
Revealer: A Lexical Pattern Matcher for Architecture Recovery �

Martin Pinzger, Michael Fischer, Harald Gall, and Mehdi Jazayeri
Distributed Systems Group

Vienna University of Technology
Argentinierstrasse 8/184-1, A-1040 Vienna, Austria, Europe

fpinzger, fischer, gall, jazayerig@infosys.tuwien.ac.at

Abstract

Program comprehension is crucial for software mainte-
nance activities and is supported by reverse engineering
techniques. Many of them analyze source code and use
parsers to create higher-level representations of software
systems that are more meaningful to engineers. But the ap-
plication of parsers is for some reasons not always desir-
able. In this paper, we introduce Revealer a lightweight
source model extraction tool that combines advantages of
lexical analysis with syntactical analysis. It uses an easy-
to-use pattern language that supports engineers in defining
pattern definitions of diverse granularity depending on the
problem at hand. In this way our tool enables fast extraction
of simple and complex code patterns that allow engineers a
quick insight into particular architectural aspects that are
expressed via source code patterns.

Keywords: program comprehension, reverse engineer-
ing, lexical analysis, architecture recovery, patterns

1. Introduction

An important key principle of program understanding is
that higher-level representations facilitate understandabil-
ity. A basic step of abstracting higher-level representations
is based on the extraction of source models, consisting of
lower-level elements and their relations from source code.
The majority of program understanding tools, such as for
example Rigi [23] or Software Bookshelf [7], rely on tra-
ditional parsing techniques or use lexical tools in the style
of grep, awk [1], lex [15], or Perl [22] to generate source
models.

Parsing techniques focus on the extraction of syntac-
tic constructs that are specified by context free grammars.

�This work is partially funded by the Austrian Ministry for Infrastruc-
ture, Innovation and Technology (BMWIT) and the European Commis-
sion under EUREKA 2023/ITEA-ip00004 ’from Concept to Application
in system-Family Engineering (CAFÉ)’.

A scanner such as lex tokenize source files and a parser
reads this token stream and generates an Abstract Syntax
Tree (AST). By using grammar specifications parsers are
able to recognize complex syntactic constructs and gener-
ate more abstract and thereby language independent repre-
sentations of source code (i.e., source models). On the other
hand parsers place stringent constraints on the artifacts from
which source models are to be extracted, such as for exam-
ple all header files must be available and syntactically cor-
rect.

These idiosyncrasies and the existence of unparsable
programs often drive engineers back towards lexical anal-
ysis tools, such as the ones mentioned above. They base on
regular expressions which can be matched with every kind
of textual information imposing few structural constraints.
In general, lexical analysis tools are fast, robust, and easy
to use. Whereas the first two advantages result from the
transformation of regular expressions to deterministic tran-
sition automatons (DTA), latter results from the facility of
intuitive pattern definitions. But accurate pattern definitions
of purely lexical analyzers turn out to be a major drawback
because of its limitations in handling whitespaces and syn-
tactic structures.

Considering these advantages and drawbacks of both ap-
proaches we introduce Revealer, a lightweight source model
extraction tool that combines lexical with syntactic analysis
capabilities. Following the criteria of lexical analysis our
tool is based on regular expressions constituting the basic
pattern elements. These elements also handle the problem
of whitespaces and other textual elements such as strings or
comments that often complicate definitions. Following the
criteria of structural analysis various pattern elements are
combined in a tree-like structure to specify typical syntactic
constructs as found in programming languages or similar
textual representations. But in contrast to parsers the user
specifies only his parts of interests with the level of accu-
racy he needs or can provide without considering all details
of context free grammar specifications. In this way and by
the use of XML, whose characteristics further facilitate tree-

Proceedings of the Ninth Working Conference on Reverse Engineering (WCRE�02)
1095-1350/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: MAIN LIBRARY UNIVERSITY OF ZURICH. Downloaded on November 16, 2009 at 05:12 from IEEE Xplore. Restrictions apply.

like composition of elements, our approach is lightweight,
flexible, and tolerant [17] with respect to source model ex-
traction.

Following this introduction, Section 2 reviews re-
lated work concerning lexical-based analysis focusing on
lightweight source model extraction. Section 3 describes
the basic context of our work and the application of Re-
vealer in the field of architecture recovery. The specifica-
tion language is described in Section 4 and demonstrated by
a case study in Section 5. Section 6 discusses our approach
and addresses future work.

2. Related work

The necessity of program comprehension in software en-
gineering activities has led to the development of several
source code analysis tools. Basically, they can be divided
into two groups: lexical analyzers and syntactical analyz-
ers. Concerning lexical analysis there are several tools
available, such as for example grep and its variants, that
use regular expressions to match strings in text files. But
their use for source model extraction is limited in describ-
ing syntactic constructs with pure regular expressions and
no or only few capabilities to access matches.

More advanced lexical analyzers such as the scanner
generator lex [15] or awk [1] include access to matches
by providing support to define actions that are performed
when a match occurs. Both tools define patterns as rules
consisting of a regular expression and an action. Matches
are stored in specific variables and actions can access and
assign them to user-defined variables (i.e., tokens). Often
these tokens are used as input to other applications such as
parsers for further processing. A slight difference between
lex and awk is that lex provides no support for unification,
whereas awk does so for a subclass of regular expressions.
Nevertheless, these tools, stand-alone, are not suitable for
source model extraction, basically by a lack of expressibil-
ity to describe syntactic constructs as used by most pro-
gramming languages.

Murphy and Notkin explored these problems of lexical
analyzers for source model extraction and introduced the
Lexical Source Model Extraction (LSME) tool [17]. The ap-
proach is based on regular expressions and uses two classes
of tokens (single-character and identifier) to specify hierar-
chical related expressions. Based on this definition LSME
generates scanners to extract the specified tokens from text
files, and analyzers to further process or reject matches.

Cox and Clarke developed a similar approach called
MultiLex [6]. MultiLex is a parser-like tool and focuses
on the extraction of low-level models from source code by
applying analyzers that take the token stream emitted by a
scanner (lex) as input. It differs from LSME in that it re-
quires the user to specify each base level token instead of

having only a single-character or an identifier. Also the im-
plementation of hierarchical matching in MultiLex is not
expressed by pattern definitions but by linking analyzers to-
gether.

Our approach differs from LSME and MultiLex in the
way tokens are handled and organized. We extend tokens
to objects that can be combined to search-graphs. In con-
trast to tokens, objects facilitate flexible and intuitive com-
bination of pattern elements such as the specification of hi-
erarchical, inner or conditional patterns and provide users
with more options to control the level of accuracy for source
model extraction. Objects also enhance the handling and
tracing of extracted information by storing and analyzing
it directly in pattern elements instead of shifting it to addi-
tional analyzers.

Concerning syntactical analyzers Moonen proposes a so-
lution for lightweight source model extraction in the form
of island grammars [16]. Island grammars combine the be-
havior of parsing with that of lexical approaches by only
analyzing the interesting parts of source code (i.e., islands)
and ignoring uninteresting ones (i.e., water). Nevertheless,
users have to handle grammar specifications and have to
generate separate parsers for each problem. Our approach
is 100% lexical-based and provides pattern elements that al-
low fast and intuitive specifications in XML, and avoids re-
generation of extractors when changing pattern definitions.
Moreover, the object-oriented implementation in Perl [22]
enhances extensibility and portability, that often is missing
in other approaches.

3. Using source code patterns for architecture
recovery

A major aspect of reverse engineering is the generation
of meaningful higher-level representations from available
information, called architecture recovery. As described in
[13] and shown in Figure 1 source code pattern-based archi-
tecture recovery is an iterative and interactive process con-
sisting of three major phases:

1. Extraction of architectural elements from software
artifacts available using predefined patterns and do-
main/application knowledge.

2. Abstraction of higher-level views by refinement of pat-
tern definitions and aggregation of coherent architec-
tural elements.

3. Visualization of extracted and computed architectural
views.

The most important problem of architecture recovery
is the abstraction of information, in which the non-trivial

Proceedings of the Ninth Working Conference on Reverse Engineering (WCRE�02)
1095-1350/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: MAIN LIBRARY UNIVERSITY OF ZURICH. Downloaded on November 16, 2009 at 05:12 from IEEE Xplore. Restrictions apply.

Pattern Extractor Refinementrefine

Source
Code

read

Dom./Appl.
Knowledge

new

loadspecify update

View Visualization

user defined

Patterns

Source Model

extract

visualize

(semi-)automatic

Revealer

Figure 1. Source code pattern-based architec-
ture recovery framework

question “Which architectural elements should be com-
bined to a more abstract and self-contained element (e.g.,
component)?” has to be answered. In [18] we described an
approach that views patterns [9, 19] as such self-contained
architectural elements which occur on all levels of abstrac-
tion. Each pattern represents specific architectural char-
acteristics – so-called architectural hot-spots – that indi-
cate it and are reflected in source code. Such clues can
be for example identifiers, single or sequences of method-
calls, type or attribute definitions, control structures, or also
comments. Figure 2 shows an example of hot-spots of a
code pattern for implementing a socket server in Java. In
this example the most important clues are given by the
server socket creation statement that indicates this mod-
ule as socket server listening to port number 2448, and the
while loop containing an accept-statement handling client
requests. Further, the surroundings containing these two
hot-spots yields architectural information, meaning for ex-
ample the method calling it, or the class and package imple-
menting it.

Based on the idea of hot-spots we developed Revealer
to extract these code clues and the surrounding text blocks
containing them. The extraction of surroundings is im-
portant because they often contain the information that is
needed to further classify and abstract higher-level patterns.
Revealer introduces a simple specification language that fo-
cuses on the extraction of hot-spots and patterns, and assists

�

�

�

�

package hot.spot.example;
import java.net.ServerSocket;

public class Server extends Thread {
...
public void run()
{

ServerSocket serverSocket = null;
...
serverSocket = new ServerSocket(2448);
...
while (true) {
...
s = serverSocket.accept();
...

}
...

}
...

}

Figure 2. Hot-spots of server socket pattern

users in specifying pattern definitions. We will describe this
specification language in the next section.

4. Pattern specification

Programmers need a specification language that facili-
tates specification of pattern definitions ranging from sim-
ple regular expressions to complex parser-like expressions
including hierarchical and recursive patterns. Additionally,
the specification language should be simple, intuitive, and
extensible. Based on these requirements and on the objec-
tive to extract text blocks containing architectural hot-spots
we developed a pattern specification language introducing
specific pattern elements that are based on regular expres-
sions and easily can be combined to simple and complex
pattern definitions.

Concerning simple pattern definitions for matching text-
blocks and contiguous sequences of characters and strings
that constitute hot-spots, such as for example, programming
statements we introduce primitive pattern elements includ-
ing:

� RegExp to handle regular expressions as supported by
Perl [22].

� StringExp to handle strings and whitespaces.

� Block to handle text-blocks enclosed by start and end
delimiter.

Proceedings of the Ninth Working Conference on Reverse Engineering (WCRE�02)
1095-1350/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: MAIN LIBRARY UNIVERSITY OF ZURICH. Downloaded on November 16, 2009 at 05:12 from IEEE Xplore. Restrictions apply.

The StringExp element extends RegExp and facilitates
definitions of simple text patterns by handling the prob-
lem of whitespaces that often complicates pure regular ex-
pressions. Also the Block element addresses a problem of
pure regular expressions that is in defining arbitrary nested
blocks. Although, these primitive pattern elements can be
used stand-alone, the strength of the specification language
is in composing more complex pattern definitions.

Revealer pattern compositions form a directed graph in
which each pattern element is a node and each relation be-
tween two elements is an edge of the graph. To describe
such graphs (i.e., pattern definitions) we use XML docu-
ments. XML [24] is an adaptable standardized markup lan-
guage that also includes facilities for data management and
reuse of existing documents. The syntax of XML docu-
ments and hence also for our pattern definitions is given by
a DTD (Document Type Definition). Figure 3 shows the
DTD used by Revealer specifying the general graph struc-
ture for composing pattern elements.
�

�

�

�

<!ELEMENT RevealerPattern ((pe | rel)*)>
<!ELEMENT pe (attr*)>
<!ATTLIST pe

id ID #REQUIRED
type NMTOKEN #REQUIRED>

<!ELEMENT rel (attr*)>
<!ATTLIST rel

id ID #IMPLIED
from IDREF #REQUIRED
to IDREF #REQUIRED
type NMTOKEN #REQUIRED>

<!ELEMENT attr EMPTY>
<!ATTLIST attr

name NMTOKEN #REQUIRED
value CDATA #REQUIRED>

Figure 3. DTD of Revealer pattern definitions

Basically, the DTD contains the mandatory elements to
describe graphs including pe as nodes and rel as edges. Both
graph elements can have zero or more attribute elements
(attr) each having a name and a value. Each node (pe)
has a unique id and a type parameter specifying the type of
the pattern element (e.g., RegExp, StringExp, Block). Two
nodes are connected by an edge (rel) by specifying a from-
and a to-reference given by node identifiers. As well as
nodes, edges have a type parameter specifying the kind of
relation between two nodes. In the following paragraphs
we will describe basic types of nodes and edges currently
supported by Revealer and give some examples of pattern
definitions.

To match contiguous text blocks, pattern elements are
linked to pattern sequences. Each element of the sequence

must match, and only whitespaces or other ignorable char-
acters (e.g., comments or strings) are allowed between
matches. To link pattern elements to a sequence the rela-
tion of type next is used. Revealer also provides a sepa-
rate pattern element of type Pattern to handle pattern se-
quences. Figure 4 shows an example of a simple pattern se-
quence matching “new ServerSocket(...)” statements. The
Pattern element SS denotes a pattern sequence consisting of
a StringExp new and a Block pB. The SringExp contains an
attribute with name expr specifying to match a string “new
ServerSocket”. Following a matched StringExp there must
be a text-block enclosed by “(“ and “)” specified by two at-
tributes startDel and endDel of the Block element. The first
relation of type next links the StringExp and the Block ele-
ment to a sequence that next is connected to the Pattern ele-
ment, handling the pattern sequence, by a contain-relation.

�

�

�

�

<RevealerPattern>
<pe id="SS" type="Pattern"/>
<pe id="new" type="StringExp">

<attr name="expr"
value="new SocketServer"/>

</pe>
<pe id="param" type="Block">

<attr name="startDel" value="("/>
<attr name="endDel" value=")"/>

</pe>
<rel from="new" to="param" type="next"/>
<rel from="SS" to="new" type="contain"/>

</RevealerPattern>

Figure 4. Simple pattern sequence to match
Java server socket creation statements

The relation of type contain only is used by some pattern
elements, such as for example by Pattern as shown in Figure
4. Basically, such a relation references a list of pattern ele-
ments that is processed by Revealer depending on the type
of pattern element that contains the list. For example, the
ORPattern element references a list of patterns by its con-
tain-relation and returns the first pattern that matches. In
contrary the ANDPattern references a list of patterns where
all pattern elements must match to get a valid ANDPattern.

Structural text such as source code is organized hierar-
chically containing nested text blocks. Revealer supports
the description of such text structures by nested pattern defi-
nitions. To nest patterns Revealer provides a relation of type
constraint that references an inner pattern definition. The
consequences of inner pattern definitions are that higher-
level patterns match only if all of their inner pattern defini-
tions match.

An example of use of nested pattern definitions is shown

Proceedings of the Ninth Working Conference on Reverse Engineering (WCRE�02)
1095-1350/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: MAIN LIBRARY UNIVERSITY OF ZURICH. Downloaded on November 16, 2009 at 05:12 from IEEE Xplore. Restrictions apply.

in Figure 5 where we reuse the previous pattern definition of
Figure 4 and extend it to extract all Java classes containing
a server socket creation statement. To do this we add a pat-
tern sequence CL consisting of pattern elements matching
the signature and the implementation block of Java classes
(e.g., “class Server ...”). The inner pattern definition is
specified by the pattern sequence SS and linked to the el-
ement block by a constraint-relation. Consequently, the
block element only matches a class implementation block
if it contains a server socket creation statement.
�

�

�

�

<RevealerPattern>
<pe id="CL" type="Pattern"/>
<pe id="class" type="StringExp">

<attr name="expr" value="class"/>
</pe>
<pe id="clId" type="Var"/>
<pe id="block" type="Block">

<attr name="startDel" value="{"/>
<attr name="endDel" value="}"/>

</pe>
<rel from="class" to="clID"

type="next"/>
<rel from="clID" to="block"

type="next"/>
<rel from="CL" to="class"

type="contain"/>
<rel from="block" to="SS"

type="constraint"/>
</RevealerPattern>

Figure 5. Hierarchical pattern definition to
match Java classes implementing a socket
server

Hierarchical patterns also are used to drive the match-
ing process towards a stepwise extraction of code patterns.
First, coarse grained text blocks are extracted that in the
next steps are investigated in more and more detail. Users
can specify several levels of inner patterns, hence resulting
in several levels of detail. This capability of hierarchical
patterns make them useful in controlling the performance
and accuracy of source model extraction.

Grammar specifications of programming languages fa-
cilitate several variations that have to be considered when
extracting source models. Basically, such variations are
due to optional elements in statements and due to arbitrary
sequences of statements. Source code analyzers such as
parsers manage these variations by adding branches to their
search trees. Also Revealer includes these capabilities in its
specification language providing specific pattern elements
such as ORPattern or IFPattern. The ORPattern is used to

combine pattern elements by a logical or. The first pattern
that matches is returned. An IFPattern provides users with
the facility to specify conditions in pattern definitions in the
form of if-then-else statements equal to that used in pro-
gramming languages. The only difference to programming
languages is that the if-condition and the two branches are
pattern definitions.

Summarized, Revealer provides a set of pattern elements
and a set of relations that facilitate easy specification of
simple and complex pattern definitions. Figure 6 shows
all elements and their relations currently implemented by
Revealer. The figure also shows that all pattern elements,
except SendTo and Definition which are used for handling
pattern definitions and matches, are derived from one base
class PatternElement. Hence, adding new pattern elements
is easy and basically requires only an implementation of the
matching algorithm of the new pattern element.

We used our pattern specification language to define par-
ticular patterns to represent architectural aspects such as:

� communication
sockets, remote procedure calls, messaging.

� synchronization
locking, synchronization interfaces.

� control
scheduling, dispatching, event handling.

A more detailed catalogue of architectural aspects can
be found in [13]. Given the architectural characteristics of
a particular software system the reverse engineer can select
some expected patterns from a central pattern repository to
be searched for in the source code. In this paper, we concen-
trate on the architectural aspects of communication that are
implemented in our case study. On-going work include the
specification and addition of pattern definitions concerning
other architectural aspects such as those mentioned above.

The architectural characteristics are derived from infor-
mation about the application and its domain as usual in ar-
chitecture recovery activities [20].

5. Case study in recovering architectural as-
pects with Revealer

The case study demonstrates the application of Revealer
for extracting conceptual architectural views, such as for
example described by Hofmeister et al. [11], of an exist-
ing distributed software system. Conceptual architectural
views are close to the application domain and hence assist
users in program comprehension. Architectural views also
provide specific information related to architectural proper-
ties such as communication or synchronization. Depending

Proceedings of the Ninth Working Conference on Reverse Engineering (WCRE�02)
1095-1350/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: MAIN LIBRARY UNIVERSITY OF ZURICH. Downloaded on November 16, 2009 at 05:12 from IEEE Xplore. Restrictions apply.

Figure 6. Class diagram of pattern elements currently supported by Revealer

on the implementation language there are various code pat-
terns indicating potential higher-level patterns that are typ-
ically used to realize these architectural properties. There-
fore, the objective using Revealer is to extract these patterns
and their associated architectural information.

The software system under study is a distributed intru-
sion detection system called SPARTA [14] that consists of
approximately 100 modules (100 KLOC) implemented in
C and Java. The primary task of this software system is
to detect distributed intrusion patterns (e.g., telnet chains,
spreading worms). This is done by sniffing network traffic
and applying certain rules to the input data. Matched pack-
ets are stored in a database and queried by mobile agents.

Because of its distribution over a number of hosts com-
munication is a crucial architectural property of SPARTA.
In general, engineers apply several patterns to implement
communication such as for example sockets, messaging, or
remote procedure calls. Each of these patterns is indicated
by specific attributes, commands, and classes. For exam-
ple using sockets implies the creation of a socket and con-
necting it to an address. Consequently, such statements are
architectural hot-spots and at the same time anchors for ex-
tracting architectural information.

Concerning socket communication we extracted hot-

spots and their surrounding text blocks comprising meth-
ods, classes, and modules by combining the following three
pattern definitions:

� socket creation statement
(e.g., socket = new Socket(...))

� method signature
(e.g., id (...) [throws ...] f ... g)

� class signature
(e.g., class id ... f ... g)

The overall structure of the pattern definition is shown in
Figure 7 whereas the socket creation statement is the hot-
spot. The first definition class extracts all classes that con-
tain a socket creation statement. The implementation block
of each matched class is sent to the second pattern definition
method that matches all method-implementations contain-
ing the hot-spot. To extract all socket creation statements
contained in a matched method we sent the matched block
to the third pattern definition socket creation. The XML
specifications of all three pattern definitions are similar to
the ones given in Figure 4 and 5.

The result of this pattern comprises all modules, classes,
methods and hot-spots (i.e., socket creation statements). Ta-

Proceedings of the Ninth Working Conference on Reverse Engineering (WCRE�02)
1095-1350/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: MAIN LIBRARY UNIVERSITY OF ZURICH. Downloaded on November 16, 2009 at 05:12 from IEEE Xplore. Restrictions apply.

Definition 3
socket

creation

Definition 1
class

Definition 2
method

send
matched

block

source
files read

constraint constraint

send matched block

Figure 7. Nested pattern definition to extract
modules, classes, methods, and hot-spots of
socket communication pattern in Java

ble 1 shows an example of information extracted by Re-
vealer concerning matched pattern definitions and their lo-
cations in the SPARTA module SnortPlugin.java.

SnortPlugin.java

clearRules ()

s = new Socket(InetAddress …)

s = new Socket(InetAddress …)

addRules ()

removeRule ()

s = new Socket(InetAddress …)

addRule ()

s = new Socket(InetAddress …)

23555 - 31633

2697 - 3569

191 - 238

155 - 202

5946 - 7044

3603 - 5946

1279 - 1326

7065 - 7623

61 - 108

SnortPlugin

byte-location

Table 1. Extracted information of client socket
pattern

To obtain more information about the communication
property in SPARTA we extended the pattern definitions
adding possible variations of socket implementations in
Java including server, multicast and datagram sockets. We
further created pattern definitions regarding other commu-
nication mechanisms in Java such as Remote Method Invo-
cation (RMI).

The extracted information results in views, such as rep-
resented in Figure 8, showing the architectural aspect com-
munication of SPARTA with regard to sockets. For every ar-
chitectural aspect one can draw a picture like this. As a con-
sequence the engineer gets a comprehensive picture of those
parts of the source code that are concerned with communi-
cation aspects. Visualization of these pictures could be per-

formed by interfacing known reverse engineering tools such
as Imagix-4D or Rigi to exploit their visualization capabil-
ities, but this functionality although currently being imple-
mented is beyond the scope of this paper.

Concerning precision of Revealer Table 2 shows the
number of matched socket patterns (hot-spots and classes
containing them). From this point of view Revealer seems
to be very accurate. But as with other lexical tools accu-
racy depends on the pattern definition meaning that inexact
pattern definitions reduce the number of valid matches and
increase the number of false positives and false negatives.

socket type # of hot-spots # of classes
ServerSocket 6/6 6/6
ClientSocket 17/17 7/7
DatagramSocket 0/0 0/0
MulticastSocket 9/9 5/5

Table 2. Matched Java socket patterns and
classes

Therefore, an open issue of our approach is to provide
a set of predefined pattern definitions considering different
architectural aspects. Other open issues are inherently in
the lexical analysis of source code: the lack of control and
data flow information does not allow to follow certain paths
through the source code to find all relationships of code
pieces that are concerned with a particular architectural as-
pect. But the approach provides an effective filtering mech-
anism that enables a reverse engineer to focus on architec-
tural hot-spots and continue his investigations using them as
starting points. These hot-spots can then be analyzed with
conventional source browsing or source navigation tools to
find missing relationships and occurrences of an architec-
tural concept. Since the size of a software system is a main
distractor for architecture recovery such a lexical based ap-
proach can be beneficial in focusing recovery activities on
architectural aspects in the first place.

6. Conclusions

Architecture recovery includes many sources of informa-
tion ranging from domain and application information to all
kinds of artifacts that have been produced during software
development. In our recovery activities we have realized
that every software system exhibits certain characteristics
that are reflected in source code structures or elements. The
approach presented in this paper exploits architectural as-
pects such as communication (via sockets, remote proce-
dure call etc.) or control and integrates them actively in the
recovery process.

Source code patterns that represent these architectural
aspects such as communication are defined and fed into a

Proceedings of the Ninth Working Conference on Reverse Engineering (WCRE�02)
1095-1350/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: MAIN LIBRARY UNIVERSITY OF ZURICH. Downloaded on November 16, 2009 at 05:12 from IEEE Xplore. Restrictions apply.

lexical pattern matching tool called Revealer that enables
fast extraction of simple and complex code patterns. In con-
trast to other architecture recovery approaches, Revealer is
a lightweight source model extractor based on source code
patterns. It provides capabilities to generate search-trees
that are equivalent to grammar specifications as used by
parsers. But in contrast to parsers the user can control the
level of detail and can focus the extraction on architectural
hot-spots in source code, that are of primary interest.

The Revealer prototype has been applied to a medium-
sized intrusion detection system of 100 KLOC C and Java to
identify communication, control, and synchronization parts
of the system. Experiences with the tool show that it is an
effective filter for masking non-architectural source pieces
and a focusing means to point to the right starting points for
architectural analysis.

Future work will be concerned with the integration of
Revealer with existing reverse engineering tools such as
Imagix-4D or Rigi to exploit their visualization capabilities.
The goal is to visualize different (integrated or combined)
views of particular architectural aspects and by means of
the reverse engineering tool allow conventional source code
browsing and navigation once the right architectural hot-
spots have been identified by Revealer.

References

[1] A. V. Aho, B. W. Kernighan, and P. Weinberger. Awk - a
pattern scanning and processing language. Software Prac-
tice and Experience, 9(4):267–280, 1979.

[2] M. N. Armstrong and C. Trudeau. Evaluating architectural
extractors. In Proc. of the 5th Working Conference on Re-
verse Engineering, pages 30–39, Honolulu, USA, October
1998. IEEE Computer Society Press.

[3] M. N. Atkinson and W. G. Griswold. The design of whole-
program analysis tools. In Proc. of the 18th International
Conference on Software Engineering, pages 16–27, Berlin,
Germany, March 1996. IEEE Computer Society Press.

[4] J. Bosch. Design and Use of Software Architectures: Adopt-
ing and evolving a product line approach. Addison-Wesley,
Reading, Mass. and London, 2000.

[5] E. J. Chicofsky and J. H. Cross. Reverse engineering and
design recovery: A taxonomy. IEEE Software, 7(1):13–17,
January 1990.

[6] A. Cox and C. Clarke. A comparative evaluation of tech-
niques for syntactic level source code analysis. In Proc.
of the 7th Asia-Pacific Software Engineering Conference,
pages 282–289, Singapore, December 2000. IEEE Com-
puter Society Press.

[7] P. Finnigan, R. Holt, I. Kalas, S. Kerr, K. Kontogiannis,
H. Müller, J. Mylopoulos, S. Perelgut, M. Stanley, and
K. Wong. The software bookshelf. IBM Systems Journal,
36(4):564–593, November 1997.

[8] H. Gall, R. Klösch, and R. Mittermeir. Pattern-driven reverse
engineering. In Development and Evolution of Software Ar-
chitectures for Product Families, Second International ES-

PRIT ARES Workshop, Las Palmas de Gran Canaria, Spain,
February 1998. Springer-Verlag.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, Reading, Mass. and London, 1995.

[10] W. G. Griswold, M. N. Atkinson, and C. McCurdy. Fast,
flexible syntactic pattern matching and processing. In Proc.
of the 4th International Workshop on Program Comprehen-
sion, pages 144–153, Berlin, Germany, March 1996. IEEE
Computer Society Press.

[11] C. Hofmeiser, R. Nord, and D. Soni. Applied Software Ar-
chitecture. Addison-Wesley, Reading, Mass. and London,
2000.

[12] R. C. Holt, A. Winter, and A. Schürr. Gxl: Toward a standard
exchange format. In Proc. of the 7th Working Conference on
Reverse Engineering, pages 162–171, Brisbane, Australia,
November 2000. IEEE Computer Society Press.

[13] M. Jazayeri, A. Ran, and F. van der Linden. Software Ar-
chitecture for Product Families: Principles and Practice.
Addison-Wesley, Reading, Mass. and London, 2000.

[14] C. Krügel and T. Toth. Sparta - a mobile agent based in-
trusion detection system. In Proc. of the IFIP Conference
on Network Security (I-NetSec), Belgium, November 2001.
Kluwer Academic Publishers.

[15] M. E. Lesk. Lex - a lexical analyzer generator. Comput-
ing Science Technical Report 39, AT&T Bell Laboratories,
Murray Hill, New Jersey, October 1975.

[16] L. Moonen. Generating robust parsers using island gram-
mars. In Proc. of the 8th Working Conference on Reverse En-
gineering, pages 13–22, Stuttgart, Germany, October 2001.
IEEE Computer Society Press.

[17] G. C. Murphy and D. Notkin. Lightweight lexical source
model extraction. ACM Transactions on Software Engineer-
ing and Methodology, 5(3):262–292, July 1996.

[18] M. Pinzger and H. Gall. Pattern-supported architecture re-
covery. In Proc. of the 10th International Workshop on
Program Comprehension, pages 53–61, Paris, France, June
2002. IEEE Computer Society Press.

[19] D. Schmidt, M. Stal, H. Rohnert, and F. Buschmann.
Pattern-Oriented Software Architecture, Vol. 2. John Wiley
& Sons, 2000.

[20] D. Soni, R. L. Nord, and C. Hofmeister. Software architec-
ture in industrial applications. In Proc. of the 17th Interna-
tional Conference on Software Engineering, pages 196–207,
Seattle, Washington, April 1995. IEEE Computer Society
Press.

[21] A. Tonella, R. Fiutem, G. Antoniol, and E. Merlo. Augment-
ing pattern-based architectural recovery with flow analysis:
Mosaic – a case study. In Proc. of the 3rd Working Con-
ference on Reverse Engineering, pages 198–207, Monterey,
USA, November 1996. IEEE Computer Society Press.

[22] L. Wall, T. Christiansen, and R. L. Schwartz. Programming
Perl, 2nd Edition. O’Reilly & Associates, Inc., 1996.

[23] K. Wong, S. Tilley, H. Müller, and M. Storey. Programmable
reverse engineering. International Journal of Software En-
gineering and Knowledge Engineering, 4(4):501–520, De-
cember 1999.

[24] Extensible markup language (xml) 1.0 (second edition).
W3C Recommendation, http://www.w3.org/TR/2000/REC-
xml-20001006, October 2000.

Proceedings of the Ninth Working Conference on Reverse Engineering (WCRE�02)
1095-1350/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: MAIN LIBRARY UNIVERSITY OF ZURICH. Downloaded on November 16, 2009 at 05:12 from IEEE Xplore. Restrictions apply.

Appendix

Figure 8. Extracted architectural view of SPARTA concerning socket communication

Proceedings of the Ninth Working Conference on Reverse Engineering (WCRE�02)
1095-1350/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: MAIN LIBRARY UNIVERSITY OF ZURICH. Downloaded on November 16, 2009 at 05:12 from IEEE Xplore. Restrictions apply.

