configurations that adhere to the best practices
dependency managment rules depicted in our model.

The remainder of the paper is organized as follows. Section 2
provides background information about dependency management and
situates the paper with respect to related work. In Section 3, we propose
our model and provide a preliminary evaluation in Section 4. Section 5
discusses the limitations of the work and provides an extensive outlook
on future work. The paper is concluded in Section 6. Please also note
that we provide supplementary material for this work online.4

2. Background and related work

In this section, we first provide a brief introduction to build systems
and how they manage dependencies. Finally, this section summarizes
related work about dependency management and software ecosystems.

2.1. Dependency management with build systems

Modern build systems offer techniques and mechanisms to specify
and resolve dependencies to other projects. Projects that are needed
are declared as a dependency in the language of the build system (e.g.,

ML for Apache Maven) and the build system resolves, downloads, and
rovides the corresponding project to the compiler. Listing 1 shows
uch a dependency configuration in Apache Maven. In this example, the
roject declares two dependencies, namely to the SomeDependency

nd the OtherDependency projects. Moreover, the transitive depen-
ency ExcludedDependency is excluded from being processed when
rocessing the dependencies of the SomeDependency project in this

case.
The problems with dependencies are manifold. First, dependencies

that are not kept updated (Kerzazi et al., 2014) might cause problems
when they need to be updated (Cox et al., 2015; Kula et al., 2018).
Second, dependencies can also have dependencies to other projects,
called transitive dependencies. Such transitive dependencies may cause
problematic situations (Soto-Valero et al., 2021b,a). For example, they

4 https://zenodo.org/record/7928594
2

might lead to a dependency hierarchy that includes multiple versions of
a single project. Third, dependencies might be incompatible with each
other and consequently fail the build.

Listing 1: Example of a dependency configuration in Apache Maven.
Note that only declared dependencies are in the dependency list. Tran-
sitive dependencies are derived from the dependency declarations in
the build files of the respective projects.

<dependencies>
<dependency>
<groupId>at.aau</groupId>
<artifactId>SomeDependency</artifactId>
<version>2.3.1</version>
<exclusions>
<exclusion>
<groupId>at.aau</groupId>
<artifactId>ExcludedDependency</artifactId>

</exclusion>
</exclusions>

</dependency>

<dependency>
<groupId>at.aau</groupId>
<artifactId>OtherDependency</artifactId>
<version>4.0.1</version>

</dependency>
</dependencies>

State-of-the-art build systems offer various mechanisms to avoid
such problems with dependencies. One of the provided solutions is
to fail the build if conflicting declarations are found and report this
to the developers (Abate et al., 2012). Another solution is to prefer
dependencies that are declared closer to the root project. For example,
if a project directly declares a dependency to a project A, and a
transitive dependency B also has a dependency to project A (possibly in
a different version), the build system omits the second dependency and
includes only the first version of the project A. However, this has the
disadvantage that if there are actual calls into the omitted version of
library A, the build will still pass but runtime errors will occur. While
research is attempting to provide solutions for these problems (Wang
et al., 2018, 2019, 2021), state-of-the-art build systems still lack tool
support to detect such problems.

2.2. Related work

Dependency management has been studied in various directions.
Cox et al. (2015) studied dependency freshness and introduced a metric
to measure it. They found that their metric was perceived as useful
by developers and that systems with outdated dependencies are more
likely to contain vulnerabilities. Kula et al. (2018) investigated a similar
direction with an empirical study on library migration. They inves-
tigated 4,600 GitHub software projects and additionally found that
69% of the surveyed developers were not aware of their vulnerable
dependencies. Moreover, they also stated that library updates are per-
ceived as extra workload. Consequently, library updates are not as
common as modern software development would suggest. Bavota et al.
(2013, 2015) studied the evolution of dependency management. First,
they found that the number of dependencies grows exponentially in
a software ecosystem. Second, they identified that developers mostly
update dependencies of their projects together with other substantial
changes in the code. Finally, Larios Vargas et al. (2020) interviewed
developers to identify 26 factors that are important when selecting
third-party libraries and categorized them into technical, human, and
economical factors. They found that stability, usability, documentation,
and the type of license are among the most influential factors when

selecting third-party libraries.

https://zenodo.org/record/7928594


The Journal of Systems & Software 209 (2024) 111916C. Macho et al.

s
a
s
s
s
o
V
s
i
s
u
(
o
o
e
t

Table 1
Dependency smells used to showcase the model in this work.

Smell Description

Dependency Cycles (DC) The declared dependencies form a cycle in the dependency graph. This can happen if project A depends on project B and
project B depends on project A, for example.

Double Included Dependency (DID) A dependency that is included more than once. This can either happen if dependencies transitively depend on an already
declared dependency or if the dependency declaration is flawed (i.e., they are duplicated entries in the dependency list).
Duplicated dependency declarations can also lead to dependency conflicts (Wang et al., 2018, 2019)

Shadowed Dependency (SD) Many dependency resolution mechanisms, such as the one of Apache Maven, only allow loading one instance of a project.
If another version of the project should also be loaded, for example, in a deeper level of the dependency hierarchy, it is
shadowed by the higher declared dependency in the dependency hierarchy (Wang et al., 2018, 2019).

Jump Calls (JC) IDEs often offer all possible calls in the code completion pop-ups to assist developers. This includes calls to methods in
transitive dependencies. However, it is a bad practice to use transitive dependencies because the developer is not in
control of them (Cao et al., 2022).

Unused Dependency (UD) Similar to prior studies (Soto-Valero et al., 2021b,a), we detect declared dependencies that are not used, i.e., they never
appear in a call hierarchy that originates from the root project.
Besides studying the dependency management from different per-
pectives, research has also shed light on smells in dependency man-
gement. Jafari et al. (2021) studied 1146 Javascript projects to reveal
mells in the dependency configuration. They found that dependency
mells are still prevalent in Javascript projects seeing two or more
mells in 80% of the studied projects. Also other works studied the
ccurrence of smells in dependency configurations. For example, Soto-
alero et al. (2021b,a) investigated unused dependencies. In their
tudy, they found 2.7%, 15.4%, and 57% of the directly declared,
nherited, and transitive dependencies as unused. Moreover, the study
hows that developers are basically willing to reduce the amount of
nused dependencies. Analogous to unused dependencies, Cao et al.
2022) investigated three main dependency smells and observed their
ccurrence in Python projects. Mostly, they are introduced because
f synchronous updates and collaborative development. Finally, Wang
t al. (2018, 2019, 2021) studied dependency conflicts, a more complex
ype of dependency misconfigurations. They proposed Decca (Wang

et al., 2018), a tool that can detect dependency conflicts with a pre-
cision of 0.92 and a recall of 0.77. Extending this work, they provided
Riddle (Wang et al., 2019) to automatically generate test cases that re-
veal dependency conflicts. Finally, they studied how such dependency
conflicts impact the semantic of a program and proposed Sensor (Wang
et al., 2021) to improve the test cases generated by their prior work.

While the related work reported so far studied the problems and
evolution of dependencies and their management, there are other works
that model dependencies to ensure valid dependency configurations.
For instance, Gebser et al. (2011a) proposed an approach for Linux de-
pendency management. They use ASP and the Common Upgradability
Description Format (CUDF) (Treinen and Zacchiroli, 2009) to support
dependency updates. However, for most build systems this format is not
supported. Our approach extends this format by incorporating not only
dependencies on a project level, but also on method call level. Ignatiev
et al. (2014) aim at optimizing configurations in package managers.
They propose a hybrid approach that stops the solving algorithm after
a timeout is reached while still returning high-quality configurations.
Lastly, Pinckney et al. (2023) proposed MaxNPM, an approach that can
be used within the npm environment to use more recent versions of
the dependencies. They report better configurations compared to the
traditional NPM package manager, i.e., a reduction of vulnerabilities,
a higher number of used recent dependencies, and a lower number of
dependencies at all.

2.3. Research gap

As reported, much research has been carried out towards improving
build systems in general and dependency management in particular.
Most studies focus on problems with build systems and improving
poorly configured build systems. However, these approaches only con-
sider dependencies on the level of project dependencies and neglect the
3

more detailed dependencies, for example, on the level of method calls.
In this new ideas paper, we aim to fill this gap with an approach that in-
corporates such detailed dependencies to further improve dependency
configurations.

3. DValidator Approach

In this section, we propose DValidator, our approach for validating
dependency configurations. First, we explain how we define and un-
derstand a well-formed dependency configuration based on literature
and best practice approaches from industry. Next, we show how we
transform the described rules for well-formed configurations into rules
and constraints in ASP.

3.1. Well-formed dependency configurations

Many recent research works (Soto-Valero et al., 2021b,a; Claes
et al., 2018; Huang et al., 2020; Abate et al., 2012; Decan et al., 2016,
2017) study build configurations and, in particular, configurations of
the dependency management system with the focus of detecting smells
and identifying misconfigurations. For example, Cao et al. (2022) and
Jafari et al. (2021) provide approaches to detect dependency smells
(e.g., missing dependencies and unused dependencies) for Python and
JavaScript projects, respectively. However, these approaches are bound
to a specific programming language and build tool. Moreover, they are
unsuitable for generating dependency configuration candidates that do
not violate the smell detection rules.

In this work, we aim at a language and build system agnostic
approach that is also capable of generating well-formed dependency
configurations. As a first step, we identify types of dependency smells
studied in related work. Table 1 presents the studied smells, related
works that also proposed this smell, and a brief description of each
smell. Please note that, for the purpose of this New Trends and Idea
Papers track, we only selected a small subset of the overall collected
smells and leave the extension of this list of smells to future work. We
selected those smells that were frequently studied in recent works and
perceived as problematic in industry.

3.2. A model for dependency configurations

With the obtained dependency smells, we set out to encode the rules
and constraints for our model. Similar to the idea of Tourwé and Mens
(2003), we encode our model as an answer set programming (ASP)
problem (Gebser et al., 2014) and use Clingo (Gebser et al., 2011b) as
the solver because both are well-established tools and suit our purpose.
ASP problems consist of two main ingredients. The first ingredient
are the predicates which represent facts that describe the problem
instance (in our case the project under investigation consisting of the
dependency graph and the call graph). For example, a dependency



The Journal of Systems & Software 209 (2024) 111916C. Macho et al.

s

i
e

Fig. 1. An example dependency graph depicting the root project and its (transitive) dependencies.
m
s
n
t
a
s
M
p
m
o

t
a
u
a

d

between two projects is given as a fact. The second ingredient are
rules and constraints which describe the way how further facts can
be derived. For example, the rule to detect unused dependencies states
that if a dependency is declared but no method of it is called, then the
dependency is marked as an unused dependency.

We present the set of facts and constraints of our proposed model
in two parts. The first part presents all the facts, i.e., (1) facts that
are given by a generator which provides the input for our model,
and (2) facts that are deducted from other facts by our model. All
the facts stem from data from two sources. Firstly, we leverage the
dependency graph of a project that depicts all included projects and
the (dependency) relations between them (see Fig. 1). Secondly, we
leverage the call graph of a project that consists of all the (transitive)
calls that are extracted throughout the included projects. The second
part provides all the constraints that concern our subset of dependency
smells depicted in Table 1. Note, while we describe the mechanisms
using the Apache Maven build system and build specification, all the
concepts are transferable to any build system and specification (for
example Gradle).

Encoding the provided and deducted facts. In the first step,
we encode the dependency graph and all its properties. A depende
ncy graph is a graph that consists of all the projects that are de-
clared as dependencies of the project and all transitive dependen-
cies, recursively, where the nodes of the graph represent the projects
and the edges the dependencies. Fig. 1 shows an example of a sim
ple dependency graph in which the CoolProject declares two depen-
dencies to SomeDependency and OtherDependency. The projects
SomeDependency and OtherDependency again define three depen-
dencies to ExcludedDependency, CommonDependency, and
ExternalDependency. These are transitive dependencies of Cool
Project. Moreover, Fig. 1 shows that a project is identified through
a triplet GAV that consists of an identifier of the company (usually
called groupId or G), an identifier of the project (usually called
artifactId or A), and a version number (usually a valid version
according to Semantic Versioning,5 V). This triplet is often called the
(Maven) coordinates of a project.6

We now explain the facts in detail in Listing 2. Consider the example
in Fig. 1, there are six projects in total. Each of them is encoded
as project as shown in line 2 of Listing 2. The depicted top project
at.aau:CoolProject:1.0.0 is the project that we want to inves-
tigate. We call this project the root project and it is encoded with
the fact depicted in line 3. Next, we model the dependencies between
two projects as line 4 shows. The first GAV triplet stands for the
project that declares the dependency and the second GAV triplet is the
declared dependency. In most build systems, the developer can decide
to exclude certain transitive dependencies from being resolved,7 for

5 https://semver.org/
6 There are several other names for this triplet, such as ID of a project or

imply the Maven Triplet.
7 For example, see https://maven.apache.org/guides/introduction/

ntroduction-to-optional-and-excludes-dependencies.html#dependency-
4

xclusions s
example, because they may contain a vulnerability, they may not be
needed, or because the developer intentionally includes another version
of the dependency. To account for this, we encode explicitly excluded
projects as shown in line 5. Note that the exclusion fact does not take a
version because usually developers want to exclude any version of that
project and intentionally declare a dependency to a selected version of
that project.

With these facts, we can model dependencies between projects in
build systems and formulate rules and constraints that make up well-
formed dependency configurations. Such rules include constraints of
the listed dependency smells (e.g., cyclic dependencies). However, for

odeling particular dependency smells, the dependency graph is not
ufficient. For example, to identify an unused dependency, we also
eed to consider the methods that are provided by a project that
he root project depends on, and the corresponding method calls that
re performed. We encode each method that a project provides as
een in line 7. G, A, and V stand for the coordinates of the project.
NAME, NPARAM, and RET represent the method name, the number of
arameters of this method, and its return type, respectively. A call to a
ethod is shown in line 8. Each end (caller and callee) of a call consists

f the same seven properties. Hence, our call fact has 14 properties.
These six facts are extract from the project’s artifacts (see Sec-

ion 4 for information) and are provided to our model. There are
lso other facts that we derive from the provided facts which are
seful to solve any dependency problem with our model. For ex-
mple, the two dependencies at.aau:SomeDependency:2.3.1 and
at.aau:OtherDependency: 4.0.1 represent the first level of de-
pendencies which we call the declared dependencies, because they
are directly declared by the root project. We encode the first level of
dependencies as shown in line 11. This rule states that a dependency
is a declared dependency if the declaring project is the root project.
Additionally, we provide a fact that represents a transitive dependency
relation. A project C is a transitive dependency of a project A if there is
a (transitive) dependency from A to another project B and a (transitive)
dependency from B to C. Lines 12 to 14 show the facts implementing
this rule.

Finally, we need to express that all projects that the root project
uses are marked as included projects (e.g., they are on the classpath
in Java projects). Line 15 and 16 provide the rules to mark included
projects. Again, GAV stands for the project coordinates. The L vari-
able accounts for the level in which the dependency is included.
Level 𝐿 = 0 indicates the root project which results in the fact
includedDependency(at.aau, CoolProject, 1.0.0, 0) given
the example in Fig. 1 and Listing 1. Moreover, as a dependency can
be potentially included multiple times through the dependency mech-
anism, we also keep track of the lowest level (i.e., highest declaration
in the dependency graph) of each included project. The rule in line
17 defines this by storing the lowest LEVEL of each project with the
coordinates G and A. For each included project, we determine the
lowest LEVEL value, i.e., the nearest declaration of this project with
respect to the root project.

Encoding the constraints. Armed with the provided facts that
efine the projects’ dependency graph and call graph, we now de-

cribe a preliminary set of generic rules for well-formed dependency

https://semver.org/
https://maven.apache.org/guides/introduction/introduction-to-optional-and-excludes-dependencies.html#dependency-exclusions
https://maven.apache.org/guides/introduction/introduction-to-optional-and-excludes-dependencies.html#dependency-exclusions
https://maven.apache.org/guides/introduction/introduction-to-optional-and-excludes-dependencies.html#dependency-exclusions


The Journal of Systems & Software 209 (2024) 111916C. Macho et al.

1
1

1

1

1

1
1

1

1
1
2
2
2
2

2
2

2
2

2
2

c
L

s
M
i

f
:

Listing 2: List of facts and rules to detect the five selected dependency smells.

1 % Given Facts (inputted from a tool)

2 project(G, A, V).

3 rootProject(G, A, V).

4 dependency(from_G, from_A, from_V, to_G, to_A, to_V).

5 excludeProject(G, A, V, ex_G, ex_A).

6
7 method(G, A, V, FQN_CLASS, MNAME, NPARAM, RET).

8 call(FROM_G, FROM_A, FROM_V, FROM_CLASS, FROM_MNAME, FROM_NPARAM, FROM_RET, TO_G,TO_A, TO_V, TO_CLASS, TO_MNAME,

↪ TO_NPARAM, TO_RET).

9
0 % Derived Facts:

1 declaredDependency(G, A, V) :- rootProject(ROOT_G, ROOT_A, ROOT_V), dependency(ROOT_G, ROOT_A, ROOT_V, G, A, V),

↪ project(G, A, V).

2 transitiveDependency(A_G, A_A, A_V, C_G, C_A, C_V) :- dependency(A_G, A_A, A_V, B_G, B_A, B_V), dependency(B_G, B_A, B_V

↪ , C_G, C_A, C_V).

3 transitiveDependency(A_G, A_A, A_V, C_G, C_A, C_V) :- dependency(A_G, A_A, A_V, B_G, B_A, B_V), transitiveDependency(
↪ B_G, B_A, B_V, C_G, C_A, C_V).

4 transitiveDependency(A_G, A_A, A_V, C_G, C_A, C_V) :- transitiveDependency(A_G, A_A, A_V, B_G, B_A, B_V),

↪ transitiveDependency(B_G, B_A, B_V, C_G, C_A, C_V).

5 includedProject(G, A, V, 0) :- rootProject(G, A, V).

6 includedProject(CHILD_G, CHILD_A, CHILD_V, L+1) :- includedProject(G, A, V, L), dependency(G, A, V, CHILD_G, CHILD_A,

↪ CHILD_V), not excludeProject(G, A, V, CHILD_G,CHILD_A), not dependencyCycle(CHILD_G, CHILD_A, CHILD_V,_,_,_).

7 minLevelOfDependency(GROUPID, ARTIFACTID, VERSION, LEVEL) :- includedProject(GROUPID, ARTIFACTID, VERSION, LEVEL), #

↪ min {LEVELX : includedProject(GROUPID, ARTIFACTID, _, LEVELX)} = LEVEL.

8
9 % Constraints

0 dependencyCycle(G, A, V) :- dependency(G, A, V, G, A,V).

1 dependencyCycle(G, A, V) :- transitiveDependency(G, A, V, G, A, V).

2
3 duplicatedDependency(GROUPID, ARTIFACTID, VERSION1, LEVEL1, VERSION2, LEVEL2) :- includedProject(GROUPID, ARTIFACTID,

↪ VERSION1, LEVEL1), includedProject(GROUPID, ARTIFACTID, VERSION2, LEVEL2), dependency(PARENT1_GROUPID,
↪ PARENT1_ARTIFACTID, PARENT1_V, GROUPID, ARTIFACTID, VERSION1), dependency(PARENT2_GROUPID, PARENT2_ARTIFACTID,

↪ PARENT2_V, GROUPID, ARTIFACTID, VERSION2), (PARENT1_GROUPID, PARENT1_ARTIFACTID, PARENT1_V) != (

↪ PARENT2_GROUPID, PARENT2_ARTIFACTID, PARENT2_V).

4
5 shadowedProject(GROUPID, ARTIFACTID, VERSION, LEVEL) :- minLevelOfDependency(GROUPID, ARTIFACTID, VERSIONMIN,

↪ LEVELMIN), includedProject(GROUPID, ARTIFACTID, VERSION, LEVEL), LEVEL>LEVELMIN, VERSION!=VERSIONMIN.

6
7 jumpCall(FROM_GROUPID, FROM_ARTIFACTID, FROM_VERSION, FROM_CLASS, FROM_METHOD_NAME, FROM_NUM_PARAM, FROM_RET_VAL,

↪ TO_GROUPID, TO_ARTIFACTID, TO_VERSION, TO_CLASS, TO_METHOD_NAME, TO_NUM_PARAM, TO_RET_VAL) :- call(
↪ FROM_GROUPID, FROM_ARTIFACTID, FROM_VERSION, FROM_CLASS, FROM_METHOD_NAME, FROM_NUM_PARAM, FROM_RET_VAL,

↪ TO_GROUPID, TO_ARTIFACTID, TO_VERSION, TO_CLASS, TO_METHOD_NAME, TO_NUM_PARAM, TO_RET_VAL), rootProject(
↪ FROM_GROUPID, FROM_ARTIFACTID, FROM_VERSION), project(TO_GROUPID, TO_ARTIFACTID, TO_VERSION), not rootProject(
↪ TO_GROUPID, TO_ARTIFACTID, TO_VERSION), not dependency(FROM_GROUPID, FROM_ARTIFACTID, FROM_VERSION, TO_GROUPID

↪ , TO_ARTIFACTID, TO_VERSION).

8
9 unusedProject(GROUPID, ARTIFACTID, VERSION, LEVEL) :- includedProject(GROUPID, ARTIFACTID, VERSION, LEVEL), not call(_

↪ ,_,_,_,_,_,_,GROUPID, ARTIFACTID, VERSION,_,_,_,_).
configurations. These rules represent the dependency smells listed in
Table 1. In the context of our model for dependencies, we formulate
them as hard constraints8 to express that, regardless how and in which
context our model is used (see Section 5 for pointers of future work),
it is impossible to obtain instances of our model (i.e., dependency
onfigurations) that violate any of the given constraints depicted in
isting 2.

Line 20 and 21 depict the detection of dependency cycles. Line 20
tates that if a dependency from one project to itself exists it is a cycle.
oreover, when there is a transitive dependency from a project to itself,

t is also considered a dependency cycle.

8 Note that, technically, each of the listed constraints has its own constraint
ormulation in addition to the shown facts. For example, there is an additional
- dependencyCycle(G, A, V) that disallows any model that would pro-

duce a dependency cycle fact. To avoid cluttering the paper, these constraints
are omitted.
5

The rule in line 23 identifies projects that are declared as dependency
multiple times in the dependency graph. This can happen due to the res-
olution of transitive dependencies, for example. The rule fires if there
are two included projects that have the same groupId and artifactId.
Moreover, the two included projects need to stem from two different
parent projects to avoid false duplication reports (e.g., without this
constraint any included project would be a duplicated of itself). To
retain the given information, the respective versions and level of the
dependencies are also stored in this fact (VERSION1, VERSION2, and
LEVEL1, LEVEL2).

Next, we detect projects that are shadowed by other versions of
the project through the hierarchy in the dependency graph. Line 25
shows the rule to detect shadowed projects. A shadowed project is a
project that would be included in the project but is declared on a lower
level as the highest declaration of this project (LEVEL>LEVELMIN) and
has a different version (VERSION!=VERSIONMIN). If both dependency
declarations declare the identical project as dependency (i.e., G, A, and



The Journal of Systems & Software 209 (2024) 111916C. Macho et al.

t
m
o
r
r
o
c
t
v

w
t

Table 2
Descriptive statistics and detection results of the studied projects. The abbreviations stand for: solving time (ST), declared dependencies (DD) number of facts that are inputted into
the model (#InpFacts), the time to generate these facts (GT), and the corresponding smells Dependency Cycles (DC), Double Included Dependency (DID), Shadowed Dependency
(SD), Jump Calls (JC), and Unused Dependency (UD).

Project Repository Clingo Smells

LOC #Classes #Commits ST #DD #InpFacts GT DC DID SD JC UD

dgc-lib 5807 59 230 7.7 s 9 426,382 90 s 0 18 8 293 10
jackson-databind 115,465 464 9125 0.6 s 2 29,565 6 s 0 0 0 0 0
jest-common 8535 158 1289 5.2 s 9 296,028 34 s 0 11 0 0 2
keycloak-admin-cli 6815 57 20,325 1.7 s 5 82,971 19 s 0 2 0 87 3
V are equal), no functionality is shadowed and hence, we do not count
these as shadowed projects.

Combining the information from the dependency graph and the
call graph, we can detect direct calls to projects that are not declared
as direct dependencies of our project but are available via transitive
dependency relations. We call such calls jump calls because they jump
over at least one project dependency level. Line 27 shows the respective
rule. This rule states that for any call in the root project that targets
another project, we detect a jump call if the target project is not a
declared dependency.

Similarly, we can detect unused projects that are included. Line 29
shows the detection rule. A project is marked as unused if it is included
in the list of dependencies but no call to any of its methods is found.
Note that a call from any project that is included to a project avoids
marking the target project as unused.

We can leverage these rules in two ways, namely validating an
existing dependency configuration and generating valid dependency
configurations. For validating an existing dependency configuration,
we input the facts of the project and its dependencies into DValidator.
DValidator uses Clingo to solve the given ASP problem, i.e., to detect
he selected dependency smells. If Clingo returns UNSAT, then the
odel violates at least one of the given constraints. Reading the output

f the solver, we can see which constraint was violated and initiate the
epair of the configuration. For generating valid dependency configu-
ations, we provide DValidator with the facts from additional versions
f projects. For example, if we aim at generating a valid dependency
onfiguration for the example given in Fig. 1, we additionally provide
he encoded facts of other versions of the dependencies (for example
ersion 2.4.0 of ExternalDependency).9 Clingo then produces a set

of possible dependency configurations that do not violate any of the
given constraints.

4. Preliminary evaluation

In this section, we provide a preliminary evaluation of our proposed
model to show its applicability. In particular, we show how our model
can be used to validate existing dependency configurations of four open
source Maven projects. We leave the evaluation of the generation of
dependency configurations for future work. In the following, we first
describe the setup of the evaluation and the used projects. Next, we
present the obtained results.

4.1. Evaluation setup

In this preliminary investigation, we selected four Maven projects
from different vendors, having different size, complexity, and purpose.
The first four columns of Table 2 list the studied projects and report
preliminary statistics about each studied project.

9 The selection of which dependency versions to provide is subject to future
ork. We envision various strategies that for example select versions close to

he selected version numbers or the next minor/major version.
6

As described above, our model requires a dependency graph and
a call graph of a project. We used a modified version of the tool by
Gousious10 to generate the call graph. In particular, we used the static
call graph generator and modified it, that it not only extracts the call
graph of a single project, but recursively creates a call graph including
dependencies. Using the static call graph of Gousious et al., we share
the following limitations: (1) our approach also misses reflective calls
and (2) calls to abstract methods might end at the abstract class.
Moreover, we used the tool of Macho et al. (2018) to extract and create
the dependency graph. Starting from the root project, we transform
the two graphs into the corresponding Clingo facts as described in
Section 3. We repeat the extraction for each project that is declared
as a dependency, recursively until no more dependencies are found.
After this step, we obtain a fact base for each of the four projects that
contains all the Clingo facts of the projects that the investigated project
(transitively) depends on.

We then evaluated the precision of our approach by manually
analyzing the smells that DValidator reported. In particular, the first
two authors manually verified each smell separately and discussed
unclear smell reports together. We report the precision in the following
section. Please not that we did not analyze the recall of our tool
because currently there is no benchmark data set to compare with and
establishing a ground truth is not feasible in this context.

4.2. Results

Besides the descriptive statistics, Table 2 also shows the results of
our preliminary study. Columns 5-8 (third block, ‘‘Clingo’’) show the
time to generate the model, the time that Clingo needed to execute all
rules in a model, the number of dependencies that the root project de-
clared, and the corresponding total number of facts that were encoded
during the transformation process. Furthermore, columns 9-13 (last two
blocks, ‘‘Smells’’) report the number of instances per dependency smell
and project that Clingo found based on our model.

The number of facts varies between the projects. The dgc-lib project
generated the highest number of facts directly followed by jest-common.
These two also have the highest number of declared dependencies,
declaring nine direct dependencies each. Processing the large number
of facts and executing the rules of a model only took 7.7 s at most which
is still within a reasonable amount of time.

Regarding the smell detection, we see that dependency cycle (DC)
was not detected in any of the four projects. However, three projects
had duplicated dependencies (DID) defined throughout their depen-
dency graph. Only the jackson- databind project did not have any
duplicated dependencies. This may be a result of the low number of
declared dependencies (2) in this project. Inspecting the reported du-
plicates, we observed that they are all correct. Although not all of them
might necessarily be prone to cause an error, our model still identifies
and reports them to give future generative approaches all available
information to output high quality dependency configurations, which
might include avoiding duplicates as much as possible.

10 https://github.com/gousiosg/java-callgraph

https://github.com/gousiosg/java-callgraph


The Journal of Systems & Software 209 (2024) 111916C. Macho et al.

0
e
j

Shadowed dependencies (SD) were only found in the dgc-lib

project. Analyzing them, we found that they mostly concern declara-
tions of selected Spring framework components and the well-known
logging framework slf4j.

In addition to the purely dependency-based smells, we also report
the results for the dependency smells that leverage the call graph,
i.e., jump calls (JC) and unused dependencies (UD). The projects
dgc-lib and keycloak-admin-cli contained jump calls. One of the jump
calls in the dgc-lib project11 concerns a call to a getMessage()

method of a JsonProcessingException which is provided by the
jackson-core project. This project is included transitively via the
jackson-databind project. Directly declaring the jackson-core

project as dependency from the root project would resolve this issue.
Overall, we observed that in 98 (26%) cases the tool identified a jump
call although a corresponding library is directly declared. However,
all 98 cases refer to the declaration of the bouncycastle libraries.
Our tool wrongly classifies these calls as jump calls, because the call
graph wrongly assigns the call to the transitive dependency declaration.
We also investigated unused dependencies, i.e., dependencies that are
included but no calls are made to them. We analyzed the reported
smells and found that all identified 15 unused libraries were actual
smells.

The observed shortcomings can be attributed to limitations of the
tool to generate the call graph. For example, the dgc-lib project uses
Lombok12 which is a library to reduce the amount of boilerplate code.
However, most of the usage of this library concerns adding annotations
to the project’s classes. The call graph tool currently skips annotations
as they are no calls and hence, we miss the relationships from the
investigated project to the library. In this case, the Lombok project is
marked as unused because there are no method calls to this library.
Similarly, we currently do not cover any calls that are unresolvable
by the call graph tool. For example, this concerns calls to methods
in abstract classes or interfaces, or calls that are preformed using
reflection.

5. Future research directions

The results of our preliminary evaluation show the potential of our
approach to detect dependency smells. While DValidator did not detect
any dependency cycle in the four projects, it detected duplicated depen-
dencies, shadowed dependencies, jump calls, and unused dependencies.
The time to detect did not exceed 7.7 s and the time to generate facts
did not exceed 90 s. Most of the detected dependency smells were
confirmed by a manual analysis. Based on these promising results, we
first describe possible technical improvements and then present several
envisioned research directions that are enabled by our approach.

Technical Improvements. First, we plan to integrate our approach
into IDE’s, such as IntelliJ IDEA. This will help to solve the problem
of generating the dependency graph and the call graph from scratch
each time a project needs to be analyzed, because we can obtain the
performed changes by the IDE and directly update the model facts
without generating the whole model from scratch. This will save time
in the data generation process.

As reported in Section 4, many false positives are due to the lim-
itations of the static call graph generator. In future work, we plan
to enhance our graph generation tool to better handle inheritance,
reflection, and annotations.

Furthermore, we also reported in Section 4 that our tools currently
only extract project level dependencies and method calls. This leads to

11 https://github.com/eu-digital-green-certificates/dgc-lib/blob/
46831ac5555df11f2459ef2ccdbc9be1a36a37e/src/main/java/eu/europa/
c/dgc/gateway/connector/DgcGatewayValidationRuleDownloadConnector.
ava#L172
12 https://projectlombok.org/
7

false positives when detecting unused dependencies. In the next steps,
we plan to improve our tools to also extract dependencies due to the
usage of annotations and data types.

Improving the Search Space. Finding optimal solutions of depen-
dency problems is an NP-hard problem (Abate et al., 2020). One reason
for the complexity of this problem is the large search space in which
the solution is located. Depending on the size of the investigated project
and the number of (transitive) dependencies, the number of generated
facts can grow large and hence, the performance of our approach
can suffer. While this is usually no problem when validating existing
dependency configurations, the problem can occur when our model
is used to generate dependency configurations. We plan to mitigate
this issue by additional experiments to streamline our approach with
heuristics that help to narrow the search space.

Moreover, our model currently treats each constraint for a valid
dependency configuration as a hard constraint, which disallows to
violate any of these constraints. However, this can prevent the model
from finding a valid dependency configuration. In some cases, the
developers would accept violating selected dependency constraints as
a trade-off for finding a solution. We plan to conduct experiments in
that direction and survey developers to learn which constraints can be
lowered to soft constraints.

Dependency Conflict Detection and Repair. Similar to the recent
trend of auto repair of broken builds (Macho et al., 2018; Hassan
and Wang, 2018), the first envisioned research direction is the detec-
tion (Wang et al., 2018, 2019) and automated repair of dependency
conflicts. Concerning conflict detection, our model can be extended by
adding special constraints to forbid (transitive) calls of the root project
into two different versions of a project (i.e., a dependency conflict). In
a situation in which such two (transitive) calls exist, the model would,
depending on its configuration, either report that this is an unsatisfiable
model (i.e., no fix within the given constraints could be found), or
report the conflicting calls and dependencies.

Extending this idea further, our model can also generate solution
candidates for such conflicting dependencies. It can be used to generate
dependency configurations that do not violate the given rules and that
do not violate the extended conflict detection rules of the preceding
paragraph. In such a situation, a valid dependency configuration can
be found and incorporated by the developers, avoiding dependency
conflicts.

Updating Versions of Dependencies. Developers usually want to
keep their dependencies up-to-date (Cox et al., 2015). Moreover, if a
critical vulnerability is found in one of the used dependencies, devel-
opers must update a subset of their used dependencies to newer, or in
some cases, older versions of a dependency. This is often challenging
because changing dependency versions can have a huge impact on the
build success of the project (Kerzazi et al., 2014; Seo et al., 2014;
Rausch et al., 2017). The most prominent tool that incorporates such
a mechanism is Dependabot.13 However, Dependabot (Alfadel et al.,
2021; He et al., 2022; Cogo and Hassan, 2022) cannot check whether its
suggestions semantically break the project. Neither it can suggest other
dependencies that would suit better. By extending our proposed model,
such critical dependency updates or downgrades can be performed
whilst checking the validity of the new dependency configuration. The
provided rules of this extension can then indicate possible problems in
the new configuration and, as depicted above, suggest changes to other
parts of the dependency configuration to obtain a valid and updated
dependency configuration.

13 https://github.com/dependabot

https://github.com/eu-digital-green-certificates/dgc-lib/blob/046831ac5555df11f2459ef2ccdbc9be1a36a37e/src/main/java/eu/europa/ec/dgc/gateway/connector/DgcGatewayValidationRuleDownloadConnector.java#L172
https://github.com/eu-digital-green-certificates/dgc-lib/blob/046831ac5555df11f2459ef2ccdbc9be1a36a37e/src/main/java/eu/europa/ec/dgc/gateway/connector/DgcGatewayValidationRuleDownloadConnector.java#L172
https://github.com/eu-digital-green-certificates/dgc-lib/blob/046831ac5555df11f2459ef2ccdbc9be1a36a37e/src/main/java/eu/europa/ec/dgc/gateway/connector/DgcGatewayValidationRuleDownloadConnector.java#L172
https://github.com/eu-digital-green-certificates/dgc-lib/blob/046831ac5555df11f2459ef2ccdbc9be1a36a37e/src/main/java/eu/europa/ec/dgc/gateway/connector/DgcGatewayValidationRuleDownloadConnector.java#L172
https://projectlombok.org/
https://github.com/dependabot


The Journal of Systems & Software 209 (2024) 111916C. Macho et al.
6. Conclusions

In this paper, we propose DValidator, a novel approach to model
dependencies. It extends state-of-the-art methods by considering depen-
dencies not only on a project level but also on a method call level. With
this improvement, we can show that DValidator can detect well-known
dependency smells. Moreover, our approach enables future work to
automatically repair dependency smells and conflicts.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The data and code is available under the Zenodo link.

Acknowledgments

The research reported in this paper has been partly funded by BMK,
BMAW, and the State of Upper Austria in the frame of the SCCH
competence center INTEGRATE (FFG 892418) part of the FFG COMET
Competence Centers for Excellent Technologies Programme.

References

Abate, P., Di Cosmo, R., Gousios, G., Zacchiroli, S., 2020. Dependency solving is still
hard, but we are getting better at it. In: 2020 IEEE 27th International Conference
on Software Analysis, Evolution and Reengineering. SANER, IEEE, pp. 547–551.

Abate, P., Di Cosmo, R., Treinen, R., Zacchiroli, S., 2012. Dependency solving: A
separate concern in component evolution management. J. Syst. Softw. 85 (10),
2228–2240.

Alfadel, M., Costa, D.E., Shihab, E., Mkhallalati, M., 2021. On the use of dependabot
security pull requests. In: 2021 IEEE/ACM 18th International Conference on Mining
Software Repositories. MSR, IEEE, pp. 254–265.

Bavota, G., Canfora, G., Di Penta, M., Oliveto, R., Panichella, S., 2013. The evolution of
project inter-dependencies in a software ecosystem: The case of Apache. In: 2013
IEEE International Conference on Software Maintenance. IEEE, pp. 280–289.

Bavota, G., Canfora, G., Di Penta, M., Oliveto, R., Panichella, S., 2015. How the apache
community upgrades dependencies: An evolutionary study. Empir. Softw. Eng. 20
(5), 1275–1317.

Cao, Y., Chen, L., Ma, W., Li, Y., Zhou, Y., Wang, L., 2022. Towards better dependency
management: A first look at dependency smells in Python projects. IEEE Trans.
Softw. Eng..

Capilla, R., Gallina, B., Cetina, C., Favaro, J., 2019a. Opportunities for software reuse
in an uncertain world: From past to emerging trends. J. Softw.: Evol. Process 31
(8), e2217.

Capilla, R., Gallina, B., Cetina Englada, C., 2019b. The new era of software reuse. J.
Softw.: Evol. Process 31 (8), e2221.

Chen, X., Abdalkareem, R., Mujahid, S., Shihab, E., Xia, X., 2021. Helping or not
helping? Why and how trivial packages impact the npm ecosystem. Empir. Softw.
Eng. 26 (2), 1–24.

Claes, M., Decan, A., Mens, T., 2018. Inter-component dependency issues in software
ecosystems. In: Software Technology: 10 Years of Innovation in IEEE Computer.
John Wiley & Sons.

Cogo, F.R., Hassan, A.E., 2022. Understanding the customization of dependency bots:
The case of dependabot. IEEE Softw. 39 (5), 44–49.

Cox, J., Bouwers, E., Van Eekelen, M., Visser, J., 2015. Measuring dependency freshness
in software systems. In: 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering. Vol. 2. IEEE, pp. 109–118.

Decan, A., Mens, T., Claes, M., 2017. An empirical comparison of dependency issues
in OSS packaging ecosystems. In: 2017 IEEE 24th International Conference on
Software Analysis, Evolution and Reengineering. SANER, IEEE, pp. 2–12.

Decan, A., Mens, T., Claes, M., Grosjean, P., 2016. When GitHub meets CRAN: An
analysis of inter-repository package dependency problems. In: 2016 IEEE 23rd
International Conference on Software Analysis, Evolution, and Reengineering. Vol.
1. SANER, IEEE, pp. 493–504.

Di Cosmo, R., Zacchiroli, S., Trezentos, P., 2008. Package upgrades in FOSS distribu-
tions: Details and challenges. In: Proceedings of the 1st International Workshop on
Hot Topics in Software Upgrades. pp. 1–5.
8

Fan, G., Wang, C., Wu, R., Xiao, X., Shi, Q., Zhang, C., 2020. Escaping dependency
hell: Finding build dependency errors with the unified dependency graph. In:
Proceedings of the 29th ACM SIGSOFT International Symposium on Software
Testing and Analysis. pp. 463–474.

Frakes, W.B., Kang, K., 2005. Software reuse research: Status and future. IEEE Trans.
Softw. Eng. 31 (7), 529–536.

Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T., 2014. Clingo=ASP+ control:
Preliminary report. arXiv preprint arXiv:1405.3694.

Gebser, M., Kaminski, R., Schaub, T., 2011a. Aspcud: A linux package configuration
tool based on answer set programming. arXiv preprint arXiv:1109.0113.

Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., Schneider, M.,
2011b. Potassco: The Potsdam answer set solving collection. Ai Commun. 24 (2),
107–124.

Hassan, F., Wang, X., 2018. Hirebuild: An automatic approach to history-driven repair
of build scripts. In: Proceedings of the 40th International Conference on Software
Engineering. pp. 1078–1089.

He, R., He, H., Zhang, Y., Zhou, M., 2022. Automating dependency updates in practice:
An exploratory study on GitHub dependabot. arXiv preprint arXiv:2206.07230.

Huang, K., Chen, B., Shi, B., Wang, Y., Xu, C., Peng, X., 2020. Interactive, effort-aware
library version harmonization. In: Proceedings of the 28th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. pp. 518–529.

Humble, J., Farley, D., 2010. Continuous Delivery: Reliable Software Releases Through
Build, Test, and Deployment Automation. Pearson Education.

Ignatiev, A., Janota, M., Marques-Silva, J., 2014. Towards efficient optimization in
package management systems. In: Proceedings of the 36th International Conference
on Software Engineering. pp. 745–755.

Jafari, A.J., Costa, D.E., Abdalkareem, R., Shihab, E., Tsantalis, N., 2021. Dependency
smells in Javascript projects. IEEE Trans. Softw. Eng. 48 (10), 3790–3807.

Kerzazi, N., Khomh, F., Adams, B., 2014. Why do automated builds break? an empirical
study. In: 2014 IEEE International Conference on Software Maintenance and
Evolution. IEEE, pp. 41–50.

Kikas, R., Gousios, G., Dumas, M., Pfahl, D., 2017. Structure and evolution of package
dependency networks. In: 2017 IEEE/ACM 14th International Conference on Mining
Software Repositories. MSR, IEEE, pp. 102–112.

Kula, R.G., German, D.M., Ouni, A., Ishio, T., Inoue, K., 2018. Do developers update
their library dependencies? Empir. Softw. Eng. 23 (1), 384–417.

Larios Vargas, E., Aniche, M., Treude, C., Bruntink, M., Gousios, G., 2020. Selecting
third-party libraries: The practitioners’ perspective. In: Proceedings of the 28th ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering. pp. 245–256.

Macho, C., McIntosh, S., Pinzger, M., 2018. Automatically repairing dependency-related
build breakage. In: Proc. of the International Conference on Software Analysis,
Evolution, and Reengineering. SANER, pp. 106–117.

Mäkitalo, N., Taivalsaari, A., Kiviluoto, A., Mikkonen, T., Capilla, R., 2020. On
opportunistic software reuse. Computing 102 (11), 2385–2408.

Pinckney, D., Cassano, F., Guha, A., Bell, J., Culpo, M., Gamblin, T., 2023. Flexible
and optimal dependency management via max-smt. In: Proceedings of the 2023
International Conference on Software Engineering. Ser. ICSE.

Rausch, T., Hummer, W., Leitner, P., Schulte, S., 2017. An empirical analysis of
build failures in the continuous integration workflows of Java-based open-source
software. In: 2017 IEEE/ACM 14th International Conference on Mining Software
Repositories. MSR, IEEE, pp. 345–355.

Seo, H., Sadowski, C., Elbaum, S., Aftandilian, E., Bowdidge, R., 2014. Programmers’
build errors: A case study (at Google). In: Proceedings of the 36th International
Conference on Software Engineering. pp. 724–734.

Shahin, M., Babar, M.A., Zhu, L., 2017. Continuous integration, delivery and deploy-
ment: A systematic review on approaches, tools, challenges and practices. IEEE
Access 5, 3909–3943.

Soto-Valero, C., Durieux, T., Baudry, B., 2021a. A longitudinal analysis of bloated
Java dependencies. In: Proceedings of the 29th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. pp. 1021–1031.

Soto-Valero, C., Harrand, N., Monperrus, M., Baudry, B., 2021b. A comprehensive study
of bloated dependencies in the Maven ecosystem. Empir. Softw. Eng. 26 (3), 1–44.

Tanabe, Y., Aotani, T., Masuhara, H., 2018. A context-oriented programming approach
to dependency hell. In: Proceedings of the 10th International Workshop on
Context-Oriented Programming: Advanced Modularity for Run-Time Composition.
pp. 8–14.

Tourwé, T., Mens, T., 2003. Identifying refactoring opportunities using logic meta
programming. In: Seventh European Conference OnSoftware Maintenance and
Reengineering, 2003. Proceedings. IEEE, pp. 91–100.

Treinen, R., Zacchiroli, S., 2009. Common upgradeability description format (CUDF)
2.0. Mancoosi Project (FP7) 3.

Valiev, M., Vasilescu, B., Herbsleb, J., 2018. Ecosystem-level determinants of sustained
activity in open-source projects: A case study of the PyPI ecosystem. In: Proceedings
of the 2018 26th ACM Joint Meeting on European Software Engineering Conference

and Symposium on the Foundations of Software Engineering. pp. 644–655.

http://refhub.elsevier.com/S0164-1212(23)00311-4/sb1
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb1
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb1
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb1
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb1
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb2
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb2
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb2
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb2
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb2
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb3
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb3
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb3
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb3
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb3
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb4
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb4
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb4
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb4
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb4
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb5
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb5
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb5
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb5
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb5
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb6
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb6
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb6
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb6
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb6
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb7
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb7
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb7
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb7
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb7
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb8
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb8
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb8
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb9
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb9
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb9
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb9
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb9
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb10
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb10
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb10
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb10
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb10
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb11
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb11
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb11
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb12
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb12
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb12
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb12
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb12
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb13
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb13
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb13
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb13
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb13
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb14
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb14
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb14
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb14
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb14
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb14
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb14
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb15
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb15
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb15
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb15
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb15
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb16
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb16
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb16
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb16
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb16
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb16
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb16
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb17
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb17
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb17
http://arxiv.org/abs/1405.3694
http://arxiv.org/abs/1109.0113
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb20
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb20
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb20
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb20
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb20
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb21
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb21
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb21
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb21
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb21
http://arxiv.org/abs/2206.07230
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb23
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb23
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb23
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb23
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb23
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb23
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb23
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb24
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb24
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb24
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb25
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb25
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb25
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb25
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb25
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb26
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb26
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb26
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb27
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb27
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb27
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb27
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb27
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb28
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb28
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb28
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb28
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb28
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb29
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb29
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb29
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb30
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb30
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb30
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb30
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb30
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb30
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb30
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb31
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb31
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb31
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb31
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb31
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb32
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb32
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb32
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb33
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb33
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb33
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb33
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb33
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb34
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb34
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb34
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb34
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb34
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb34
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb34
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb35
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb35
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb35
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb35
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb35
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb36
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb36
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb36
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb36
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb36
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb37
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb37
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb37
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb37
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb37
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb37
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb37
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb38
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb38
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb38
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb39
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb39
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb39
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb39
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb39
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb39
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb39
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb40
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb40
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb40
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb40
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb40
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb41
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb41
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb41
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb42
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb42
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb42
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb42
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb42
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb42
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb42


The Journal of Systems & Software 209 (2024) 111916C. Macho et al.
Wang, Y., Wen, M., Liu, Z., Wu, R., Wang, R., Yang, B., Yu, H., Zhu, Z., Cheung, S.-C.,
2018. Do the dependency conflicts in my project matter? In: Proceedings of the
2018 26th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. pp. 319–330.

Wang, Y., Wen, M., Wu, R., Liu, Z., Tan, S.H., Zhu, Z., Yu, H., Cheung, S.-C., 2019.
Could i have a stack trace to examine the dependency conflict issue? In: 2019
IEEE/ACM 41st International Conference on Software Engineering. ICSE, IEEE, pp.
572–583.

Wang, Y., Wu, R., Wang, C., Wen, M., Liu, Y., Cheung, S.-C., Yu, H., Xu, C., Zhu, Z.-l.,
2021. Will dependency conflicts affect my program’s semantics. IEEE Trans. Softw.
Eng..

Christian Macho is a PostDoc assistant (tenure track) in
the Software Engineering Group (SERG) at the University
of Klagenfurt. He received his M.Sc. from the Technical
University Vienna in March 2015 and his Ph.D. from the
University of Klagenfurt in 2019 both with distinction.
His research interests include software evolution, mining
software repositories, program analysis, build systems, con-
tinuous integration, automated repair, and empirical studies
in software engineering.
9

Fabian Oraze is a student assistant in the Software Engi-
neering Group (SERG) at the University of Klagenfurt. He
received his B.Sc. from the University of Klagenfurt in 2022.
His research interests include build systems, continuous
integration, and empirical studies in software engineering.

Martin Pinzger is a full professor at the University of
Klagenfurt, Austria where he is heading the Software En-
gineering Research Group. His research interests are in
software evolution, mining software repositories, program
analysis, software visualization, and automating software
engineering tasks. He is a member of ACM and a senior
member of IEEE.

http://refhub.elsevier.com/S0164-1212(23)00311-4/sb43
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb43
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb43
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb43
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb43
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb43
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb43
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb44
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb44
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb44
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb44
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb44
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb44
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb44
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb45
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb45
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb45
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb45
http://refhub.elsevier.com/S0164-1212(23)00311-4/sb45

	DValidator: An approach for validating dependencies in build configurations
	Introduction
	Background and Related Work
	Dependency Management with Build Systems
	Related Work
	Research Gap

	DValidator Approach
	Well-formed Dependency Configurations
	A Model For Dependency Configurations

	Preliminary Evaluation
	Evaluation Setup
	Results

	Future Research Directions
	Conclusions
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


