
Pattern-Supported Architecture Recovery�

Martin Pinzger and Harald Gall
Distributed Systems Group

Vienna University of Technology
Argentinierstrasse 8/184-1, A-1040 Vienna, Austria, Europe

fpinzger, gallg@infosys.tuwien.ac.at

Abstract

Architectural patterns and styles represent important de-
sign decisions and thus are valuable abstractions for archi-
tecture recovery. Recognizing them is a challenge because
styles and patterns basically span several architectural ele-
ments and can be implemented in various ways depending
on the problem domain and the implementation variants.
Our approach uses source code structures as patterns and
introduces an iterative and interactive architecture recov-
ery approach built upon such lower-level patterns extracted
from source code. Associations between extracted pattern
instances and architectural elements such as modules arise
which result in new and higher-level views of the software
system. These pattern views provide information for a con-
secutive refinement of pattern definitions to aggregate and
abstract higher-level patterns which finally enable the de-
scription of a software system’s architecture.

1. Introduction

Developing complex software systems requires a de-
scription of the structure or structures, which comprise soft-
ware components, the externally visible properties of those
components, and the relationships among them [1]. Such
a description, called software architecture, also is basic
for further engineering activities concerning reuse, mainte-
nance, and evolution of existing software components and
systems.

Changes are in the nature of software systems and also
have impacts on the architecture of a system. In most cases
they cause a drift between the as-designed and as-built ar-
chitecture because not seldom they are only realized in the
implementation but not in the design of a software system.

�This work is funded by the European Commission under EUREKA
2023/ITEA-ip00004 ’from Concept to Application in system-Family En-
gineering (CAFÉ)’.

In the field of product lines the impact of such changes in-
creases even more because there is not only one single sys-
tem but a family of systems. Therefore, changes are one
primary reason for analyzing and recovering the architec-
ture of existing systems.

Architecture recovery refers to all techniques and pro-
cesses used to abstract a higher-level representation (i.e.,
software architecture) from available information such as
existing artifacts (e.g., source code, profiling information,
design documentation) and expert knowledge (e.g., soft-
ware architects, maintainers). Basically this means the ex-
traction of those building blocks which constitute architec-
tural properties and finally the software architecture. From
point of this view we think of architectural styles and pat-
terns which are inherent in almost any design and thus are
primary objectives for architecture recovery. But recog-
nizing such styles and patterns is a challenge because they
comprise several architectural elements (subsystems, mod-
ules, classes, functions, variables) and are implemented in
various ways (depending on the problem at hand and on the
programming language).

In this paper we extend our architecture recovery frame-
work described by Jazayeri et al. [8] and introduce an iter-
ative and interactive architecture recovery approach which
is based on patterns. In this context we refer to patterns
as solutions to recurring problems on different levels of ab-
straction (e.g., code patterns, design patterns, and architec-
tural patterns) [13, 5]. Each pattern has typical properties
and elements which indicate it. These so called hot-spots
are the point to start architecture recovery, because they en-
able an abstraction of higher-level patterns. In our approach
we primarily base on existing knowledge of experts and de-
sign documents and on a fast and effective recognition of
hot-spots. Therefore, we start architecture recovery with
gathering knowledge about the software system and spec-
ify pattern definitions, which pertain to hot-spots in terms
of source code structures. We use an extended string pat-
tern matching technique to match the pattern definitions
with source code. Associations between extracted pattern

Proceedings of the 10 th International Workshop on Program Comprehension (IWPC’02)
1092-8138/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: MAIN LIBRARY UNIVERSITY OF ZURICH. Downloaded on November 16, 2009 at 05:32 from IEEE Xplore. Restrictions apply.

instances and architectural elements such as modules arise
which result in new views of the software system. These
pattern views contain the key information of higher-level
pattern and enable the refinement of pattern definitions un-
til finally the software architecture is reconstructed.

Following this introduction, Section 2 provides related
work concerning architecture recovery using patterns. Sec-
tion 3 describes the pattern-supported architecture recovery
approach in detail. Evaluation of the method with a case
study is presented in Section 4. Finally, Section 5 summa-
rizes this work and indicates future work.

2. Related work

Architecture recovery has received considerable atten-
tion recently and various frameworks, techniques and tools
have been developed. Basically, existing knowledge, ob-
tained from experts and design documents, and various
tools are mandatory to solve the problem. Hence, a com-
mon idea is to integrate several tools in architecture work-
benches such as Dali [9]. In this a variety of lexical-based,
parser-based and profiling-based tools are used to examine
a system and extract static and dynamic views to be stored
in a repository. Analyses of these views are supported by
visualization and specific analysis tools. They enable an in-
teraction with experts to control the recovery process until
the software architecture is reconstructed.

Concerning architecture reconstruction much work has
been on techniques which combine bottom-up and top-
down approaches. Bottom-up they use reverse engineering
tools to extract source models (e.g., Abstract Syntax Tree)
and top-down they apply queries to extract expected pat-
terns. Fiutem et al. [3] describe such an approach. They
use a hierarchical architectural model that drives the appli-
cation of a set of recognizers. Each recognizer works on the
Abstract Syntax Tree (AST) and is related to a specific level
of the architectural model. They produce different abstract
views of the source code which describe some architectural
aspects of the system and are represented by hierarchical
architectural graphs.

Harris et al. [7] outline a framework that integrates re-
verse engineering technology and architectural style repre-
sentations. In bottom-up recovery the bird’s eye view is
used to display the file structure and file components of the
system, and to reorganize information into more meaning-
ful clusters. Top-down style definitions place an expectation
on what will be found in the software system. These expec-
tations are specified by recognition queries which are then
applied to an extrated AST. Each recognized style provides
a view of the system and the collection of these views par-
tially recovers the overall design of the software system.

Guo et al. [6] outline an iterative and semi-automatic
architecture recovery method called ARM. Existing knowl-

edge gained from design documentation is used to define
queries for potential pattern instances which are then ap-
plied automatically to extracted and fused source model
views. Human evaluation is required to determine which
of the detected pattern instances are intended, which are
false positive and false negative. ARM supports patterns
at various abstraction levels and uses lower-level patterns to
build higher-level patterns and also composite patterns. In
this way the approach aims particularly at systems that have
been developed using design patterns whose implementa-
tions have not eroded over time.

Another approach which uses source models and queries
as basic inputs for architecture recovery is introduced by
Sartipi et al. [12] and called Alborz. The problem is viewed
as approximate graph matching problem whereas the ex-
tracted source models and defined queries are represented
as attributed relational graphs. Based on existing knowl-
edge obtained from experts and design documents abstract
patterns are defined using an Architectural Query Language
(AQL). Each query is expanded into a graph which next is
approximately matched with the source model graph using
the branch and bound search algorithm. In each iteration
the user may refine his queries and generate a more accu-
rate model.

These related approaches [3, 7, 6, 12] and our approach
have in common that they all take into account patterns to
reconstruct the architecture of a software system. But there
are two basic differences: first in the view of patterns and
second in their extraction. We regard patterns as the key el-
ements of software systems residing in all levels of abstrac-
tion. Thereby we start pattern recognition from the low-
est level (i.e., source level) and use hot-spots to stepwise
abstract higher-level patterns. Hot-spots indicate patterns
and are represented by meaningful source code structures
(e.g., variables, functions, data structures, program struc-
tures). To detect such hot-spots in source code we apply
extended string pattern matching which facilitates fast and
effective queries. In contrast the related approaches men-
tioned above regard patterns as associated architectural ele-
ments (e.g., a specific sequence of function calls) residing in
higher levels of abstraction (e.g., code-strucure level). Basi-
cally, these approaches transform the software system into
a source model representation such as an AST and apply
queries to recognize expected patterns. The transformation
of existing artifacts (e.g., source code) implies the use of re-
verse engineering tools such as parsers and profilers which
extract source models containing the architectural elements.
But these reverse engineering tools typically are time and
memory consuming and in a first step of architecture recov-
ery too costly. In this context our string pattern matching
approach represents a more effective solution which also
allows a later involvement of other pattern matching tech-
niques, such as those described before.

Proceedings of the 10 th International Workshop on Program Comprehension (IWPC’02)
1092-8138/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: MAIN LIBRARY UNIVERSITY OF ZURICH. Downloaded on November 16, 2009 at 05:32 from IEEE Xplore. Restrictions apply.

3. Pattern views

Source code typically is structured and contains seman-
tically rich programming constructs such as variables, func-
tions, data structures, and program structures which indicate
patterns and therefore are valuable inputs for architecture
recovery. The extraction of these basic patterns provides the
user with additional views of the software system which we
call pattern views. In this paper we primarily focus on the
generation of such views and introduce an approach which
consists of the following steps:

1. Analysis and pattern candidate identification:
Based on design documentation and expert knowledge
expected pattern candidates are identified.

2. Pattern definition:
Based on the expected pattern candidates appropriate
pattern definitions are taken from a pattern repository
or otherwise generated using a specific pattern lan-
guage.

3. Pattern recognition:
Pattern definitions are matched with source code and
information about recognized patterns is stored in a
repository.

4. Pattern view computation:
Associations between recognized pattern instances and
other architectural elements are computed. They result
in various new views of the software architecture.

5. Analysis of patterns and views:
Resulting views and recognized patterns are analyzed
to abstract architectural patterns. Already applied pat-
terns are refined, new pattern definitions are validated
and stored in the repository.

In the following sections we describe each of the steps in
more detail.

3.1. Pattern identification

The primary focus of architecture recovery is on finding
key information (i.e., patterns) which enables the descrip-
tion of architectural properties of an existing software sys-
tem [8]. The information base containing this patterns con-
sists of all artifacts comprising the software system (e.g.,
source code, documents, running system). This leads to a
huge amount of data so that knowledge from experts and
existing software documents is necessary to extract the es-
sential information. Therefore the primary activity in this
step is to investigate existing design documents and con-
tact experts who are familiar with the design of the soft-
ware system to gain knowledge about the software system

and its primary architectural properties and their implemen-
tation by patterns. Clues about these expected patterns are
crucial to initialize and control the recovery process (e.g.,
communication between components is implemented in C
using sockets).

3.2. Pattern definition

Based on the information gathered in the first step ap-
propriate pattern definitions are either user-defined or taken
from a repository. Because our approach takes into account
significant text and structural information of source code
we use a pattern definition language which facilitates regu-
lar expressions and source code structures. Currently there
are several tools for string-based source code analyses (e.g.,
grep, perl, LSME, SCRUPLE) available but they all either
do not support structures, need a huge amount of memory
or disk space or require a parser for each target program-
ming language. We extended Knor’s et al. [10] ESPaRT
(Enhanced String Pattern Recognition Tool) to allow pat-
tern specification in XML. ESPaRT overcomes the men-
tioned shortcomings by implementing a lexical tool which
is based on regular expressions and considers structural in-
formation. It provides a definition language which enables
the specification of patterns with preconditions and follow-
up examinations (a pattern match has to fulfill the precon-
dition and can be further investigated through a sub match
definition). Figure 1 shows the primary structure of an ES-
PaRT pattern definition in XML-format. The term pattern
expression stands for an ESPaRT definition which can be
a simple regular expression or a more complex one con-
taining a combination of ESPaRT specific commands and
regular expressions.

<pattern id="patternid">
<precondition match="true">

<!-- pattern expression -->
</precondition>
<match>

<!-- pattern expression -->
</match>
<submatch match="true">

<!-- pattern expression -->
</submatch>

</pattern>

Figure 1. ESPaRT pattern definition

The organization of pattern definitions in different sec-
tions is crucial for addressing the problem that patterns are
implemented in various ways. The clue is to give a more
general pattern definition (e.g., a text block containing one
or more hot-spots) which limits the search space but nev-

Proceedings of the 10 th International Workshop on Program Comprehension (IWPC’02)
1092-8138/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: MAIN LIBRARY UNIVERSITY OF ZURICH. Downloaded on November 16, 2009 at 05:32 from IEEE Xplore. Restrictions apply.

ertheless takes into account all relevant matches which are
used as inputs for subsequent detail matching processes. In
this way ESPaRT enhances accuracy and performance of
the pattern recognition process.

3.3. Pattern recognition

The pattern recognition process of ESPaRT takes the def-
initions specified in the former step as input and matches
them with the information base (e.g., source files). In a first
matching process the huge amount of information is sliced
and text blocks are extracted based on the specified pattern
definition. A further optional condition for matched text
blocks can be defined in the precondition section. This fil-
ters possible wrong matches and minimizes the input for the
following matching process where the extracted pattern in-
stances are investigated in more detail by the application of
sub match pattern definitions. The result of this stepwise
pattern recognition process contains all detected primary
and sub pattern instances described by quadruples (pid, fid,
start, end) where pid indicates the pattern definition and fid,
start, and end the location (source file name, start and end
line number) of the matched pattern. All generated quadru-
ples are stored in a central repository for further analysis
and computation of pattern views.

3.4. Pattern view computation

Based on the idea of views from Kazman et al. [9] related
pattern instances consider the architecture of a software sys-
tem from an important point of view - patterns. Like other
extracted views – such as static and dynamic call views –
pattern views overlap and complement one another. The pri-
mary objective of this step is to associate matched pattern
instances with themself and other architectural elements
and to visualize them. The results are views which provide
engineers with information for refining pattern definitions
and guiding the recovery process in the right direction. For
the visualization of views we use existing tools such as Rigi
from Wong et al. [14]. Regarding the associations we focus
on three different pattern views: pattern composition view,
pattern-element view, and pattern-module view.

The architecture recovery process is initiated by pattern
definitions which primarily focus on the key elements of
patterns. To continue the process and abstract higher-level
patterns it is necessary to refine these pattern definition
statements. One possible way is to analyze the composition
of patterns. Taking the location property of the extracted
and stored pattern instances as input a simple algorithm
(e.g., SQL-statement) computes a directed graph showing
the composition of patterns (Figure 2).

A directed association between two pattern instances PI1
and PI2 indicates that pattern PI2 is part of pattern PI1. Par-

Figure 2. Pattern composition view

ticularly pattern instances with a high fan-in (PI4) or fan-out
(PI1) are of interest because they depict pattern instances
which on the one hand are aggregated and on the other hand
are key elements of patterns.

Commonalities of architectural elements are an interest-
ing aspect for further investigations because they provide
information which patterns are appropriate for aggregation
and abstraction. But additional views that show these com-
monalities in more detail are required. One step towards a
more detailed view is the combination of pattern instances
and source model elements, such as functions, variables or
data structures. For example Figure 3 represents a com-
bination of patterns and function calls. The source model
elements are obtained from reverse engineering tools such
as Imagix4D or SniFF+ and stored in a central repository.
A simple algorithm expressed, for example, in SQL is ap-
propriate for relating detected pattern instances and source
model elements. A directed association between a pattern
and a source model element is established if the element is
part of the pattern. The resulting directed graph shows all
considered source model elements which constitute the pat-
tern and the commonalities between patterns (e.g., PI1 and
PI2 have f1 and f4 in common).

The pattern-element view considers associations be-
tween pattern instances at a function-level. Continuing
the architecture recovery process increases the abstraction
level because architectural elements are aggregated and ab-
stracted. At higher levels aggregated and more abstracted
elements such as modules are added to the input data of
succeeding recovery iterations. Typically a module is im-
plemented in one source file containing functions, variables,
and data structures. Based on the file-relation of mod-
ules and matched pattern instances a pattern-module view
is computed which shows associations between modules.
This means that two modules are associated if a pattern in-

Proceedings of the 10 th International Workshop on Program Comprehension (IWPC’02)
1092-8138/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: MAIN LIBRARY UNIVERSITY OF ZURICH. Downloaded on November 16, 2009 at 05:32 from IEEE Xplore. Restrictions apply.

Figure 3. Pattern-element view

stance (of the same pattern definition) is identified in both
modules. An example is shown in Figure 4 where the mod-
ules M1, M2, and M3 are associated by pattern definition
PD1. Similar pattern definitions often indicate similar re-
sponsibility and assist the engineer in classifying architec-
tural elements (e.g., modules). This is performed in the next
step of our architecture recovery process.

Figure 4. Pattern-module view

3.5. Analysis of patterns and views

Pattern views show significant pattern instances which
could be key building blocks of a software system. Par-
ticular attention is paid to information which supports ag-
gregating and abstracting patterns. A basic guiding princi-
ple is to investigate those pattern instances in more detail
which are similar because they are potential candidates for
aggregation and abstraction. Similarities arise from com-
mon used architectural elements such as functions, vari-

ables, data structures, lower-level patterns, already aggre-
gated and abstracted patterns, and also components. Con-
sidering potential candidates additional views and also the
calculation of metrics such as proposed by Sartipi et al. [12]
assist in understanding the degree of similarity. They guide
engineers towards the right decision which pattern defini-
tions to refine and which pattern instances to aggregate and
abstract in the next recovery iteration.

4. Case study

We applied our pattern-supported software architecture
recovery to a distributed intrusion detection system called
SPARTA [11] which consists of approximately 100 modules
(100 KLOC) implemented in C and Java. The primary task
of this software system is to detect distributed intrusion pat-
terns (e.g., telnet chains, spreading worms). This is done
by sniffing network traffic and applying certain rules to the
input data. Matched packets are stored in a database and
queried by mobile agents. For the purpose of demonstra-
tion and evaluation we basically focused on one architec-
tural property called data communication [8] and consid-
ered to answer basic questions, such as:

� Which components contribute to communication?

� Who are the senders and receivers?

� Does the sender block the receiver?

� Is an architectural style such as Client/Server used?

First phase of recovery
We started the architecture recovery process with gather-

ing knowledge about the problem domain of intrusion de-
tection and the basic building blocks of related software
systems. First, there is a tool interacting with the user to
configure the sniffer by defining rules that specify the net-
work packets which should be captured. Second, there is the
sniffer-tool which, based on its configuration, observes the
network traffic and generates an event whenever a packet
occurs which conforms to a specified rule. Each event gen-
erated in this way and its properties are sent from the sniffer-
tool to the logging-tool that writes the data to a repository.
All three primary building blocks are connected through
communication channels realized by TCP/IP-sockets.

Based on this information we specified initial pattern
definitions to query socket-patterns of both implementation
languages Java and C. The clue is to specify the hot-spots
of patterns and to take into account as many implementation
variations as possible. Relating to sockets such a hot-spot
is the socket-creation statement (e.g., mySocket = socket(...)
in C or mySocket = new Socket(...) in Java). In terms of
C this results in a pattern definition as shown in Figure 5.
The interpretation of this definition is: match text blocks

Proceedings of the 10 th International Workshop on Program Comprehension (IWPC’02)
1092-8138/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: MAIN LIBRARY UNIVERSITY OF ZURICH. Downloaded on November 16, 2009 at 05:32 from IEEE Xplore. Restrictions apply.

starting with “f“ and ending with “g” containing a string
“= socket(...);” where “...” can be an arbitrary string. An
analog pattern definition was also specified for sockets im-
plemented in Java.

<pattern id="C-Socket">
<match>

<block start="{" end="}">
<text>= socket(</text>
<anytext />
<text>);</text>

</block>
</match>

</pattern>

Figure 5. Initial pattern definition for matching
potential socket implementations in C

For the recognition of pattern instances we fed all source
files of each programming language and the correspond-
ing pattern definition to ESPaRT [10]. The result of this
first pattern recognition process is presented in Table 1 de-
scribing the location of each recognized pattern instance by
source file name, start and end line number, and the iden-
tifier of the pattern definition (C-S for socket in C, J-S for
socket in Java). Each match models a quadruple (fid, pid,
start, end) which is stored in the repository.

file location start - end pattern-id

log.c
116 - 195 C-S
810 - 826 C-S

snort.c
321 - 354 C-S

2039 - 2095 C-S

SnortPlugin.java

889 - 943 J-S
945 - 973 J-S

976 - 1064 J-S
1068 - 1105 J-S
1108 - 1129 J-S

Table 1. Detected C and Java socket patterns

The advantage of this string pattern specification over
regular expressions is the capability to manage text blocks.
These blocks contain important information around de-
tected hot-spots which is mandatory to recognize potential
higher-level patterns.

Before the analysis process is started the stored data has
to be preprocessed and represented in a form which sup-
ports the user in detecting eye-catching elements. We used
Wong’s Rigi-tool [14] for the visualization of views and
some small Perl Scripts to transform the stored data into
the Rigi Standard Format (RSF).

Regarding the first architectural question we built the
pattern-module view shown in Figure 6. Each stored
quadruple is read from the repository. The file and pattern
identifiers constitute this view: each unique file identifier
indicates a node; an edge between two nodes is generated if
two quadruples contain the same pattern identifier but dif-
ferent file identifiers. One problem occurred because of the
need to separate pattern definitions for each implementation
language (Java and C). Both have different pattern identi-
fiers but were used for the same purpose. The view does
not differ between varying implementation languages and
hence we assigned the same identifiers for the Java and C
pattern definitions.

Figure 6. Pattern-module view of source files
containing potential socket pattern instances

The resulting graph in Figure 6 shows that the mod-
ules log.c, snort.c, and SnortPlugin.java contain expected
socket implementations. The mutual associations between
the components arise from the fact that Rigi cannot dis-
play bidirectional associations. Unfortunately, by analyzing
this graph it was not possible to conclude more detailed ar-
chitectural information such as, for example, which mod-
ule implements a server and which one a client. To get
this information we had to reconsider the implementation
of server and client sockets in each programming language
and refine our pattern definitions.

Second phase of recovery
Before going deeper into investigations of the matched

text blocks we looked up some implementation details
about socket programming. In C client and server sockets
have the same data type, but differ by the function calls fol-
lowing the socket()-statement. A client typically executes
connect(socket, address, ...) to connect to a server. On the

Proceedings of the 10 th International Workshop on Program Comprehension (IWPC’02)
1092-8138/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: MAIN LIBRARY UNIVERSITY OF ZURICH. Downloaded on November 16, 2009 at 05:32 from IEEE Xplore. Restrictions apply.

other hand a server first binds his socket to an address and
next listens and waits for requests. The corresponding state-
ments are bind(socket, address, ...), listen(socket, ...), and
accept(socket, ...). In Java the implementation differences
between client and server sockets are similar to C and ad-
ditionally varies in different data types (Socket for clients
and ServerSocket for servers). Based on this information
we refined our pattern definitions to detect implementations
of client and server components. Figure 7 shows the refined
pattern definition of a client socket implemented in C.

<pattern id="C-ClientSocket">
<precondition match="true">

<text>SOCKET</text>
<variable id="mySocket" />

</precondition>
<match>

<block start="{" end="}">
<variable id="mySocket" />
<text>= socket(</text>
<anytext />
<text>);</text>

</block>
</match>
<submatch match="true">

<text>connect(</text>
<variable id="mySocket" />
<anytext />
<text>);</text>

</submatch>
</pattern>

Figure 7. Refined pattern definition for match-
ing client sockets implemented in C

Basically we extended the number of elements and added
a precondition and a postcondition which perform addi-
tional checks. The precondition contains a check for a
data type definition “SOCKET” in the extracted text block.
A variable called “mySocket” was introduced to reuse a
matched socket identifier in the postcondition. This leads
to the following extended interpretation: match text blocks
starting with “f“ and ending with “g” containing a string
“= socket(...);” where the string of the matched identi-
fier is assigned to the variable “mySocket”; check each
matched text block as valid if it contains a variable def-
inition “SOCKET” for the matched identifier; further in-
vestigate each valid text block if it contains a string “con-
nect(mySocket...);” where “mySocket...” stands for the
matched variable identifier followed by an arbitrary string.
While the match and precondition elements specify the cre-
ation of a socket, the sub match element specifies the state-

ments which indicate a socket as client or server.
Based on the information obtained from the first iteration

we applied the specified pattern definitions (2 for C and 2
for Java) on the reduced search space. The outcome of the
recognition process is shown in Table 2. Four pattern iden-
tifiers indicate the various socket implementations for Java
and C (C-CS for client socket in C, C-SS for server socket in
C, J-CS for client socket in Java, and J-SS for server socket
in Java).

file location start - end pattern-id
log.c 116 - 195 C-CS
snort.c 321 - 354 C-SS

SnortPlugin.java

889 - 943 J-SS
945 - 973 J-CS

976 - 1064 J-CS
1068 - 1105 J-CS
1108 - 1129 J-CS

Table 2. Detected client and server socket pat-
terns

Two previously recognized pattern instances in the
source files log.c and snort.c were omitted because they
did not match the precondition. The remaining quadruples
represent client and server components. Whereas log.c im-
plements a client and snort.c a server, JavaPlugin.java im-
plements both. Regarding the next architectural questions
mentioned above we first had to examine which client com-
municates with which server. Basically this is not always
expressed in the source code and further expert knowledge
is necessary, such as which kinds of sockets are used. Refer-
ring to our case study we knew that the sockets under study
are based on TCP/IP and thus use an IP-address and a TCP-
port number as connection parameters. A client who wants
to communicate with a server opens a socket with the corre-
sponding server-IP-address and the port to which the server
is bound. One of the possible ways to get this information is
by computing a view of the various client and server pattern
instances and their called functions plus parameters. Taking
the involved quadruples and an extracted source model we
generated the pattern view shown in Figure 8.

This view represents a server socket in C (C-SS) and
a client socket in Java (J-CS), their called functions and
accessed variables. To extract the essential information
we had to perform a more detailed analysis. The server
accesses the variables sd and addr in its bind()-statement
where sd is the socket identifier and addr contains the port
which the socket is bound to. To identify the port number
we further investigated the variable sin port and retrieved
a constant value p. The four recognized Java client socket
implementations also use this constant port number in their
Socket()-statement. The result showed that module Snort-

Proceedings of the 10 th International Workshop on Program Comprehension (IWPC’02)
1092-8138/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: MAIN LIBRARY UNIVERSITY OF ZURICH. Downloaded on November 16, 2009 at 05:32 from IEEE Xplore. Restrictions apply.

Figure 8. Pattern-element view of server and
client pattern associated with source model
elements

Plugin.java implements client sockets which connect to the
server socket implemented in snort.c. Another such anal-
ysis showed that JavaPlugin.java also implements a server
socket listening on the constant port number q which is ac-
cessed by a client socket implemented in log.c. Further
analyses of this combined pattern and source model element
view also indicated that both servers use threads to handle
requests and are not blocked by clients.

Finally, we discussed our gained information with an ex-
pert and got corresponding results: There are two socket
servers waiting for client requests which are either used for
rule or event transfer. Rules are transferred from four clients
implemented in JavaPlugin.java to the server in snort.c.
Events are transferred from one client realized in log.c to
the server implemented in JavaPlugin.java. Both servers
execute a separate thread for each client request.

5. Conclusions

In this paper we presented an architecture recovery ap-
proach based on patterns defined on the level of source code
structures. Using expert knowledge and design documents
the key elements of expected patterns are specified. An ex-
tended string pattern matching technique allows a fast and
effective recognition of these pattern definitions. The ex-
tracted pattern instances are associated with other architec-

tural elements and form new views of the software architec-
ture: a pattern-composition view, pattern-element view, and
a pattern-module view. Analyzing these views pattern def-
initions are refined to aggregate and abstract higher-level
patterns until the software architecture is reconstructed to
the extend required by the engineer. The architecture re-
covery process thereby starts with specific properties of a
system (e.g., “socket communication”) and iteratively com-
pletes the recovered architecture descriptions by refinement
of patterns.

We demonstrated the applicability of our approach on
a real-world case study where we recovered the data com-
munication property of an intrusion detection system. The
case study also showed the necessity of existing knowl-
edge to analyze and interpret the generated pattern views.
Our approach is straightforward in the respect that it starts
with patterns built from source code structures but ex-
hibits its full strengths in the generation of views revealing
(inter-)relationships between architectural elements, pat-
terns, and modules.

Ongoing work concentrates on the computation of ad-
ditional pattern views and the formulation of guidelines to
analyze these views and control the recovery process. More
case studies will be performed to further demonstrate the
applicability of the approach in different application do-
mains, especially in the field of product families.

References

[1] L. Bass, P. Clements, and R. Kazman. Software architecture
in practice. Addison-Wesley, Reading, Mass. and London,
1998.

[2] J. Bosch. Design and Use of Software Architectures: Adopt-
ing and evolving a product line approach. Addison-Wesley,
Reading, Mass. and London, 2000.

[3] R. Fiutem, A. Tonella, G. Antoniol, and E. Merlo. A cliché-
based environment to support architectural reverse engineer-
ing. In Proc. of the International Conference on Software
Maintenance, pages 319–328, Monterey, November 1996.
IEEE Computer Society Press.

[4] H. Gall, R. Klösch, and R. Mittermeir. Pattern-driven reverse
engineering. In Development and Evolution of Software Ar-
chitectures for Product Families, Second International ES-
PRIT ARES Workshop, Las Palmas de Gran Canaria, Spain,
February 1998. Springer-Verlag.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, Reading, Mass. and London, 1995.

[6] G. Guo, J. Atlee, and R. Kazman. A software architecture
reconstruction method. In Proc. of the 1st Working IFIP
Conference on Software Architecture, pages 225–243, San
Antonio, Texas, February 1999. Kluwer Academic Publish-
ers.

[7] D. R. Harris, H. B. Reubenstein, and A. S. Yeh. Reverse
engineering to the architectural level. In Proc. of the 17th

Proceedings of the 10 th International Workshop on Program Comprehension (IWPC’02)
1092-8138/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: MAIN LIBRARY UNIVERSITY OF ZURICH. Downloaded on November 16, 2009 at 05:32 from IEEE Xplore. Restrictions apply.

International Conference on Software Engineering, pages
186–195, Seattle, Washington, April 1995. ACM Press.

[8] M. Jazayeri, A. Ran, and F. van der Linden. Software Ar-
chitecture for Product Families: Principles and Practice.
Addison-Wesley, Reading, Mass. and London, 2000.

[9] R. Kazman and S. J. Carriére. View extraction and view
fusion in architectural understanding. In Proc. of the 5th In-
ternational Conference on Software Reuse, pages 290–299,
Victoria, BC, Canada, May 1998.

[10] R. Knor, G. Trausmuth, J. Weidl, and F. van der Linden.
Reengineering c/c++ source code by transforming state ma-
chines. In Development and Evolution of Software Archi-
tectures for Product Families, Second International ESPRIT
ARES Workshop, Las Palmas de Gran Canaria, Spain, Febru-
ary 1998. Springer-Verlag.

[11] C. Krügel and T. Toth. Sparta - a mobile agent based in-
trusion detection system. In Proc. of the IFIP Conference
on Network Security (I-NetSec), Belgium, November 2001.
Kluwer Academic Publishers.

[12] K. Sartipi, K. Kontogiannis, and F. Mavaddat. A pattern
matching framework for software architecture recovery and
restructuring. In Proc. of the 8th International Workshop on
Program Comprehension, pages 37–47, Limerick, Ireland,
June 2000.

[13] D. Schmidt, M. Stal, H. Rohnert, and F. Buschmann.
Pattern-Oriented Software Architecture, Vol. 2. John Wiley
& Sons, 2000.

[14] K. Wong, S. Tilley, H. Müller, and M. Storey. Programmable
reverse engineering. International Journal of Software En-
gineering and Knowledge Engineering, 4(4):501–520, De-
cember 1999.

Proceedings of the 10 th International Workshop on Program Comprehension (IWPC’02)
1092-8138/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: MAIN LIBRARY UNIVERSITY OF ZURICH. Downloaded on November 16, 2009 at 05:32 from IEEE Xplore. Restrictions apply.

