Martin Pinzger

Institute of Information Systems
Vienna University of Technology

ArchView - Analyzing Evolutionary
Aspects of Complex Software Systems
Dissertation

drawn in at the
Faculty of Informatics
Vienna University of Technology

Supervisors:

Prof. Dr. Harald C. Gall
Department of Informatics
University of Zurich

Prof. Dr. Mehdi Jazayeri
Institute of Information Systems
Vienna University of Technology

Vienna, May 2005

ABSTRACT

Large and complex software systems are confronted withiruooiis changes during all stages
in their life comprising development, maintenance, migratand retirement. On the one side
these changes are mandatory to guarantee the success tfarsdystem but on the other side
changes affect the architecture and design of a softwaterayd herefore, a continuous obser-
vation and analysis of the architecture and the design idete® early identify shortcomings
and resolve them.

In this dissertation we propose the ArchView approach tbeti$es on the analysis and eval-
uation of software modules regarding their structural aralwionary characteristics. Software
modules are architectural elements that are implementsaource files, classes, or aggregations
of them. The primary objective of our approach is to extraghér-level views of software
modules and their dependency relationships that allow pleetator to identify structural and
evolutionary shortcomings.

For the analysis of the structural and evolutionary cherastics of software modules Arch-
View uses software metrics and coupling relationshipstv&t metrics quantify the size, com-
plexity, coupling degree, modification and problem frequyeaf software modules. Coupling
relationships show change as well as implemented depeyndelationships between modules.
Both, metrics and coupling relationships are computed fouraber of subsequent source code
releases giving insights into the evolution of modules.

For the identification of structural and evolutionary shorhings ArchView introduces a
graph representation technique that is based on the plenagipneasurement mapping. Metric
values are mapped to graphical attributes highlightingartipular modules and dependency
relationships with noticeable structural and evolutignamaracteristics. To handle the various
characteristics we present a number of different view condiions that we implemented in a
prototype tool. They can be extended and used by engineevgigday analysis tasks.

The evaluation and validation of the ArchView approach asdiiferent view configurations
is done with the large open source project Mozilla. We foaushe analysis of the content and
layout modules with different higher-level views. Resuitviews clearly show the usefulness of
ArchView to visualize structural and evolutionary chaeaistics of Mozilla modules and point
out a number of shortcomings in their design.

KURZFASSUNG

Grosse und komplexe Software Systeme sind lauferfdfeterungen ausgesetzt, die in allen
Lebensabschnitten auftreten, wie in der Entwicklung, Wagt Migration und Ausscheidung.
DieseAnderungen sind einerseits notwendig, um den Erfolg eirdtsv@re Systems zu garan-
tieren. Andererseits haben sie Auswirkungen auf die Aegiitr und das Design eines Software
Systems. Aus diesem Grunde mussen die Architektur und dsig®Dlaufend tiberwacht werden,
um Schwachstellen frihzeitig zu erkennen und zu beheben.

In dieser Dissertation stellen wir den ArchView Ansatz &t sich mit der Analyse und Be-
wertung von Software Modulen hinsichtlich ihrer strukilee und evolutionaren Eigenschaften
befasst. Software Module sind architekturelle Elemerigeddrch Source Dateien, Klassen oder
Aggregationen von diesen implementiert werden. Das peridiel unsere Arbeit ist die Extrak-
tion von abstrakten Sichten auf Software Module und dergspongsbeziehungen, welche dem
Betrachter die Identifikation von strukturellen und evmotren Unzulanglichkeiten ermoglicht.

Fur die Analyse der strukturellen und evolutionaren Bghaften von Software Modulen
verwendet ArchView Software Metriken und Kopplungsbeaigden. Software Metriken quan-
tifizieren die Grosse, Komplexitat, Kopplungsgrddderungs- und Fehlerhaufigkeit von Mo-
dulen. Kopplungsbeziehungen zeig&nderungs- so wie auch implementierte Abhangigkeits-
beziehungen zwischen Modulen. Beide, Metriken und Kopgdtreziehungen werden fur eine
Anzahl von aufeinanderfolgenden Source Code Versionesthaet und geben so einen Einblick
in die Evolution von Modulen.

Fur die Identifikation von strukturellen und evolutioearUnzulanglichkeiten fuhrt Arch-
View eine Graphdarstellungs-Technik ein, die auf dem Rpinon “Measurement Mapping”
beruht. Metrikwerte werden auf graphische Attribute aligeb um besonders jene Module
und Abhangigkeitsbeziehungen mit auffallenden strutten und evolutionaren Eigenschaften
hervorzuheben. Um verschiedensten Eigenschaften zu delmaprasentieren wir eine Anzahl
von unterschiedlichen Konfigurationen, die wir in einemtBtypen implementiert haben. Diese
konnen Entwickler fur ihre alltaglichen Analyse-Aufgen verwenden und erweitern.

Die Evaluierung und Validierung des ArchView Ansatzes ued\rschiedenen Konfigura-
tionen wird anhand des grossen Open Source Projekt Mozitiehdefuhrt. Dabei liegt der Fo-
kus auf der Analyse der Content und Layout Module mittelertgahiedlicher abstrakten Sichten.
Die Resultate der Fallstudie zeigen klar die Verwendbaxkei ArchView fur die Visualisierung
von strukturellen und evolutionaren Eigenschaften vorzileoModulen und fur die Hervorhe-
bung einer Anzahl von Schwachstellen in derem Design.

ACKNOWLEDGMENTS

It is my pleasure to thank the many people who made this tipesisible.

First of all, | would like to thank my supervisors, Prof. HaraC. Gall and Prof. Mehdi
Jazayeri, for opening the door to research, their guidaar continuous support.

Special thanks goes to Michael Fischer for his discussidr@d input on release history
data and visualization techniques. | still remember theenans extreme paper writing sessions
we had together with Harald. Furthermore, | would like tathMichele Lanza for his feedback
and support on CodeCrawler and Beat Fluri as well as Eveliter $or proof-reading this thesis.

| also would like to thank my colleagues of the Distributeds®yns Group, Vienna where |
started my research, and the Institute for Informaticsjctuthat has become my new working
place. It was always fun to work together with you and still is

Last but not least, | am grateful to my parents who allowedarsiotwhat | liked to do. They
always supported me in whatever | did and wherever it wasilplessMany thanks go to my
friends in Pfunds, Vienna, and Zurich. They pointed me teeo#ctivities that represented the
perfect contrast program to my research.

Martin Pinzger
Zurich, Switzerland, May 2005

To My Parents

CONTENTS

[1__Introduction 1
[L1_Problem Statemént 1
L2 _TheApproadh
1.3 Contributiods 3
1.4 ThesisOutlide o 4

| : = Euoiriod c
D1 Software Architectre 5
.2 Architectural Views and Viewpoits e 6
L3 Abstractionlevels 7
.4 Software Evolutidn 9
.5 __Controlling Software EVolutiono 10

13 Related Work 13
B.1 Software Evolutidn 13
B2 _Architecture Recovery 15
B.2_Information Visualizatidn 16

K4 The ArchView Approach 19
W1 Introductioh 19
b2 Change-Prone Modules oo 20
B3 ArchViewPracebs 21
B4 KeyFeaturds 2
K5 ModuleViewExample 24
b6 Summaly

ii Contents
| —— = o -
Bl Introductioh 27
B2 The E-FAMIXMetaMOd@l o o oo 27
5.3 _Source Code Fact Extraction, 29
B.4_Release HistoryDdta 31

B4l CVE 32

B.4a2 Bugzillh 34

B.43 Change Couplilgs v vt v o 36
B5 _Datalntegratidn 37

B6 Summaly 39
l6__Architectural View Abstraction| 41
6.1 Introductioh 41
6.2 Source Code Containment Hierafchycu... 42
6.2.1 Establishing the links between the hierarchicallieve. 43
6.3 Software Metrids o 44

.31 ModuleMetrids 45
.32 RelationshipMetriEs o 46
b.4__Abstraction Algorithin 47

6.5 _Summaly 51
[7__Visualization & Analysid 53
21 Introductioh 53
7.2 Feature Vectors and Fvolution Matrices 54
[2.3__Higher-Level ViewsonaReledse\ iiir .| 55
[7.4 Visualizing Multiple Evolution Metri¢s 60
[2.41 Visualizing Dataof nReleabes 63

42 KiviatGraps 67

Z5 _Summaly 68
I8_Mozilla Case Study 69
81 MozillaProjedto oo 69
8.2 Preparing the ArchView Repositbry c..... 70

B21 SourceCodeMadlel. 71

B22 CVSandBugzillaData, 2 7

B2.3 Datalnfegratibn 5 7

Contents iii
83 ViewsonMozillaRelease 1.7. 78
831 largeandcomplexentifies 78
ifi “ " mies e 81
833 Views with multiple metri¢s 84
B34 Sourcecodecoupling. 86
B35 ChangeCouplihg 91
8.4 Fvolution from Mozilla Release 0.92toll.7 93
B.41 FEvolutionofmodul®s 94
8.4.2 Evolution of critical sourcefiles 96
843 Kiviatgraphso 96
B4.4 Resulls 99
B5 SummaryofResults 101
8.6 Discussionof Results 103
[8.6.1 Factextractibn 031
B.6.2 Datamodelintegratbn 105
B.6.3 Visualization, 051
19 Conclusiom 107
.1 Contributiods 107
.2 FutureWodk Qo1
[Appendi® 111
|A_The Extended FAMIX Meta Modell 111
A1 E-EAMIXmetamaddl 11
[A2 Source CodeModel 113
[A.3 Release HistoryMadel 114
[B_Publications 117
B.1_Visualization & Analysis 117
[B.2__Architectural View ADSIraction oo o 118
[B.3_Model Extraction & Integrationo 118
Bibliographyl 121

Contents

LIST OF FIGURES

2.1 Abstraction levels and corresponding entity and retestnip types used to create
| views on the implementatipn. Dotted arcs indicate the nappetween entities
of different abstractionlevel. L. 8

4.1 ArchView Process with data sources (on the left), thenXrew repository (in

the center) and the different process phases. e e 23
4.2 Source code coupling evolution view on Mozilla conteml daayout modules

with metric values of in-coming and out-going inheritanetationships. Values

are of 7 releases from 0.92 to 1.7. Edges denote aggreqgdexitarelationships

taken from release 1.7 filtered using a threshold of 5 for RMAI 25
5.1 E-FAMIX meta model consisting of the FAMIX and RHDB metade! linked
by file-entities (overview). e 28
5.2 Source code madel extracted from a Java code smippet. .. L . 30
5.3 RSEF file representing the extracted E-FAMIX conform selﬂode model of the
Javasourcecodesnippet. 31
5.4 Example CVS log-file containing the modification repaitthe source file nsC-
SSFrameConstructor.cpp. e 33
ificati iom. 37
...... 38
5.7 Algorithm for mapping RHDB and SCM data models by theyﬁnihallfled file
NAME. e e e e e e 39
6.1 Containment hierarchy of source code models includindifitation and prob-
lemreports. e 43
6.2 Source code model with 2 packages, 3 classes, 7 mettwdaijrs and invokes
relationships. L 94
6.3 Source code model graph enriched by abstractedkes relationship between
PAandPB and computed coupling metrics. 50
[2.1__Mapping of metrics to graph attributes using polymetigws 56

Vi

List of Figures

7.2 _Madification hotspots view on Mozilla 1.7 source filesiwiheasured evolution
| and comDIexiiy metrics. Node: width=NMR; height=NPR; aeiGCMPLX;

orderby NMR. e 57
7.3 Source code coupling view by function/method calls af seftware modules.

Node: width=IFan-out; height=IFan-in; color=NFM; Arc: é&th=RNAI. 59
7.4 Change coupling view of two software modules. Node: #tfMR; height=NMR;

Arc: width=RNAC. e 60
[2.5_ Kiviat diagram with values of 6 metrigg/1, /2, ... M6 of modul eAl 60
7.6 Detailed system hotspots view of one software module eatnplexity (nr. 0..3)

and size metrics (nr. 4..10). 62

7.7 Detailed modification hotspots view of one software neduith modification

7.11 Source code coupling evolution view on the couplingumgtion calls with mea-

sured call fan-in and fan-out metric valuesof 7releases. 68

8.1 System hotspots view on the Mozilla 1.7 content and lagmdules with mod-
ule size metrics. Node: width=NOV; height=NFM; color=NQGifder by NOV. . 79

8.2 System hotspots view on Mozilla 1.7 content and layoudlutes with module
complexity metrick. Node: width=CCMPLX; height=HALDIFEplor=NFM;
orderby CCMPLX. e e 79

8.3 System hotspots view on Mozilla 1.7 content and layouta®files with file size
metrics. Node: width=NQV; height=NFM; color=LOC; order Bf¢gM. 80

8.4 System hotspots view on Mozilla 1.7 content and layout@®files with file
| complexity metric]s. Node: width=CCMPLX; height=HALDIFEplor=NFM,;
orderby CCMPLX. e 81

8.5 _Madification hotspots view on Mozilla 1.7 content anddaymodules with evo-
| lution and conhplexity metrics. Node: width=NMR; height=Rfzolor=CCMPLX;
orderby NMR. e 82

8.6 __Madification hotspots view on Mozilla 1.7 content anddat/source files with
evolution and l:omplexity metrics. Node: width=NMR; hegNPR; color=CCMPLX;

orderby NMR. e 83
8.7 Detailed system hotspots view on Mozilla 1.7 contentlagdut modules with
Kiviat diagrams showing evolution, size and complexitynost 84

8.8 Detailed modification hotspots view on Mozilla 1.7 caritend layout modules
with Kiviat diagrams showing metrics of different categsiof problem reports. 85

List of Figures Vil

8.9 Detailed modification hotspots view on frequently medifMozilla 1.7 content
| and layout sdurce files with Kiviat diagrams showing sizemptexity, and evo-
lutionmetrics. 78

8.10 Source code coupling view (invokes) on Mozilla 1.7 eoband layout modules.
| Node: width=IFan-out; height=IFan-in; color=NFM; Arc: dth=RNAI; Arc-
filter: RNAI<50. 88

8.11 Source code coupling view (inherits) on Mozilla 1.7teo and layout modules.
| Node: width=NOC; height=NOC;color=0OFan-in; Arc: widthNRIH; Arc fil-
ter: RNAIH < 5. . . . o 89

8.12 Source code coupling view (invokes) on Mozilla 1.7 eobtand layout source
files. Node: width=NFM; height=NFM; Arc: width=RNAI; Arcdter: RNAI<30. 90

8.13 Change coupling view on Mozilla 1.7 content and layoodloies. Node: width=NMR;

height=NMR; Arc: width=RNMR; Arc-filter: RNMR<200. 92
8.14 Change coupling view on Mozilla 1.7 content and layauiree files. Node:

width=NMR; height=NMR; Arc: width=RNMR; Arc-filter: RNMR:5. 93
8.15 Detailed system hotspots evolution view on Mozillateahand layout modules

with size and complexity metrics of 7 releases from 0.9270 1. 94
8.16 Detailed modification hotspots evolution view on Mlazitontent and layout

modules with problem report metrics of 7 releases from R7T. 95
8.17 Detailed system hotspots evolution view on Mozillateah and layout source

files with size and complexity metrics of 7 releases from @®2.7. 97
8.18 Detailed modification hotspots evolution view on Miazitontent and layout

source files with problem report metrics of 7 releases frad2@ 1.7. 98

8.19 Source code coupling evolution view on Mozilla contantl layout modules
with metric values of in-coming and out-going call relasbips. Values are of 7
releases from 0.92 to 1.7. Edges denote aggregated invelledemships taken
from release 1.7 filtered using a threshold of 50 for RNAI. 99

8.20 Source code coupling evolution view on Mozilla contentl layout modules
with metric values of in-coming and out-going inheritanetationships. Values

are of 7 releases from 0.92 to 1.7. Edges denote agareqdeefitarelationships
taken from release 1.7 filtered using a threshold of 5 for RMAI 100

A.1 E-FAMIX meta model - based on the FAMIX source code metaehcextended
by the release history metamodel. 112

viii List of Figures

LIST OF TABLES

6.4 Source code coupling metrics (in-coming and out-goilagscinheritance and
function calls) of software modules. 47

7.1 Example of an evolution matrikKy. > containing measured values of 9 module

size metrics of Mozilla’s DOM moduleof 7releases. b5

8.1 Selected Mozilla releases with the number of files (NORg Bnes of code
LOC) metrigs. The number of header files (#.h) includes beéibs generated
from.idlfiles. 69

s ize metric values of Mozilla's content and layout medidf the seven releases. 72
8.4 Accumulated number of modification and problem repdstaioed for the source

files of the content and layout modules. The numbj‘r of PRetkdudetailed in
four categories comprising the numbers of PRs with highestity p1, severity

critical,status esol ved, and resolutiorii xed. 73
8.5 Number of established links between files of source coddels and release

List of Tables

CHAPTER 1

INTRODUCTION

Large complex software systems undergo frequent changegdheir life-cycle that are carried
out as maintenance and evolution tasks. These tasks arernedowith fixing errors or adapting
the system to new requirements. Attempts to estimate this cdsoftware maintenance and
evolution yielded from 50% up to 75% of the total softwarejecd costs[[Boe81],[IDav95],
[Som00]. Much of this effort is given to program understamgdianging from understanding a
system’s architecture and design concerns (aspects)samgglementation.

The engineer needs to build mental models that show thesmron Visualization of ab-
stracted views on lower-level information has been acceptea useful means to build these
models [SEM99]. With regard to the computation of abstraetve research projects concen-
trated on developing reverse engineering techniques asid. tAccording to Chikofsky and
Cross reverse engineering refers to:

The process of analyzing a subject system to identify theesys components and
their interrelationships, and to create representatidiseosystem in another form
or at a higher level of abstraction [CC90].

Reverse engineering tools aim at providifsgmi-)automaticsupport for the extraction of
higher-level representations. They are important insémisifor maintaining and evolving soft-
ware systems. Abstracted views are also mandatory to pedaality assessment of the imple-
mented architecture and design.

In terms of extracting views on the software architectura system the reverse engineering
technique is also calledrchitecture recoveryr architecture reconstructianThis thesis is fo-
cused on reverse engineering and, in particular, on acthrerecovery to abstract architectural
views that facilitate the analysis efructuralandevolutionary aspectsf software systems.

1.1 PROBLEM STATEMENT

The abstraction of views on the architecture of softwareesys has been subject to research
over the past years and several commercial tools and réspartotypes emerged. They focus

1

2 1.2 The Approach

on extracting data models from source code and executioedr@®n top of the data models they
perform metric measurements and provide facilities to gete@ the data and abstract higher-
level views. Graph-like representations are being usedhiglwnodes represent source code or
execution entities and edges relationships between them.

In the case study with the large open source project Mozillaapplied a number of these
tools and utilities. For instance, we used the commercall IttDagix-4I:ﬁ] to parse the C/C++
source code, compute metrics, and navigate the source ¥deléurther used the graph visual-
ization tools CodeCrawlef [LanD3], Ridi [MK88], [WonP8] drsHriMP [SM95%] to create the
higher-level views. To summarize, our experiences witsétteols yielded that they are useful to
extract, browse and navigate the source code but fail icregting and presenting higher-level
views and 2)analyzing evolutionary aspects

The first problem showed that existing approaches lack dktpedto create views able to
highlight implementation, design, and architecture dpeaspects. They use graphs with primi-
tive glyphs for nodes and edges that are not sufficient toepthese aspects.

The second problem concerns software evolution analysistifg approaches concentrate
on analyzing static and dynamic information of one partdcidoftware release but miss the
aspect of evolution. For instance, the analysis of whichieatwere vulnerable to problems and
had to be modified frequently is not supported. And, althowglently there has been research
done in this area several issues are left open. They conegithe integration of modification
and problem report data to analyze fault and change progseri@siplementation units; and b)
trend analysis of implementation units and relationships several software releases.

The approach presented in this thesis addresses the open.i$¥e base on existing extrac-
tion, analysis and visualization techniques and providereded and new techniques to create
novel high-level views on the implemented architecture ismdvolution.

1.2 THE APPROACH

The ArchView approach is an architecture recovery and amagpproach that addresses the ex-
traction of higher-level views on a software system. Vieaalitate the analysis of implementa-
tion and evolution specific aspects. With respect to implaateon specific aspects our approach
takes into account source code model data of several soodeereleases. Source code models
are obtained per release by using existing static and dyntawi extraction techniques. Con-
cerning software evolution analysis ArchView processedifitation and problem report data as
obtained from the Concurrent Versions System ((E\@)d the bug reporting system Bugﬂlla

ArchView integrates the different data models into one cammodel that allows for the
navigation between source code models and correspondeaseshistory data. Furthermore,
the integrated data model is used to compute the changeirgupelationships, abstract the

Ihttp://www.imagix.com
2https://www.cvshome.org
Shttp://www.bugzilla.org

Chapter 1: Introduction 3

higher-level views and compute several new evolutionaryrioe Metrics refer to: 1) prob-
lem and modification report metrics; and 2) source code smaplexity, and coupling metrics
tracked over a number af releases. They characterize the problem and modificatemuéncy
of implementation units and their trend in size, complexatyd coupling.

For the visualization of abstracted views ArchView uses axignds the polymetric views
technigue introduced by Lanza and Ducagse [LID03]. Polymetews follow the principle
of measurement mappirig that larger metric values lead to larger glyphs in a grdgRd6].
This results in views that, for instance, point out changeprand hide idle implementation
units. In order to visualize multivariate dataofreleases ArchView extends polymetric views
by Kiviat diagrams and graphs. They allow the user to studitipte aspects in parallel, such
as the relation between complexity and modifications or imétends. Concerning the latter
aspect Kiviat diagrams highlight strong changes in the i@t indicating improvements or
degradations of implementation units. Both visualizatechniques are accompanied by a set of
pre-defined views that are part of the ArchView approach.

1.3 CONTRIBUTIONS

The contributions of this thesis comprise:

e The E-FAMIX Meta Modellayouts the data model for integrating source code data of
several releases with modification and problem report data.

e TheArchView Integration Algorithnthat based on the name of entities integrates the dif-
ferent data models according to the E-FAMIX meta model. rtfer computes the change
coupling dependencies.

e The ArchView Abstraction Algorithrthat based on the integrated data model aggregates
source code relationships and change coupling dependdnaiesualize and analyze them
on the level of software modules.

e The Evolution Metricscomprising metrics of modification and problem reports a#i we
as source code metrics that are tracked ovezleases. They are mandatory to perform
software evolution analysis.

e The Extended Polymetric Views Visualization Technigged by ArchView to visualize
multiple metric values of several releases as graphs.

e The set ofModule Evolution Viewsocusing on identifying the change prone software
modules and heavy coupling dependencies.

e The validation of the ArchView approach with thMozilla open source project indicating
the benefits as well as the open issues of the ArchView approac

4 1.4 Thesis Outline

1.4 THESISOUTLINE
The thesis is structured as follows:

¢ In ChaptefR, we introduce the terms and basic concepts nsedhitecture recovery and
software evolution analysis.

¢ In ChaptefB, we present related work in the areas of softexkition analysis, architec-
ture recovery, and software visualization.

¢ In ChaptefH, we introduce the ArchView architecture recpamd analysis approach. The
focus is on the ArchView process and its key concepts andresit

e In Chapteb, we introduce the E-FAMIX meta model and preiemtechniques we use
to extract and integrate the source code model, modificadiath problem report data.

e In Chapteib, we introduce the containment hierarchy mo@iérohView according to
which lower-level information is abstracted. Furthermave present the abstraction algo-
rithm and the different metrics that are computed and usearblyView.

¢ In Chapte, we present the polymetric views techniqueslameéxtension of it to Kiviat
diagrams and Kiviat graphs. They facilitate the visual@abf multiple metric values of
up ton releases in parallel. Based on both techniques we speanysgstem hotspots
views that focus on the visualization of evolutionary andiglong aspects of software
systems.

e In Chaptel[B, we present the Mozilla case study we used tdatalithe ArchView ap-
proach. In the case study we concentrated on the analysitseofrtplementation and
evolution aspects of Mozilla’s content and layout moduler this we took into account
data of seven recent releases and the data obtained fromaniéaCVS and Bugzillg
repositories.

e In ChaptefD, we draw the conclusions of the ArchView appnaatd discuss open issues
and future work.

¢ In the Appendix, we provide the detailed E-FAMIX meta modes$cription and the list of
our publications that are related to the ArchView approach.

http://lwww.mozilla.org
Shttps://bugzilla.mozilla.org

CHAPTER 2

SOFTWARE ARCHITECTURE AND
EVOLUTION

This chapter provides the background information inclgdime definition of terms used to de-
scribe and understand the ArchView approach. Most of thenitiefis are taken from recent
work in the field of software architecture, architectureonaary, and software evolution analysis.

2.1 SOFTWAREARCHITECTURE

Software Architecture is a term frequently used when disicigs designing and analyzing large
complex software systems. However, there are differeninmga and understandings of what
software architecture actually is. According to this dsirthere exists a number of quite sim-
ilar definitions, such as collected by the Software Engimgelnstitute of the Carnegie Mellon
Universit)ﬂ.

The IEEE 1471-2000 standard definition for a software agechutre is:

A software architectures the fundamental organization of a system embodied in
its components, their relationships to each other, anddcaetivironment, and the
principles guiding its design and evolutian [14700].

A system inhabits an environment, that can influence theesysand a system has one or
more stakeholders. Each stakeholder has interests inativesto, that system.

A system stakeholdé&s an individual, team, or organization (or classes thgneth
interests in, or concerns relative to, a system [14700].

Concernsare those interests which pertain to the system’s developrnite oper-
ation or any other aspects that are critical or otherwiseoni@mt to one or more
stakeholders. Concerns include system consideratiohsasuygerformance, reliabil-
ity, security, distribution, and evolvabilitiy [T4700].

Ihttp://www.sei.cmu.edu/architecture/definitions.html

5

6 2.2 Architectural Views and Viewpoints

2.2 ARCHITECTURALVIEWS AND VIEWPOINTS

An architecture can be recorded by an architectural ddasmmighat is organized into one or more
constituents called architectural views.

A viewis a representation of a whole system from the perspectiagelfated set of

concerns[[14700].

Each view conforms to a viewpoint and addresses one or mdheafoncerns of the stake-
holders.

A viewpointis a specification of the conventions for constructing anidgia view.
A pattern or template from which to develop individual vielg establishing the
purposes and audience for a view and the techniques forettion and analy-

sis [14700].

The viewpoint determines the languages to be used to dedtwbview and any associated
modeling methods or analysis techniques to be applied wðepresentations of the view. A
number of books and articles exist that address the iss@gmréing the description of a software
architecture they share the view that different views aeevpioints are mandatory. For instance,
Kruchten proposed the “4+1" view modEl[Kru95] that distinghes: logical view, process view,
development view, physical view, and use case view. Therlgtew ties together the other four
views. Similarly, Hofmeisteet al. [HNSOQ] proposed to use four different views: conceptual
architecture, module interconnection architecture, etten architecture, and code architecture.

Regarding viewpoints Bast al. [BCKO3J] presented a categorization of architectural views
into three different view types:

e Module Views.Elements of these views are modules which are units of img@htation
with a well-defined interface providing a coherent unit aidtionality. With module views
the decomposition of a software system into its implemerainits is described. Conse-
guently, module views include a description of the funddilttly assigned to each module,
possible generalization of modules, and uses-relatipsdietween modules.

e Component-and-Connector Viewdere, the elements are runtime components and con-
nectors. Components are the principal computational oith as clients, servers, pro-
cesses and databases. Connectors represent the communvediicles among compo-
nents, such as remote procedure calls, named pipes, anetsoBlasically, views of this
type describe the executing components, their interagtéomd run-time behavior within
the running application.

¢ Allocation Views.Views of this type are concerned with the mapping of the weximod-
ules, components and connectors to the development envanainand runtime environ-
ment respectively. Consequently, elements of this viewe i@ software modules, com-
ponents and connectors, and elements of the environmegihgainom hardware resources
(computer, processor, etc.) to human resources (desjgregrammers, testers, etc.) to
which software elements are allocated to.

Chapter 2: Software Architecture and Evolution 7

The ArchView approach focuses on the module views becawgserépresent aspects (con-
cerns) of the implementation of a software system. The datheriew types are out of the scope
of this thesis. Regarding module views the primary subjedtitectural elements aoftware
modulesand their relationships.

A module is an implementation unit of software that providesoherent unit of
functionality [CBB"02].

Programming language units, such as Smalltalk, Java, C#todula modules, are examples
of software modules. Modules can both be aggregated anampexsed. The relationships that
are used to design module views are:

e Is-part-of: Defines a part/whole relationship between the submoduletide-part — and
the aggregate module B — the whole, or parent. In this thesislso use this relationship
to express the mapping between modules and their corresgpaléments in the design
level (.e., package, class, directory, file) that implement each modul&igure[Z.1, the
is-part-of relationship is represented by tiotainsrelationship.

e Depends-onDefines a dependency relationship between the modules B antis rela-
tion is typically used early in the design process when tleeipe form of the dependency
has yet not be decided. From the perspective of architeotamsery the type of depen-
dency relationship is already defined in the code. Insteatkpénds-on we also use the
design level relationships, such as class aggregationtitumcall, or variable access rela-
tionships.

e Is-a Defines a generalization relationship between a more ipecodule — the child A
— and a more general module — the parent B. Because the foéuslofiew is on object-
oriented systems we use the class inheritance for the isd#oreship.

The objective of reverse engineering and, in particulachiégcture recovery is to extract
module views that reflect the concerns used to implementtavaicd system. Basically, these
concerns can reside on different abstraction levels whsidieidescribed in the next section.

2.3 ABSTRACTIONLEVELS

Views on the implementation of a software system can be &reift levels of abstraction de-
pending on the concerns to represent. Fiduré 2.1 shows ffegedit abstraction levels, the
entities and relationships used to create the views, anch#pping (hierarchy) between the lev-
els. The latter is used to abstract higher-level views fromel-level source code information
and vice versa to trace higher-level views down to source.cddthe model is derived from the

models proposed by RivA[RIV04] and Kazmetral. [KWC9g].
The four abstraction levels are:

8 2.3 Abstraction Levels

Entities: module
Relations: uses, generalizatior
Hierarchy: contains

Entities: directory, file,
package, class,
method, function,
attribute, variable,

Architecture Level
N .

Relations inherits, aggregates
invokes, accesses

Design Level

Hierarchy: contains,

Entities: programming

% language constructs
© Relations: syntactic nesting,
8 links

O

)

>

[}

-

-

(]

'_

[0}

o

3

o

(7]

Figure 2.1: Abstraction levels and corresponding entitgt eglationship types used to create
views on the implementation. Dotted arcs indicate the nrappietween entities of different
abstraction level.

¢ Architecture At the top, there are the architectural viewpoints thatdbe the architec-
turally relevant aspects of the system. In this thesis weda@n the viewpoints that concern
software modules, their decomposition, uses, and genatialn.

e Design The design viewpoints capture the design aspects of sadtagstems, such as
the object-oriented design aspects. The representatitreaspects is with source code
models — they are close to the source code but do not contdhealetails. In this thesis
we use the E-FAMIX meta model for a language-independentesemtation of source
code of object-oriented programming languages and relaas®y data.

e Code The code view points give a detailed representation of yimastic structure of
classes and source files. Typically, this is modeled withAthstract Syntax Tree (AST).

e Source Text The implementation of the system consists of a set of doatsnsuch as
source files, configuration files, build commands, log filés,. e

Chapter 2: Software Architecture and Evolution 9

Regarding this thesis the important levels are Design awctiifecture. The lower-two levels
are handled by lexical and syntactical analysis tools taedgthe source text, and extract a full or
partial abstract syntax tree representation from whicrd#ésgn level entities and relationships
are obtained.

2.4 SOFTWAREEVOLUTION

Software evolution encompasses all stages in the life oftvace system: development, main-
tenance, migration, and retirement. A software systemadasatct to the changing forces of the
environment or it will become obsolete. It is this changerdiwee that is the focus of software
evolution research. In this context, Parnas stated:

Software, like people, gets old. We can'’t prevent aging,viseiican understand its
causes, take steps to limit its effects, temporarily rewvemne of the damage it has
caused, and prepare for the day when the software is no lotajge [Par94].

Analyzing software evolution refers to analyzing the ches)dheir causes, and effects. Con-
cerning the causes and effects Lehreaal. identified a set of laws called the “Laws of software
evolution” [LPR"97]. They present general observations, for example:

e Continuing ChangeSystems must be continually adapted else they becomegasigely
less satisfactory;

e Increasing ComplexityAs a system evolves its complexity increases unless walkne
to maintain or reduce it; and

e Continuing Growth The functional content of a system must be continuallyeased to
maintain user satisfaction over their lifetime.

During the evolution of software systems changes occur blewtls of abstraction. The
architecture of a software system as well as its design aptementation evolve.

A major problem with evolution is that software systemseaufifom signs of aging as they are
adapted to changing requirements. Signs, for instanaa, tieedrchitectural erosion, architectural
drift, or architectural mismatchArchitectural erosioris defined as violations in the architecture
that lead to increased system problems and brittleness9@WPerry and Wolf also defined
the termarchitectural driftas “a lack of coherence and clarity of form which may lead thar
tectural violation and increased inadaptability of aretitire”. Architectural mismatcindicates
the gap that exists between the designer’s architectusarigtions and the actual realizations in
the code[[GAOY5].

Causes for these signs of software aging are, for instaoce design decisions and changes
that damage the architecture or the lack of conformancedmtiumplementation and intended
architecture. The effect of the signs is that software petiditly and quality continue to fall
short. The costs for fixing problems and adapting the systechanging and new requirements
explode and the ‘life” of a software system is shortened.

10 2.5 Controlling Software Evolution

2.5 CONTROLLING SOFTWAREEVOLUTION

To overcome or avoid the negative effects of software agryiplacing change in the center of
the software development and maintenance process. We ohweice beyond the engineering
metaphor of current software development and provide modebeetter support for software

change and evolution. This includes support for analyzofgnare systems and its evolution
and support for controlling and executing changes. Thedoéthis thesis is on the analysis and
control of software evolution. The aspect of support forekecution of changes is out of scope.

Architecture recovery is a reverse engineering technigae dddresses the analysis issues
providing the foundation for controlling evolution. Acabing to Jazayeret al.

Architecture recoveryefers to the techniques and processes used to uncover a sys-
tem’s architecture from available informatidn [JRvdl 00].

Architecture recovery addresses the extraction of arctuitel views that represent the system
from the perspective ddtructuralandevolutionaryconcerns. Questions to be answered are, for
instance:

e Which are the modules that constitute the system? What areethtionships between
these modules? Which architectural styles and patterreseen used?

e Are there structures in the implementation that indicathigectural mismatch, architec-
tural erosion, or architectural drift?

e How does the architecture, design, and the implementatiolve over time? Which are
the change prone modules?

e Are there hidden dependencies in the implementation thestecehange propagation?

e Are there trends of decay in the architecture, design, apteimentation?

The answers point the engineers to the locations in the imgi¢ation — modules and rela-
tionships that cause the erosion, mismatch, drift, andyd@&ased on this knowledge, the system
developers and architects can plan and execute restmgtinat resolve the shortcomings. This
results in a number of benefits that are gained through aathite recovery and software evolu-
tion analysis, such as:

e Architectural analysis and evaluatioBreaking down a large software system into smaller,
more manageable units facilitates understanding of thewbehand quality attributes.

e Maintenance and evolutior better understanding of the architecture facilitateagses,
plan, and execute changes to the system more effectively.

¢ Evolution traceability By extracting and analyzing architectural informatioorfr differ-
ent releases it is possible to trace the system evolution.

Chapter 2: Software Architecture and Evolution 11

e Conformance-checkingResulting architectural views can be used to check whetieer
“as-designed” architecture conforms to the “as-builtraecture.

e Reuse Higher-level views on architectural elemengsg.,modules) show their interfaces
and facilitate the identification of elements that can based when developing a new or
re-engineering an existing software system.

e Product line architecting The idea of a product line or product family is in maximizing
re-use of software artifacts and minimizing costs for depilg single products. Architec-
ture recovery helps to recover the architectures of singldyrcts and product families to
design and maintain the reference architecture, isolatgahable parts, and to generalize
software components [PG@3].

In order to extract the architectural views and perform tioligecture and software evolution
analysis we have to cope with a number of challenges, such as:

e What are the signs of architectural erosion, mismatcht,dnifd decay, and how can they
be tracked down to the implementation?

e How can hidden dependencies in a system that complicate iaderhits evolution be

discovered? How can existing analysis methods be adagtaded, or enhanced to enable
this?

e How can the plethora of software data (several source cddases, modification and
bug data, release data) be filtered and visualized? Whictharmost suitable effective
visualization models and techniques for that?

In this thesis, we address these challenges with a focusehitiden dependencies, the
extraction and integration of software data, the abswaodf these data to higher-level views,
and the visualization and analysis of these views.

12

2.5 Controlling Software Evolution

CHAPTER 3

RELATED WORK

In this chapter, we review the state-of-the-art in the redefield of software evolution. Numer-
ous research groups have started research projects inasefewolution: the whole established
community of reverse engineering, re-engineering, andrara understanding has acknowl-
edged thaevolutionis indeed the umbrella of their research activities.

3.1 SOFTWAREEVOLUTION

Lehman and Belady’saws of Software EvolutiofitB85] establish that as systems evolve, they
become more complex, and consequently more resources @ded& preserve and simplify
their structure. They also establish tlsaiccessfusystemsi(e., used in a real-world environ-
ment) must changeor become progressively less useful in that environmestinhann, Perry
and Ramil explored the implication of evolution metrics @ftware maintenance [LPRDP8],
[LPRT97]. They used the number of modules to describe the size @frsion and defined
evolutionary measurements which take into account diffees between consecutive versions.

Various well-known techniques exist to make systems moxgbfle in the face of change.
Many design patternsn particular all of those in the original Design Patterask [GHIVI9%],
are intended to increase flexibility, however at the costhaefeased complexity. Software ar-
chitectures[[SGY96] establish rules that govern how a sygtems and evolves. Unfortunately,
certain kinds of unanticipated change can break the assumspdf an architectural style (for
example, pipeline architectures intended for batch pgingscan be hard to migrate to a fully
interactive setting).

There are several approaches that analyze the influenceangekb in an evolving software
system: Burd and Munro analyzed the influence of changesem#intainability of software
systems by defining a set of measurements to quantify thergooe relations which are used
to depict the complexity of the calls [BMB9]. Gold and Mohaefided a framework to under-
stand the conceptual changes in an evolving system [GM0&}e& on measuring the detected
concepts, they could differentiate between different rtesiance activities. In terms of change

13

14 3.1 Software Evolution

effects, impact analysis approachesy(,JArn96], [LRO3], [CEV99]) attempt to determine, given
a point in the source code involved in a modification taskp#iker possible points in the code

that are transitively dependent upon this seed point. Mattyese approaches are based on static
slicing (e.g.,[GL91]) or dynamic slicing €.g.,[AH90]).

Zimmermanret al. placed their analysis at the level of entities in a meta-rhpf&DZ04].
Their focus was to provide a mechanism to warn developets tReogrammers who changed
these functions also changed ...”. Further, Yetgal. applied data mining techniques to the
change history of the code base to identify change patternscommend potentially relevant
source code for a particular modification taSk [YMNCCO04].

Cubranic and Murphy introduced the Hipikat [CMO03] approaklipikat uses project infor-
mation to provide recommendations for a modification taskojeet information comprises a
number of different sources, including the source codeimess modification task reports, news-
group messages, email messages, and documentation. Tusedbelipikat is on providing
recommendations for relevant project artifacts to devalsgvho are evolving a system whereas
the focus of ArchView is on software architecture and evoluanalysis.

Fenton and Ohlsson reported on an experiment with two comiatlesoftware systems in
which they tested a range of basic software engineeringthgges relating to: The Pareto prin-
ciple of distribution of faults and failures; the use of gaiult data to predict later fault and
failure data; metrics for fault prediction; and benchmagkfault data[[FO00]. They found no
evidence to support the hypothesis that size and complekityodules are good predictors of
either fault-prone or failure-prone modules. Their resshiowed that those modules which are
the most fault-prone prerelease are among the least feudieppostrelease, while conversely,
the modules which are most fault-prone postrelease are @theneast fault-prone prerelease.
ArchView also addresses the relation between size and exmypto fault and change proneness
but focuses more on the techniques to obtain, integrateyiandlize views on the implementa-
tion and its evolution.

Taking into account different releases of a system Lastzd. introduced the Evolution Ma-
trix [Lan01] that represents the history of classes. Baseslze metrics tracked over a number of
releases they defined a specific vocabulary to categorizeeda.g.,Pulsar, Supernova, White
Dwarf, etc.). Similarly, Girbaet al. described an approach that based on summarizing source
code metric values of several releases facilitates idestifinange prone classes [GDL 04].

Gall et al. analyzed the history of changes in software systems to ttedidden depen-
dencies between modulés [GHJ98]. Their analysis was atlénieviel, rather than dealing with
the real code and considered release and version informatisoftware units (modules, files,
etc.) as well as modification reporfs [GJKT97]. InJGJR99]I@&h al. described a visualization
approach to allow an engineer to quickly grasp the evolutiature” of modules, differentiating
stable from more volatile ones with respect to change angtgrtsends.

Fischeret al. extended the concept of logical coupling and defined a filgemechanism and
a data scheme for such an integration in [FPG03b]. The daense is the initial version of the
Release History Database (RHDB) that we adapted for the\Aeghapproach. In[[FPGO03a]
Fischeret al. analyzed the evolution relation to bug reports to track ildeén dependencies be-
tween system features. By instrumenting the code the auigihmwed how features are scattered

Chapter 3: Related Work 15

over the project tree and how features are logically couplert releases. An extension of this
approach with a number of specific visualization technigaesescribed in[[EG04]. This ap-
proach allows an engineer to uncover hidden dependenciesgdifferent features over many
releases.

Based on CVS data Krajewskt al. discovered change couplings: developers checking in
and out files within certain periods of time and the relatiopsf these files discovered de-
pendencies that are difficult to detect by other means anctgubito several bad code smells

[EBBT99] by means of visualizations using JGrabh [GJKO03].

In terms of re-engineering activities, Demeg¢al. [DDNOZ] propose practical assumptions
to identify where to start a re-engineering effort: workorgthe most buggy part first or focusing
on the client’s most important requirements.

3.2 ARCHITECTURERECOVERY

Research on architecture recovery spans a wide area oitiastivapproaches, such as Book-
shelf [FHKT97], Dali [KC99], Bauhaubor Rigi [MK88], [Won9g] follow the Extract-Abstract-
View Metaphor described in [EKRWOD2]. They focus on the daabf condensed high-level
views to facilitate program understanding. Most toolsatifin the underlying fact extraction
technique, in the methods and details of fact representadind in the analysis and visualization
techniques.

Murphy and Notkin proposed a reconstruction techniquedaseeflexion model$ [MNS01].
The user starts with a structural high-level view model thahapped against the source code.
The result of the mapping is a reflexion model that shows tfierdnces between the developer’s
high-level and the recovered model. Koschke and Simon heaeméed the original reflexion
models to hierarchical architecture modéls [KIS03].

Similar to reflexion models Robillard and Murphy proposedagproach using Concern
Graphs that abstract the implementation specific detaild cbncern and makes explicit the
relationships between different parts of the concern. Tihgyjemented their approach in the
Feature Exploration and Analysis Tool (FEAT) that allowseaeloper to manipulate a concern
representation extracted from a Java system, and to anlgzelationships of that concern to
the code base.

Cremeret al. [CMWOZ] described a graph-based approach for re-enging&OBOL pro-
grams. Since the focus of their work is on source code tramsfbon, their visualizations are
very detailed but do no support abstractions to higher ¢evel

In [EKRWOZ2] Ebertet al. introduced GUPRO which is an integrated workbench thatsripp
program understanding of heterogeneous systems on aydixaels of granularity. However,
it does not concentrate on the abstraction of higher-leiets from source code. Moreover,
GUPRO supports program understanding via textual infaonabut it does not include graphi-
cal representations to depict its findings.

Ihttp://www.iste.uni-stuttgart.de/ps/bauhaus

16 3.3 Information Visualization

Extracting architectural properties from large open segxstems such as the Mozilla system
has been addressed by Godfegyal. [GLOQ]. Their work relied on PBS [EHK97] which is a
reverse engineering workbench containing the Relatiotgélya tool Grok[[FHOO]. The new
version of the PBS workbench is SWAdKkifThis toolkit concentrates on extracting higher-level
views from C/C++ source code. But, both PBS and SWAGKit docooisider the visualization
of metrics to characterize abstracted entities and relslips leading to more condensed and
comprehensible views.

The SAR method described by Krikhalr [Kri99] concentratesmating higher-level views
on the architecture. The approach is based on Relation@i®aAlgebra [EKvO98] and defines
a process for selecting the information sources from whighédr-level views are abstracted.
The architecture recovery approach of ArchView is simitatlte SAR method but also takes
into account evolution.

Riva proposed a view-based architecture reconstructiproagh named NIMETA[Riv04].
Similar to Krikhaar the approach is based on relationallzigeNIMETA emphasizes the scrupu-
lous selection of architectural concepts and architeltismnificant views that are reflecting the
stakeholders’ interests.

Other works concentrate on diverse coupling metrics: [iIn\\BEI9d] Briandet al. dis-
cuss a unified framework for coupling measurement in olpeietated systems based on source
model entities. Based on these metrics they verified In [BOE2he coupling measurements
on file level using statistical methods and change couplirigrmation based on “ripple ef-
fects” [YCM78]. In [ABEO4] Arisholmet al. describe how coupling can be defined and mea-
sured based on dynamic analysis of systems. This recent shaivs that some dynamic cou-
pling measures are significant indicators of change prasseamd that they complement existing
coupling measures that are based on static analysis.

In terms of analysis of evolution history data, Zimmermaml. inspected release history
data of several software systems for change coupling betweerce code entities [ZDZ03].
They conclude that augmentation of architectural data@wtiutionary information could reveal
new otherwise hidden dependencies between source cotesriven though a number of other
work used release history data as well, a detailed evaluafithe correlation between source
model entities and the properties of change coupling ismst#sing.

3.3 INFORMATION VISUALIZATION

Information visualization is defined as “the use of compsigoported, interactive, visual repre-
sentations of abstract data to amplify cognition.” [CMS98flerives from several communities.
Starting with Playfair (1786), the classical methods oftijohg data were developed. In 1967,
Jacques Bertin, a French cartographer, published hisytietite semiology of graphidBer74].
This theory identifies the basic elements of diagrams ancritbes a framework for their design.
Edward Tufte published a theory of data graphics that empé@snaximizing the density of

2http://swag.uwaterloo.ca/swagkit

Chapter 3: Related Work 17

useful information[[Tuf90],[[Tuf9l7]. Both Bertin’s and Tigfs theories have been influential in
the various communities that led to the development of matron visualization. They mainly
addressed issues of how certain types of data could bestshallyi rendered on paper or on
screen.

The goal of information visualization is tosualize any kind of datdt must be emphasized
that most information visualization systems involve ustagnputer graphics which render the
data using 2D- and/or 3D-views of the data. Applicationsnfoimation visualization are so
frequent and common, that most people do not notice themmpbes include meteorology
(weather maps), geography (street maps), geology, medicomputer-aided displays to show
the inner of the human body), transportation (train tabfesraetro maps), etc.

According to Ware[[War(Q0], visualization is the preferredywof getting acquainted with
and navigating large data pools. In the 1980s, thanks tea&sed performance of computers,
researchers started to develop tools and methodologiesai@ctively display large amounts of
information on the screen. Staskbal. [SDBP98] give an excellent overview over this pioneer-
ing work.

In the more specific field of reverse engineering, visuabresoon proved to be an effective
technique, yielding many tools such as RIgiMK88], [Woh@8d SHriMP (Creole)[SM95].

Visualization has also proven to be a key technique of rekaarsoftware evolution, mainly
due to the huge amounts of information that need to be predeassd understood. Rivet
al. analyzed the stability of the architectufe [GJR99], [Ja402 using colors to depict the
changes over a period of releases. Rysselberghe and Deusggka simple visualization based
on information in version control systems to provide an wiev of the evolution of systems

[VRDO4]. Similar to [GJR9P], Wiet al. describe an Evolution Spectrograph [WSHHO04] that
visualizes a historical sequence of software releases.

Grosser, Sahraoui and Valtchev applied Case-Based Regsonithe history of object-
oriented system as a solution to a complementary problenurtsr @o predict the preservation
of the class interface5 [GSVI02]. They also considered ttegfaces of a class to be the relevant
indicator of the stability of a class. Sahra@tial. employed machine learning combined with a
fuzzy approach to understand the stability of the classfaxtes [SBLEQD].

Source Viewer 3D (sv3D) is a tool that uses a 3D metaphor tesgmt software systems and
analysis datd [MMFQ3]. The 3D representation is based ois#eSoft pixel metaphdr [BEP6]
and extends it by rendering the visualizations in a 3D space.

We emphasize the fact that many researchers view informaisualization as a mere way
to present their data, while we are convinced that an (iotee visualization itself is a central
part of evolution research, due to the very large amountsfofmation. In his thesis Lanza
followed this principle and developed the CodeCrawler fban03]. The tool integrates a num-
ber of pre-defined views that facilitate coarse-grained-§rained, and evolutionary software
visualization. The ArchView approach also follows thesmgples and introduces additional
and new views on the implementation of a software systemtareyolution.

18

3.3 Information Visualization

CHAPTER4

THE ARCHVIEW APPROACH

This chapter introduces the ArchView architecture recpward analysis approach with a focus
on the ArchView process and its key principles and features.

4.1 INTRODUCTION

The idea to re-construct the architecture of software systieom available information sources
is not new and there exists a number of approaches that doatsean this issue. However, our
experience with the existing approaches showed that &¢tilnlre is no sufficient solution to
this problem.

The major challenge of architecture recovery is in abstigaeasonable higher-level views
from lower-level information. We claim reasonable to d@ndensedhigher-level views that
highlight the interesting elements and relationships add mformation of minor interest. For
instance, when analyzing the coupling between modules we toasee or point out the strong
coupling relationships and hide the weak ones. To create\dews we need techniques to:

e Extract facts from available data source;
e Aggregate and abstract information;
e Filter the interesting information; and

e Visualize the results in a way that facilitates reasoningualbhe architecture and its evo-
lution.

With respect to these techniques existing approaches Hc#tata to analyze evolutionary
aspects of a software system; and 2) techniques to visualigtvariate data of. software
releases.

19

20 4.2 Change-Prone Modules

Addressing these issues we introduce the ArchView approabtth in addition to source
code, considers modification and problem report data. Dataitathese reports is available
from versions and bug reporting systems, such asfoarsl Bugzillg. The primary idea of
ArchView is to integrate this data with the data models ested fromn source code releases.
Based on the integrated data model several new evolutionaniare computed. They concern:
1) problem and modification report metrics; and 2) sourceede, complexity, and coupling
metrics tracked over a numberofreleases.

The first set of metrics characterizes the frequency of prabland modifications of imple-
mentation units€.g.,software modules, source files). The second set of metroiiitdides the
visualization of therend of measured metric values. With the trend information trer issable
to spot changes that, for instance, led to an improved oradiegr design and implementation.
For example, from release x to release y the two modules A ahd® been decoupled by
removing the cyclic dependency relationship.

Concerning the visualization ArchView uses the polymaetigws techniques$ [LD03] to map
the measured metric values to graphical attributes. Furitwe, ArchView provides an extension
to the polymetric views that facilitates the visualizatimimmultiple metrics of up to: releases.
Using these two techniques our approach comes up with a muwhhew polymetric views that
provide insights into the implementation and evolution sb&ware system.

In the following sections we present the process and the kieiples of the ArchView
approach. The detailed descriptions of the different teghes used by ArchView are provided
in the subsequent chapters.

4.2 CHANGE-PRONEMODULES

A primary objective of ArchView is to point out the changespe modules and heavy coupling
dependencies. To find these change-prone entities we fistbaefine: What is a change-prone
module?

A software modules an implementation unit that stems from the decompostaf@software
system into manageable units [CB&?], [BCK03]. Depending on the granularity level of the
system decomposition a software module is implemented bygéessource file or class but may
also be implemented by a set of source files or classes. Ranies the Mozilla source code is
organized in more than 90 software modules whereby each leoefers to a set of files grouped
in several source code directories. Packages are simikuice code directories and also are
used to group classes to an implementation unit that repieaesoftware module. The focus of
this thesis is on software modules as groups of source filg®asingle source files.

The quality of an implementation of a software module can basured by software metrics.
They quantify the size, computational complexity, modiima and problem frequency. For the
size of modules we primarily use the number of lines of cod2@l. and the number of functions

Ihttps://www.cvshome.org
2https://bugzilla.mozilla.org

Chapter 4: The ArchView Approach 21

(NFM) metrics. The computational complexity of a moduleésetmined by the McCabe cyclo-
matic complexity[[McC76] and the Halstead metrics [Hal7IMese metrics provide indications
for the maintainability of software moduleés [Sab01, CAL(94

In addition to the size and complexity metrics ArchView casrtgs evolution metrics that
concern the number of modifications and reported problemsgla specified observation period
(e.g.,between two releases). Based on these metrics we refahange-prone modulgs:

A software module that relative to the other modules is langgze, computational
complex, and has more modification and problem reports @adgitp it.

Change prone modules are, therefore, implementation thaitcompared to the other modules
were involved in maintenance and evolution activities nmaiten. In the refactoring community
change prone modules and coupling relationships are eeféorasBad Smellsas described by

Fowleret al. [EBBT99] and Kerievskyl[Ker05].

Another aspect of decomposing a system concerns the depsnaled in particular the usage
relationships between modules. Typically, the behaviat tielongs together is put into one
module €.9.,class) and can be accessed by other modules through itega¢Par/R]. If other
modules depend on the services provided by this module ieembdules are coupled.

On the source code level thessesrelationships are function calls, variable accesses, and
also type references between modules. Heavy coupling kettveo modules occurs if relative
to other coupling relationships the number of source cold&ioaships between two modules is
high or exceeds a specified threshold. The effect is that wiaifying one module the coupled
modules also have to be modified. Heavy coupling dependenoigribute to Bad Smells in the
code, the design, and the architecture.

In addition to source code coupling ArchView takes into astachange coupling relation-
ships. A change coupling relationship between two modutegnates from changes in both
modules that were committed by the same developer in the sammit transaction [GJIK03].
We indicate heavy change couplings by the number of suchvis@rcommits that relative to
other change couplings is high or exceeds a specified tHoesho

The approach followed by ArchView is to identify and higtiighese change prone modules
and heavy coupling dependencies by using graphical visatains.

4.3 ARCHVIEW PROCESS

The ArchView approach follows an iterative and interact@rehitecture recovery process that
is depicted by FigurE—4.1. The figure shows the different @ssghases/steps of ArchView to-
gether with the information sources taken into account hadlow of information. The different
process phases of ArchView are:

1. Fact Extraction.
The fact extraction phase is concerned with extractingdbesfirom available information

22

4.4 Key Features

sources. ArchView takes into account different source ceteases (R1, R2, ..., Rn) and
modification (CVS data), as well as problem report data (Blagdata). The latter data
sources enrich the source code model data by release hastiaryThe various data sources
are retrieved, processed and extracted facts are storkd ArthView repository.

. Data Integration.

The task of the data integration step is to create and maiataonsistent data repository.
For instance, the different tools and techniques used ta&bhe facts from source code
and configuration management data produce separate dataSikmilarly, the iterations
of the abstraction step as well as the iterations in the sctire analysis result in differ-
ent data files. The ArchView data integration tool processese separate data files and
integrates them into the ArchView repository [PEGOL], [AF5)].

. View Abstraction.

In the view abstraction phase, higher-level views are abttd from lower-level infor-
mation. The ArchView abstraction algorithm facilitate$oirmation abstraction onto dif-
ferent levels. In this thesis we focus on the level of sofevarodules and source files.
Resulting views are expressed in terms of high-level estitabstracted coupling relation-
ships, and metrics that are computed during abstractiosulieg views together with the
links to abstracted lower-level information are storedhia ArchView repository. From
there the views are retrieved for further abstraction itens or analysis and visualiza-

tion [PEGO5], [PEJGUA4].

. Visualization & Analysis.

In the visualization phase abstracted views and measuréticnaalues are presented to
the user. Computed views are the basis for the analysis aurent implementation and
its evolution. To facilitate analysis the ArchView visuadtion techniques concentrate on
highlighting the change prone modules and heavy couplilgioaships[PGFLO5].

The ArchView process is iterative and interactive. The iser the driving seat and controls

the abstraction of architectural views, their visuali@gatand analysis. Support is provided by
ArchView in the form of tools and predefined views. Tools aidautomating the extraction,

integration, and abstraction of data models. Furtherntbeze are tools that facilitate informa-

tion filtering and composition of views. The set of pre-defingews facilitates the analysis of

implementation and evolution specific aspects. This sebeare-used in other analysis projects
and extended by additional views.

4.4 KEY FEATURES

The key features of the ArchView approach and the major bisrgdined by a feature are:

e Considering source code model data of several releases.

Size, complexity and coupling metrics are computed of thifiéreleases. This enables the

Chapter 4: The ArchView Approach 23

E R:Z -E ﬁ 3. View
T T T T Hzzz==z Abstraction
--z= Results Fact Graphs
-t ;E: \ Facts Fact Graphs
Source Files LE i » 2.Data 4. Visualization &
- Extraction Integration ArchView Analysis
; - Repository
CVS Data [____
Bugzilla Data
Lengend:

|| Data Source I:] Process Phase 8 Repository ~ — ™ Information Flow

Figure 4.1: ArchView Process with data sources (on the, l#fg ArchView repository (in the
center) and the different process phases.

visualization and analysis of metric trends of implemeaatatinits and coupling depen-
dencies.

e Modification and problem report data.
Evolution metrics are measured whereby different obsemgieriods can be selected.
This allows the analysis of modification and problem behadiaring different periods.
The user can concentrate on a particular observation panddcompare it with other
observation periods.

e Change coupling dependencies.
In addition to source code ArchView computes change cogplbetween source files and
software modules. They indicate the propagation of chabhgegeen modules in the past
caused by shortcomings in the design.

¢ Integration of data models.
The integration tool links the different data models to ormdel that facilitates the nav-
igation between them. For example, ArchView allows the usaravigate between the
models of the different source code releases and the maddficand problem report data.

¢ Abstraction of data models.
The abstraction of data models condenses lower-level saode entities and relationships
to higher-level implementation unite.g., software modules) and relationships. Lower-
level relationships, such as function calls are aggregatet] established between the
higher-level implementation units.

24 4.5 Module View Example

e Extended polymetric views visualization.
For the coarse grained analysis of the implementation ofrelease we apply polymetric
views. Based on this technique we specify a set of additioiesls that take into account
coupling and evolution metrics. We extend the polymetrsams technique to visualize
measured values of multiple metrics of several releaserernview. They enable the user
to analyze the trends of size, complexity, coupling, andwian metrics and spot strong
changes that indicate improvements or degradations imtp&eimentation and design.

The techniques, algorithms and methods applied to readick key feature are described in
the following chapters.

4.5 MODULE VIEW EXAMPLE

The output of the ArchView process are graphical views inclimodes represent the modules
and edges represent the coupling dependencies betweenesofigurd 4R represents an ex-
ample of a graph generated with ArchView. In this exampleftwis was on analyzing the
inheritance structure of Mozilla’s content and layout ieypkentation and its evolution.

The nodes depict the seven software modules of Mozilla thateament Mozilla’s content
and layout handling. The edges of the graph represent trexitahce relationships between
modules and show which module inherits behavior from whitteomodules. The width of
the edges indicates the number of aggregated inheritalat®reships. The thicker the edge the
more and the stronger the inheritance relationship is tvi®o modules. Each node is drawn
as a diagram that shows 9 metric values computed from 7 Momleases. In this example,
the metrics indicate the size in number of classes (NOC) badan-in (IHNAR-in, IHFan-in,
IHNCE-in, IHNR-in) and fan-out (IHNAR-out, IHNCE-out, IH&n-out, IHNR-out) metrics of
module inheritance. Basically, the fan-in metrics denlogertumber of classes that other modules
inherit from a module. The fan-out metrics denote the nunolbefasses that a module inherits
from other modules. An explanation of these metrics is prieskin Chaptell6.

In the following we provide an interpretation of this viewdapoint out a number of key
findings that we can get from such views:
First of all, we gain information about the inheritance stase of the content and layout mod-
ules. We see that, except tivat hM_, all modules inherit behavior from theOM module.
Hence,DOMclearly is a super module. The other module from which bedragi inherited is
NewlLayout Engi ne.

Regarding the edges the graph shows t&tlayout Engi ne and XPTool ki t inherit
more behavior frorDOMthan do other modules. Furthermore, the graph highlightBad*
Smell” in the inheritance structure. This is due to the aytiheritance between
NewlLayout Engi ne andDOM Apparently, there is a number of classes contained by the
NewLayout Engi ne module that should be moved to tb&Vimodule.

In addition to the structure, the graph represents detailedsurements of size, inheritance
fan-in fan-out metrics of several releases. For instanpejmts out thddOMmodule as the largest

Chapter 4: The ArchView Approach 25

7:IHFan-out
6:IHNCE-out

8:IHNR-out

5:IHNAR-out “sub modules” “descrease of intermodule

. 7 inheritance between
O:NOC / \ releases 1.3aand 1.4”
T4HNAR-in (‘Z ‘“ \
3:IHNCE-i ‘
" 2iHFan-in . N\ \, 5 “

4:IHNR-in

“small sub module s NewHTMLStyleSysterm ‘
with almost zero b 0 ST
changes in inheritance XPT@olkit

implementation” ¢

MathML > 0
’ N
> / “strong inheritance 1
° ‘ coupling” g X
Q"é , XML

2 o Releases:
i 5 "
NewLayoutEngine A'\:Z\ (‘E Eo.gz ~ 097

“cyclic dependency 097 - 1.0
indicating a Bad 4 ~ “super module” 10 - 13a
Smell in the design” 1 DO 132 - 14
3
XSZLT “continuous descrease of intermodule 4 - 16
inheritance in recent releases” ‘ 16 - 17

Figure 4.2: Source code coupling evolution view on Mozilkatent and layout modules with
metric values of in-coming and out-going inheritance refaghips. Values are of 7 releases from
0.92 to 1.7. Edges denote aggregated inherits relationsaiken from release 1.7 filtered using
a threshold of 5 for RNAIH.

module with the highest number of classes &ad hM_ as the smallest module with a rather
small number of classes. With regard to the fan-in and fammiric values it depicts thBOM
module as a super module. This is indicated by the high faraines and low fan-out values.
Diagrams of other modules, such as of MeMHTM_St yl eSyst emandXPTool ki t nodes
classify these modules as sub modules. They show high famadwes but low fan-in values
because they solely inherit behavior from other modules POMandNewLayout Engi ne).

Furthermore, the graph shows metric values of several getethat allows us to retrieve
information about the progression of metric values and gpostrong changes in past releases
that affected the implementation. ArchView indicates stychanges of metric values by large
polygons. For instance, the size values represented Hyd@kkliagram show a large module to
which continuously new classes where added. In relatiameB@®Vimodule thévat hM. module
did not change a lot. Furthermore, the relative large, gpedygon in theXPTool ki t diagram
clearly highlights a big change between the releases 1.8dlah In this observation period

26 4.6 Summary

the number of class inheritances of tiEBTool ki t was reduced from 53 to 40 inheritance
relationships. This metric values further decreased frel@ase 1.6 to 1.7 as indicated by the
red polygon. Apparently, there is a trend of reducing thermbdule inheritance. Another
interesting trend is depicted by the green and red polygbtisedDOM module. They show a
continuous decrease in the inheritanced@Mbehavior in the recent releases. In contrast, the
metric values shown by théat hM_ node indicate a small sub module with almost zero changes
during the seven releases.

This is a representative number of key findings that we cam fgam the higher-level views
created by ArchView. Further views are presented and irgégd in Chapte8.

4.6 SQUMMARY

The chapter introduced the ArchView architecture recoeeny analysis approach including the
process, the key concepts and features. Basically, ArehtGdows the Extract-Abstract-View
Metaphor [EKRWOR]. In contrast to existing approaches,hAiew considers modification and
problem report data that are integrated with extractedcgooode models. Based on this data
model ArchView computes abstracted views as well as sowde,anodification, and problem
report metrics.

The polymetric views visualization technique is based omppirag metric values to graph
attributes. ArchView extends an existing technique to mewnore detailed views that highlight
the change prone modules and heavy coupling relationships.

The integration of modification and problem report data dtagghe extension of the visual-
ization techniques present the major improvements toiegiarchitecture recovery approaches.

CHAPTERD

BUILDING THE ARCHVIEW REPOSITORY

This chapter describes the pre-processing of informaamces including source code and re-
lease history data to build the ArchView Repository.

5.1 INTRODUCTION

For the reconstruction of higher-level views ArchView takato account the source code of
several releases as well as data from versions and bugirepsysstems.

The extraction phase is concerned with pre-processingiffezeht data sources to obtain
data models. They represent a structured view on the dataesooontaining the entities and
relationships that are subject to analysis. For instahessdurce code model contains the source
code entities, such as classes, methods, attributes amdlgienships between them, such as
class inheritance, method calls, attribute accesses.

The integration phase links the different data models tointegrated model that contains
the relevant information about the implementation, protd€or bugs), and modifications. The
integrated data model is stored in the ArchView repositbat serves as basic input to the sub-
sequent ArchView abstraction, visualization, and analgseps.

5.2 THEE-FAMIX META MODEL
The ArchView repository is the central data storage of oyoraach that holds the different ex-
tracted and integrated data models as well as analysidse¥vd implemented it with a relational

database management syste'ms,a\/lySQLﬁ) that stores:

e source code models of different source code releases;

thttp://www.mysgl.com

27

28 5.2 The E-FAMIX Meta Model

e configuration management data (modification and problemrtg)
e abstracted views; and

e measured metric values of source code entities and resdijps

For the representation of source code different meta masess, such as FAMIX of the
University of Bern [Sof9B], Datrix of Bell Canada In¢..[B&P or Bauhaus resource graphs of
the University of Stuttgarf[Uni05]. All these meta modelsael the same kind of data — source
code — however in slightly different ways. For instanceythee different type identifiers to
represent source code entities and relationships. Re@ktfacused on integrating the different
source code meta models into the Dagstuhl meta madel [[TPB4} this is on-going work.
With respect to ArchView non of these models takes into astthe representation of releases,
modifications, and problems.

For the specification of the E-FAMIX meta model we used the FAMheta model. FAMIX
is a meta model for a language-independent representatieauoce code of object-oriented
programming languages. It provides extension points taatbe used to include programming
language specific features, such as C++ templates. We usdt<Rar representing the source
code of each release and added the types and relationshijpséhmandatory to represent release,
modification, and problem report data. Figlrd 5.1 depictswenview of E-FAMIX meta model.

File Entities

Figure 5.1: E-FAMIX meta model consisting of the FAMIX and RB meta model linked by
file-entities (overview).

The E-FAMIX meta model consists of two meta models that arkeld together by file-
entities that are common to both meta models:

e The FAMIX meta model for representing the source code models
e The RHDB meta model for representing the configuration mement data.

The most important extension to FAMIX is by the RHDB meta nlod€he latter meta
model is used to represent modification report (MR) and gmbieport (PR) data as obtained
from versions systems, such as Evemid bug reporting systems, such as Bug@illa

2https://www.cvshome.org
Shttp://www.bugzilla.org

Chapter 5: Building the ArchView Repository 29

The RHDB meta model is linked to the FAMIX model by using fie-entitydefined by both
models. The principle is straight forward: source files ant#ties that exist in both data models.
On the one hand source files contain the programming langaagEfic entities that are subject
to the source code model extraction (FAMIX). On the otherdhaource files present the items
that are managed by configuration management systems armdotieeare also entities of the
release history database (RHDB). For instance, modifisaéiports about changes committed to
the source code repository are assigned to source files.

A detailed description of the E-FAMIX meta model can be foumthe Appendix. The next
sections describe the extraction of the different data risode

5.3 SOURCECODEFACT EXTRACTION

The source code fact extraction step is concerned with preegsing the selected source code
releases to FAMIX compliant source code models.

For the extraction of information from source code ArchVipmmarily applies syntactical
analysis tools which are source code parsers. Parsers @geapmming language dependent
and produce an intermediate representation of source édmgract Syntax Tree, AST). In the
context of reverse engineering the AST is traversed to autpuinformation about the basic
source code entities and their relationships. The set odebed source code facts is referred to
as a source code model (SCM). Figlird 5.2 shows an exampleonfreescode model extracted
from a Java source code snippet.

The parser processes the project containing the Java slakfige Example application. It
parses the source code of each source file and extracts lfaets@ntained source code entities
and relationships. Facts concerning the example abovehae is the packagk that contains
classDeno. Deno contains thaerai n() method which contains the local varialge Variable
p references an object of claBsayer . p is accessed by theai n() method to invoke the
st art Deno() method. Furthermore, there is the packBdbat contains claddl ayer which
contains thest ar t Deno() method.

Each source code release of a system constitutes suchagpprsject and results in a source
code model. For instance, for the Mozilla case study we atetcut the major source code
releases from the Mozilla repository and parsed each eledth the Imagix-4D todl For
each release we created a project containing the parsegomtfon and the repository holding
the extracted source code model of a release. With our Irvéigiplug-in we accessed each
repository and exported the E-FAMIX compliant source coaeleh.

For the representation of source code models differentdiméats exist ranging from pure
ASCII files to relational databases. Common to most of thepeesentations is the use of di-
rected attributed graphs. Nodes in the graph representesaode entities and edges the rela-
tionships. Both, nodes and edges are assigned a set otisyjlsuch as the name of the entity,
the size of a source file, the accessibility specification efirads and attributes, etc.

4http://www.imagix.com

30 5.3 Source Code Fact Extraction

/I Example Example

package A, e e
public class Demo {
puglic static void main() {

: B
Player p = new Player(); -
p.startDemo(); ‘ ‘

} EDE S
}

package B;
public class Player {
public void startDemo() {

/l run demo

Q Source code entity

~ ~ ™ Contains relationship Accesses relationshig
— Invokes relationships—® HasType relationship:

Figure 5.2: Source code model extracted from a Java codpetnip

Output formats used by current reverse engineering toeldarexample, the Rigi Standard
Format (RSF)[[Won98] or its successor the Graph eXchangguage (GXL) [HWS0D]. The
latter comes with an XML representation of graph data. Farrttore, there exists a converter
from RSF to GXL and vice versa. ArchView uses RSF as an intdiate format to facilitate the
application of other reverse engineering tools on extrhsteirce code models.

RSF uses an easy to use tuple forraiael ati on A B> to represent nodes, edges, and at-
tributes of graphs. FigufeB.3 depicts the RSF file that sspres the source code model extracted
from the Java example shown in Figlirel5.2. The unstructuf&e fite contains the definitions
of the existing source code entities (the Root entity is aien for syntactic reasons). Each
entity is assigned its entity type as defined by the E-FAMIXamaodel (se¢ ype tuples). The
cont ai ns tuples define the containment (hierarchy) of entities. Retance packag con-
tains clasenvo. The last three tuples define the relationships betweereaode entities, such
as the access to the local variapler the invocation of methoslt ar t Deno() by mai n() .

The results of the source code fact extraction step is a ssbwte code models (one per
release) that are stored in the ArchView repository.

Chapter 5: Building the ArchView Repository 31

type Root Syntactic

type A Directory

type B Directory

type Deno.java File

type Player.java File

#

type A Package

type B Package

type Demo O ass

type Player C ass

type main() Method

type startDeno() Method
type p Local Vari abl e

#

contains A Deno.java
contains B Player.java
cont ai ns Deno. java Denp
contains Player.java Pl ayer
contai ns A Denp

contains B Pl ayer

contai ns Deno nai n()
contai ns Player startDenp()
contains main() p

#

accesses main() p

hasType p Pl ayer

i nvokes main() startDeno()

Figure 5.3: RSF file representing the extracted E-FAMIX oomf source code model of the Java
source code snippet.

5.4 RELEASEHISTORY DATA

In addition to source code, ArchView takes into account guréition management data with
focus on version data, modification and problem reports. grimeary data sources for this kind
of information are the repositories managed by versionrobsystems such as the Concurrent
Versions System (C\E and bug tracking systems, such as Bu&ill&:urrently, ArchView
concentrates on CVS and Bugzilla but future work is conagmi¢h providing support for other
versions and bug tracking systems, such as Subvériersuccessor of CVS, IBM Rational’s

Shttps://www.cvshome.org
Shttps://bugzilla.mozilla.org
"http://subversion.tigris.org

32 5.4 Release History Data

CIearCaﬁ or Microsoft’s Visual SourceSeHe

5.4.1 CVS

CVS is designed to handle revisions of textual informatigistoring delta’s between subsequent
revisions in the repository. Binary files can be stored inrgpository as well, but they are not
considered by ArchView.

REVISION NUMBERS

Typically, version control systems distinguish betweersi® numbers of files and software
products. Concerning files these numbers are cabetsion numbersand indicate different
versions of a file. In terms of software products they areedallease numberand indicate the
releases of a software product.

Each new version of a file stored in the CVS repository rece@venique revision number.
After an update of a file and a commit of the changes to the Cy8sitory the revision number
of each affected file is increased by one. Because some féanare affected by changes than
others these files have different revision numbers in the @g8sitory.

Arelease represents a snapshot on the CVS repository caingpaill files realizing a software
system whereby the files can have individual revision nusibéthenever a new version of the
software system is released a symbolic nanee, (ag) indicating the release is assigned to the
revision numbers of current files. The relati®ymbolic name - revision numbsrstored in the
header section of every tagged file and appears also in tliehsaction of CVS log files.

Revision numbers and CVS tags are the information that adetkto checkout the different
source code releases. For more information on CVS intemalsefer the reader to the CVS

manual [Fre03].

VERSION CONTROL DATA

For each working file in the repository CVS generates versmmirol data stored in log files.
From there log file information can be retrieved by issuirggdlis | og command. The speci-
fication of additional parameters allow for the retrievalrdbrmation about a particular file or a
complete directory. Figulle 3.4 depicts an example log fkeridrom the Mozilla project show-
ing version data of the source fites CSSFr anmeConst r uct or . cpp as it is stored by CVS.

Basically, a log file consists of several sections, eachri®sg the version history of an artifact
(i.e.,file) of the source tree. Sections are separated by a lineé oharacters. For the population
of the release history database (RHDB) we take the folloyitogerties into account:

RCS file- The path information in this field identifies the artifactthe CVS repository.

8http://www-306.ibm.com/software/awdtools/clearcase
Shttp://www.microsoft.com/ssafe

Chapter 5: Building the ArchView Repository 33

RCS file: /cvsroot/nozillal/layout/htm/style/src/nsCSSFranmeConstructor.cpp, Vv
Working file: nsCSSFraneConstructor.cpp
head: 1.804
branch:
| ocks: strict
access list:
synbol i ¢ nanes
MOZI LLA 1 3a_RELEASE: 1.800
NETSCAPE_7_01_RTM RELEASE: 1.727.2.17
PHOENI X_0_5_RELEASE: 1.800

RDF_19990305_BASE: 1. 46
RDF_19990305_BRANCH: 1.46.0.2
keyword substitution: kv
total revisions: 976; sel ected revisions: 976
description
revision 1.804
date: 2002/12/13 20:13:16; author: doe@etscape.com state: Exp; lines: +15 -47
Don’t set NS_BLOCK_SPACE_MGR and NS _BLOCK WRAP_SI ZE on ..

revision 1.638

date: 2001/09/29 02:20:52; author: doe@etscape.com state: Exp; lines: +14 -4
branches: 1.638.4

bug 94341 keep a separate pseudo franme list for a new pseudo block or inline frane ...

RCS file: /cvsroot/nozillallayout/htm/style/src/nsCSSFranmeConstructor.h,v

Figure 5.4: Example CVS log-file containing the modificatreports of the source file nsCSS-
FrameConstructor.cpp.

symbolic names Lists the assignment of revision numbers to tag names. assgnment is
individual for each artifact since revision numbers mayedlif

description Lists themodification reportslescribing the change history of the artifact starting
from its initial check-in till the current release. Besidbe modifications made in the main
trunk all changes which happened in the branches are alsodest there. Reports.€.,
revisions) are separated by a number of -’ characters.

e Therevisionnumber identifies the source code revision (main trunk, dvawhich
has been modified.

e Date and time of the check-in are recorded indagefield.

e Theauthorfield identifies the person who did the check-in.

e The value of thestatefield determines the state of the artifact and usually takes o
of the following values: “Exp” means experimental and “deatkans that the file
has been removed.

34

5.4 Release History Data

e Thelinesfields counts the lines added and deleted of the newly chaokexvision

compared with the previous version of a file.

e If the current revision is also a branch point, a list of btaex derived from this

revision is listed in théranchedield (e.g.,1.638.4).

e The followingfree textfield contains informal data entered by thethor during the

check-in process.

ArchView uses the RHDB Populator todl [FPGD3b] to acces€£W8 repository and retrieve
the modification reports. Basically, the tool traversestigh the source tree structure to retrieve
the modification reports from the CVS repository on diregtoasis. Modification reports about
“unused” files that have an entry in the CVS repository butraerepart of the current checked
out version are also captureide(, deleted files or files belonging to different products). Each
modification report is parsed for the facts mentioned abdweracted facts are stored in the

RHDB.

5.4.2 BUGZILLA

In addition to the CVS data, the Populator tool also providesities to access the bug reporting
system Bugzilla for retrieving the problem reports. Prableeports describe “bugs” that have
been identified during execution of the systeag(,testing) and reported to the developers.

PROBLEM REPORTS

Problem reports as stored by Bugzilla contain administeatiformation, such as contact in-
formation, mailing addresses, discussion, and informattat describes the reported problem.
Listing[5.] lists an example of a problem report derived fitbmBugzilla repository of Mozilla.

Listing 5.1: Example of a Bugzilla entry.€., problem report) of the Mozilla project.

<bugid>10006%</bug.id>

<bug status-VERIFIED</bug status-
<product>Browsek/product>
<priority>——</priority>
<version>othek/version>

<repplatform>All </rep_platfornt>
<assignedo>doe@mozilla.org/assignedo>
<deltats>20020116205154/deltats>
<componentPrinting: Xprint</component
<reporter-doe@mozilla.org /reporter-
<targetmilestone-mozilla0.9.6</targetmilestone-
<bug severity>-enhancemert/bug severity-
<creationts>2001-09—17 08:56</creationts>
<gacontact-doe@mozilla.org/ga contact-

Chapter 5: Building the ArchView Repository 35

<op.sys>Linux</op.sys>
<resolution-FIXED</resolution>
<shortdesc-Need infrastructure for new print
dialog</shortdesc-
<keywords>patch, review:/keywords>
<dependson106372/dependson
<blocks>84947% /blocks>
<long desc-
<who>doe@mozilla.org./who>
<bugwhen>2001-09—17 08:56:2%/bug when>
<thetext-</thetext>
</long desc-

Key information extracted from problem reports include:

e bugid: This ID is referenced in the modification report. Since ths hre stored as free
text in the CVS repository, the information can not be rdjiakcovered from the change
report database.

e bugstatus(status white-board): Describes the current state of tigeama can beincon-
firmed assignedresolved etc.

¢ resolution Indicates what happened to a bug and can be: empty (), &as fixed fixed,
is no valid bug invalid), will never be fixed wontfix, etc.

e product Determines the product which is affected by a bug. Examiplddozilla are
Browser, MailNews, NSPR, Phoenix, Chimera, etc.

e componentDetermines which component is affected by a bug. Examplesdmponents
in Mozilla are Java, JavaScript, Networking, Layout, etc.

e dependsonDeclares which other bugs have to be fixed first, before tingsdan be fixed.
e blocks List of bugs which are blocked by this bug.

e priority: This field describes the importance and order in which a thaylsl be fixed.
This field is utilized by the programmers/engineers to ptie their work to be done. The
available priorities range fromA1 (most important) td®5 (least important.)

e bugseverity This field is used to further classify problem reports intodker, critical,
major, minor, trivial, enhancement bugs.

e targetmilestone Possible target version when changes should be mergedhatmain
trunk.

36 5.4 Release History Data

LINKING CVS AND BUGZILLA DATA

Retrieved modification and problem reports build two sefgadata sources because CVS and
Bugzilla do not provide a built-in mechanism to referenceig Wwith the modifications to source
files that have been carried out in order to fix the bug. Thedes lare mandatory to reflect fixed
bugs to changes in source files and vice versa. Therefor&HIRB Populator tool includes an
algorithm to establish the links between modification arabjgm reports.

The algorithm is based on bug report numbers that manualgy been entered in modifica-
tion reports by the software developers when committingigka to source files. Basically, a
link is established whenever a reference.(bug report number) to a problem report is found in
a modification report. Problem report numbers in modificatieports are searched by regular
expressionse.g.,bug #145342. Because these numbers are entered as freesiglk$ contain
false positive matches as well. To improve data quality atehed numbers are validated us-
ing information available with PRs and secondary informatsuch as patches. Details about
the RHDB Populator tool and an evaluation of the quality dfacted and linked modification
and problem reports are given in [FPGD3a] in which the tosl ieen applied to the CVS and
Bugzilla data of the Mozilla project.

5.4.3 (HANGE COUPLINGS

Change coupling between two filesand B originates from changes made to the two files that
were committed by the same developer in a single commitacits. Transactions can span
on an arbitrary number of files and can be of arbitrary lengypically, commit operations take
several seconds or minutes.

CVS does not explicitly store the information about tratises, however it indicates them
by storing the same log message.(MR) for the involved files. Consequently, change coupling
relationships can be reconstructed by analyzing the MRsdetying data coming from the
reports is retrieved from the repository and representsnjmet to the algorithm described in
Figure[5b.

The algorithm is based on a sliding time window with two pagtens: the maximum length
of time that a transaction can last,, and the maximum distance in tinde,,, between two
subsequent MRs. According to the abstraction algorithmedification reportnr is included
in a transaction’ if:

1. The log messagden, or the author, differs from the previous MR; and

2. The check-in time, is at mosb,,,, apart from the check-in timg of the previous report;
and

3. The check-in time, is at mostr,,., apart from the start timg,,,; of the transaction.

Otherwise a new transactidnis created and the modification report is assigned to it.

Chapter 5: Building the ArchView Repository 37

< Omax

< Trmax

mrq . . mry

Figure 5.5: When two modification reports (MRs) belong toghme transaction.

Heuristics obtained from our experiences with the Mozil\dSXepository range from 45 to
60 seconds fof,,., and 15 to 20 minutes far,,,... Smaller values tend to split transactions, and
larger values tend to combine transactions into one. SiraXperiences have been reported by
related approaches, such as Gerragal.[GHJ04] or Zimmermaneet al. [ZWDZ04].

Based on the transactions the change coupling relation$t@ween source files are com-
puted. A change coupling relationship is established betwteio files whenever there exists
MRs for the two files that belong to the same transaction. |Firell the extracted relationships
are added to the repository.

The results of presented extraction techniques are oneescade model per release and the
release history database. Source code models provide pienrantation specific facts and the
release history database provides facts about problemsadiications of source files.

5.5 DATA INTEGRATION

The objective of the data integration step is to establighlittks between the entities of the
different source code and the release history data modhésgriation is needed to have a common
view on the different data models facilitating the navigatbetween the different models and the
analysis of them.

Currently, the integration of the data models is done on ¢wellof source files. Files are
entities that exist in all extracted ArchView models: sadiites contain the extracted source code
entities and furthermore they are the entities managed hfigroration management systems.
With respect to source files differences between the datalsedist because of:

38 5.5 Data Integration

list M R := list of modification reports
sortlist M R by author, checkinTime
Tmaz = 15 MinN.
Omax = 45 SEc.
a; = null
t] = 0
tstart =0
Im; :=null
listT = {}
foreach mr of list M R do
as := author ofmr
t, ;= checkin time ofmr
Ims :=log message ahr
if ay # as Or lmy # lmg OF ty > (t1 + Opmaz) OF to > (fstart + Tinaz) then
T = new transaction
addT to listT
tstart = t2
end
assignnrto T
aq .= Ay
lm1 = lm2
end

Figure 5.6: Algorithm to reconstruct transactions from Qv&dification reports.

e Deleted and added files.
During maintenance and evolution of a software system sdiles are added to or deleted
from the source base.

e Moved files and subdirectories.
Source files are moved to a different subdirectory due touetstring of the source code
base. The file entity is the same but the global name of thedechanged.

e Generated files.
Certain source files are input to compilers that generatar@eu of corresponding other
source files. For instance, the configuration managemetemysontains *.idl files from
which the idl compiler generates the corresponding heddsithiat are input to our parsing
tool.

The main task of the data integration step is concerned Witksking if the source file in one
data model exists in the other data model. For these cheattsviaw uses the fully qualified
name (global file name) of source files and applies the Algo®. 7. The algorithm uses three

Chapter 5: Building the ArchView Repository 39

scmA :=load model A
secmB = load model B
mapping = new Mapping
foreach eB of semB do
nameB = eB.fullName
eA = semA.queryEntity@ameB)

if eA = null then
nameB := nameB.chopDirectories()

eA = semA.queryEntity@ameB)

if eA = null and nameB.endsWith(“.h”) then
nameB = nameB.replaceFileExtension(*idl”)

eA = scmA.queryEntity@ameB)
end
end
if eA # null then
mapping.inserteA, eB)
end
end

Figure 5.7: Algorithm for mapping RHDB and SCM data modelstimy/fully qualified file name.

heuristics to map the file identifiers of two data models byth®&)fully qualified file name; 2)
the short file name; and 3) the file name with the file extensgpiaced. The latter heuristic
accounts for files that are generated by a pre-compiler. ¥ample, in the Mozilla case study
idl files are contained in the RHDB instead of the generat&i-E/header files that are contained
in extracted source code models.

Experiences gained in the case study showed that usinghieesistics we establish around
96-99.8% of the links between file entities of the differeatadmodels. Details about the preci-
sion of the data integration algorithm are presented in &b

The result comprises records of mapped identifier pairsatainserted into the mapping
table of the ArchView repository.

56 SQUMMARY

The ArchView repository is the core data source of the Arelwiarchitecture recovery and
analysis approach. It integrates source code and relesteeyhtlata into a common data model.
For the representation of this data model we introduced tRAMIX meta model and presented
corresponding extraction techniques. The E-FAMIX meta ehiglan extension of the FAMIX
meta model by entity and relationship types to represeaase history data.

Concerning the extraction we presented the techniquesantafs to derive the different

40 5.6 Summary

source code and release history data models. Based on titredata model we described the
algorithm for the linkage of modification and problem repata. They allow for the navigation
of problems down to source code modifications and vice vdfaghermore, we presented the
algorithm used to compute the change coupling relatiorsgbgtween source files.

The integration of the different data models is based on uhg §ualified hame of source
files. Based on this name we presented an algorithm that ésud@leted, added, moved, and
generated files. The result is a repository that contains-&AMIX conform data model of
several source code releases, modification, and probleontréata. The repository serves the
ArchView abstraction, visualization, and analysis phdakatsare described next.

CHAPTERG

ARCHITECTURAL VIEW ABSTRACTION

To obtain higher-level views low-level information has te bondensed and abstracted. This
chapter introduces the ArchView containment hierarchy ehtitht defines paths for information
abstraction and the ArchView view abstraction algorithm.

6.1 INTRODUCTION

The amount of information obtained by the fact extractioagghis high especially when analyz-
ing large and complex software systems. For example, the stasly we present in Chapfdr 8
is of a large open source software system that comprisesescode model data of more than
10.000 C/C++source files of seven releases, more than 4bth0dification reports and 250.000
bug reports.

Having a single user to understand all the details is diffifudot impossible but also not
always mandatory. In general, browsing and navigatinguinossuch large information sources
is difficult and time consuming. Users do not have reasonadil&s €.g.,source code entities)
from which to start investigations and analysis becausgirgapoints often are not visible in
the huge amount of information. Information abstractionegded that aggregates lower-level
information about source code entities and their relah@ssand reflects them on higher-levels
of abstraction.

As mentioned in the related work past and recent researchessconcerned with abstract-
ing high-level views from lower-level information, such ssurce code. Most important in the
context of this thesis are the work from Hdli [Hol98] and Beif al. [EKvO98]. They both used
relational algebra to aggregate and abstract architéstdocmmation. Therefore, the algebraic
concepts used by our abstraction algorithm is not new pekrstView uses these concepts and
extends them in two ways:

e Metrics The ArchView abstraction algorithm computes source co@drios about ab-
stracted entities and relationships. Measured metricegadixpress, for instance, the size

41

42 6.2 Source Code Containment Hierarchy

of entities €.g.,in terms of the number of contained low-level entities) amelweight of
relationships€.g.,in terms of the number of aggregated relationships). Theyreanda-
tory to highlight interesting entities as well as to filtefarmation.

¢ Information sourcesArchView takes into account source code datae¥eralreleases,
for instance, to facilitate the analysis of metric trendsaidirce code entities. Furthermore,
ArchView takes into account release history data. This @atédches extracted source
code model data and allows for analysis of the evolutiongpgets of a software system’s
implementation€.g.,change coupling between source files).

The next Section introduces the ArchView containment hama model that specifies the
paths along which low-level source code and release hisiatigycan be abstracted.

6.2 SOURCECODE CONTAINMENT HIERARCHY

The ArchView containment hierarchy model specifies thednaty of implementation units and
source code entities. The hierarchy stems from decompésngystem into manageable imple-
mentation units according to the object-oriented desigagigm. Our hierarchy model is based
on the abstraction levels described in Sedfiah 2.3 and fepebiy entities of the E-FAMIX meta
model and its relationships that express the containmenitifes. Figur€6l1 depicts the model.

According to the decomposition of a system we go top-down @estribe the following
hierarchical levels:

¢ Architectural level:From the point of view of the implementation the architeetof a sys-
tem is specified by subsystems and software modules andl#tienships between them.
A system is decomposed into software modules. Accordingeméntset al. [CBB*07]
we refer to a software module as an implementation unit dixsoE that provides a co-
herent unit of functionality. Modules present a code-basag of considering the sys-
tem [BCKO3]. Composition of subsystems is indicated by #l&arc of the Module entity
hence we do not need to include a separate subsystem entdity model.

¢ Design level The design level contains the entities that are used tafg@edetailed model
of the implementation. One of the most frequent used desagadigms to specify these
models is the object-oriented design. The entities usethisyparadigm and contained in
this abstraction level are Package and Class. Additiorhlly level contains also the en-
tities Directory and File. Latter two are not directly usadbject-oriented design models
but are used by programming languages such as Java and C+ansmmthe source code
in files and directories. Often there is a direct mapping betwClass and File, and Pack-
age and Directory. For instance, in Java the package steucturesponds to the directory
structure. Also in Java the implementation of a class tyfyicsicontained in one file. The
three entities Directory, Package, and Class can have isedtaties, sub-packages, and
sub-classes respectively which in Figlird 6.1 is indicatethb self-arcs.

Chapter 6: Architectural View Abstraction 43

I:] E-FAMIX entity System
- - -= impcicit containment T
|
— explicit containment \‘7 \‘77 o
<--> possible mappin |
P PpPing Module | --
|
,,,,,,,,,,,,,, A o
| | |
' ! iy
Directory [~ T A | Package —
|
|
- L _ = AL _
YU A ;
File > Class i
Problem Modification . Global .
Report Report Function Verela Method Attribute
Y Y
Local Formal
Variable Parameter

Figure 6.1: Containment hierarchy of source code modelsdng modification and problem
reports.

e Code level They comprise all principal entities provided by a prognaimg language
to implement the system. Basically, these entities are dtetAttribute, Local Variable
and Formal Parameter. A class contains methods and aétsibdt method contains its
parameters and local variables. Additionally, for hangline C part of C++ applications
we added global functions and variables that are contaigeddource file. Another add-
on to the hierarchy model is the Modification Report and RrgbReport entities. They
indicate the facility provided by the E-FAMIX model to alsbsdract modification and
problem report data along the File entity.

6.2.1 ESTABLISHING THE LINKS BETWEEN THE HIERARCHICAL LEVELS

Whereas the links between the entities of design and the levéé are explicit the links be-
tween the entities of the architectural and the design lakehot. The basic reason for this is
that software architectures are abstract concepts ancesspfiwvare modules. Although recent
software development processes provide support for sucapgimy of abstract concepts to the
implementation in practice it is not always carried out by tlevelopers.

Typically, the system is decomposed into software moduldse implementation of each
software module is broken down to one or more classes, paskagfiles or directories re-
spectively. Information about such refinements often istaioed in design documents. For

44 6.3 Software Metrics

instance, the design documents of Mozilla provide thisrmi@tion on the module owners web-
sitdl. There the architects of Mozilla listed all software modad for each module specified
its owner, links to design documents, and the source codetdnies containing the implementa-
tion. The latter represent the links between the architattind the design level entities that can
be directly integrated into extracted source code modalsttaen are available for information

abstraction.

If no information about the mapping of abstract concept®tose code is available the con-
cepts and their mapping has to be determined by the user.r@ggiect to software modules such
a determination is concerned with grouping the design ehsnge., classes, files, packages,
directories) together that implement a coherent set oftfonality. Straight forward techniques
for such a grouping are based, for example on the:

e Package or the directory structure: Each package or diseassigned to a software
module

e Naming conventions: Prefixes or postfixes of class, packdgeor directory names that
indicate the affiliation of an entity to a particular soft@anodule.

Hints about naming conventions can be obtained from desigrtade documents or developers.
Both techniques also have been used in recent architecuoowery approaches, such as the
Software Reflexion Models described by Murpgtyal. [MNSOT].

Another technique that provides support for relating ergiof the architectural level with
entities of the design and implementation levels is clusger Clustering tools, such as Bunch
[MMCG99Y], provide algorithms to (semi-)automatically aiggate tightly coupled source code
entities €.g.,classes, files) to modules and subsystems. However, tonotgasonable results
with clustering knowledge about the design is necessarynfbance, to configure the algorithm
with appropriate main seeds.

Having determined the source code organizational unitsriidement software modules the
remaining hierarchy and thus the links between the diffeabstraction levels is due to the con-
tainment relationships depicted by Figlird 6.1. A modulestgia of one or more source files that
contain the implementation of classes, functions, and é&fiaitions of global variables. Classes
contain attributes and methods which further contain patanmand local variable definitions that
represent the lowest-level entities in our hierarchy model

6.3 SOFTWAREMETRICS

Software metrics are a key input to our analysis and visatdin approach. Metrics used by
ArchView stem from source code and release history data endaanputed during fact extrac-
tion and information abstraction. They range from metrics assess th&ze(e.g.,number of
methods in a classprogram complexitye.g., cyclomatic complexity) of source code entities
andevolutionarymetrics €.g.,number of modifications of a source file).

http://www.mozilla.org/owners.html

Chapter 6: Architectural View Abstraction 45

ArchView concentrates on module and coupling dependendyicaen the design and ar-
chitectural level. Modules refer to classes, packages, fdeectories and software modules.
Coupling dependencies refer to source code and changeimguplationships. Source code
relationships are file includes, class inherits and aggi@us type definitions, function calls,
and variable accesses. Metrics assessing lower-levets@ade entities, such as methods or
attributes are also considered but not subject of thisshesi

6.3.1 MODULE METRICS

Table[&.1 lists the set of metrics used by ArchView to asdessize of software modules.

Metric Description

NOD Number of associated directories

NOF Number of associated files

NOP Number of associated packages

NOC Number of associated classes

NGF Number of global functions

NOM Number of methods

NFM Number of global functions and methods (NGF + NOM)
NGV Number of global variables

NOA Number of instance and class attributes

NOV Number of global variables and attributes (NGV + NOA)
LOC Length in number of lines

Table 6.1: Size metrics of software modules.

For assessing the complexity of a module’s implementatiahXiew uses the McCabe cy-
clomatic complexity[[McC76] and Halstead complexity mesr{Hal77] listed in TablE®12.

Metric Description

CCMPLX | Accumulated McCabe cyclomatic complexity

HALCONT | Halstead Intelligent Content — language-independent unread the amount
of content (complexity) of a module

HALEFF Halstead Mental Effort — number of elemental mental disgrations neces-
sary to create, or understand a module

HALDIFF | Halstead Program Difficulty — measure of how compactly a neduaple-
ments its algorithms

Table 6.2: McCabe and Halstead complexity metrics of saftwaodules.

Table[6.B lists the evolution metrics that ArchView compuiar software modules.
Regarding problem reports several metrics are computédtitaess the different problem
report categories as offered by the Bugzilla bug reporWelﬁ. The four main categories are

2https://bugzilla.mozilla.org

46 6.3 Software Metrics

Metric Description

NMR Accumulated number of modification reports assigned to auteoduring a
specified observation period

NPR Accumulated number of problem reports assigned to a modulagla spec-
ified observation period

NPR-x Accumulated number of problem reports of category x assigoe@ module
during a specified observation period

ENT Accumulated entropy of modification reports (sum of linesledl + lines
deleted) of a module during a specified observation period

Table 6.3: Modification and problem report metrics of sofevanodules.

Status Priority, Resolutionand Severity Each category has several sub-categories that specify
the different values of a main category. For instance, taristof a problem report in Mozilla
can be unconfirmed, new, assigned, reopened, resolvedrifiedeBasically, the values of the
four main categories are unigue hence we use them to buildaimes for the different problem
report metrics. For instanc&PR- veri f i ed denotes the number of problem reports with
status verified.

Table[&% lists the set of metrics to assess the couplingdetvmodules. Basically, they
describe the number of relationships of a certain type thabdule has with other modules.
Related to the E-FAMIX meta model these are file includessdlaherits and aggregates, method
invokes, variable accesses, and type references. Thetfigitd the coupling metrics according to
the coupling via class inheritance and method invocatioa ugé different prefixes to distinguish
these metrics, such as “IH” for class inheritance and “I"fethod invocations metrics.

In addition to the source code coupling metrics, ArchVieketinto account change coupling
metrics. Basically, they denote the number of pairwise rications that occurred for a module
during a given observation period. TablI€l6.5 lists theseioset

6.3.2 HRELATIONSHIP METRICS

In addition to metrics computed for software modules, Anglww/computes metrics for abstracted
relationships. With regard to the E-FAMIX meta model theskationships arei ncl udes,

i nherits, aggregates, i nvokes, accesses, hasType, andcoupl es. Basically,
measured metric values denote the number of aggregated llevet relationships and involved
source and target entities. Tabl€el6.6 lists the set of nsatised in this thesis.

For more object-oriented source code metrics we refer dierdo the publications of Lorenz
and Kidd [LK94], Henderson-Sellers THS95], and Fenton afideger [FP96]. The metrics
presented there can also be used by ArchView.

Chapter 6: Architectural View Abstraction 47

Metric Description

IHFan-in Fan-in of class inheritance — number of classes of other teedbat inherit
behavior from the module

IHNCE-in | Number of contained classes that are inherited by classathef modules

IHNR-in Number of in-coming inheritance relationships

IHNAR-in | Number of abstracted in-coming inheritance relationships

IHFan-out | Fan-out of class inheritance — number of classes of otheutasdrom which
a module inherits behavior

IHNCE-out | Number of contained classes that inherit behavior fromratiedules

IHNR-out | Number of out-going inheritance relationships

IHNAR-out | Number of abstracted out-going inheritance relationships

IFan-in Fan-in of function/method calls — number of functions/noethof other mod-
ules that call the module’s functions/methods

INCE-in Number of contained functions/methods that are called hgtfans/methods
of other modules

INR-in Number of in-coming call relationships

INAR-in Number of abstracted in-coming call relationships

IFan-out Fan-out of function/method calls — number of functionsimoels of other
modules that are called by the module’s functions/methods

INCE-out | Number of contained functions/methods that call functiorethods of other
modules

INR-out Number of out-going call relationships

INAR-out | Number of abstracted out-going call relationships

Table 6.4: Source code coupling metrics (in-coming andgmirtg class inheritance and function
calls) of software modules.

6.4 ABSTRACTIONALGORITHM

The goal of the ArchView abstraction algorithm is to reflenwér-level source code and release
history information on higher levels of abstraction, sushoato the level of software mod-
ules. The input to our abstraction algorithm is an integtat®urce code and release history data
model. Consider the following simplified integrated E-FAMtonform data model depicted by
FigurelG.2.

The Abstraction-Example has been decomposed into two amtmodulesP A and PB
whereby each module is implemented by one package withsmoreling name. PackadgeA
contains the clasS A1 with the methods(), b(), andc() and further clasé’ A2 with the methods
m() andn(). PackagePB contains the clas§'B1 with the methods:() andy(). Higher-level
entities are packagesd., modules) and classes. The containment relationship batemtgies
are depicted as dashed (gray) arcs. Call relationshipsieetmethods are depicted as solid (red)
arcs.

Source code model data of this form is obtained from the AreW\fepository and input to
the abstraction algorithm. The algorithm consists of fwlttg four basic steps:

48

6.4 Abstraction Algorithm

Metric Description

CFan-inout | Fan-in and fan-out of change coupling — number of files of othedules that

a module is change coupled with

CNCE Number of contained files that are change coupled with fileglegr modules
CNAC Number of abstract change coupling relationships

CNMR Number of modification reports involved in the change caupli

CENT Entropy of modification reports involved in the change cougpl

Table 6.5: Change coupling metrics of software modules.

Metric Description

RNMR Number of modification reports involved in the change caupli

RNMRPR | Number of modification reports involved in the change caupfior which a
link to a problem report exist

RENT Entropy of modification reports involved in the change cougpl

RNAC Number of abstracted change coupling relationships

RNCR Number of calling functions/methods

RNCE Number of called functions/methods

RNAI Number of abstracted function/method call relationships

RNSUB Number of contained sub classes

RNSUP Number of inherited super classes of other modules

RNAIH Number of abstracted class inheritance relationships

Table 6.6: Metrics of abstracted change coupling, invo&ed,inherits relationships.

. Select entities and relationships to be proces3dtk user selects a set of software modules

to be analyzed. In our example we parameterize the algomthimthe software modules
(packages)’ A and PB, and theinvokes relationship type. Additionally, we specify the
source and target entity type of the relationship&:(hod).

. Compute contained source entities for each selected gudity Depending on the rela-

tionship type to be analyzed the algorithm computes setswedit-level entities contained
by each element of the pair. For example, analyzingithekes relationship between the
modulesP A and P B the algorithm computes the two sets A andset B. setA holds the
methods:(), b(), ¢(), m(), andn() that are contained by packagel. set B comprises the
methodsz(), andy() that are contained by packagds.

. Query relationships between sets of entitiBased on the source code model graph the

algorithm computes the direct relationships from entitieset A to entities ofset B. Re-
ferring to our example the result of the query comprises ihectiinvokes relationships
b() — z(), m() — z(),n() — z(), andn() — y(). Whenever the query retrieves
at least one lower-level relationship the algorithm aggteg these relationships to an ab-
stract relationship and computes the coupling metricsantesl by TablEGl6.

. Output abstracted relationships and metricBhe result comprises aggregatee.(ab-

Chapter 6: Architectural View Abstraction

49

Abstraction—-Example

~
- ~

-

7 N
-

™.

A

- ~
~

~

[CAlJ [CA2

J

T
I

1 '

A

\

/
/
/

™ y0)

A\
a()\,’~ b() ,l > nQ
| \ y
' ?&‘/
=1 m()

thgher—level entity |:| method

— — P contains

— invokes

Figure 6.2: Source code model with 2 packages, 3 classesthods contains and invokes

relationships.

stracted) relationships between selected higher-levélesnand computed metric values

assigned to them. They are stored in the source code model.

The enriched source code model of our example is depicteddoydfe.3B. It contains a new

invokes arc between packagel and P B with three measured values that indicate the number
of aggregated lower-level invokes relationships (RNAg number of callers i’ A (RNCR)

and the number of callee’s IRB (RNCE).

Listing[61 outlines the implementation of the ArchView @hstion algorithm in Java using

the structured query language (SQL) for information retie
Listing 6.1: Algorithm to abstract direct relationshipstgpe rType between the higher-level

entitiese A andeB.
public classAbstractorextendsQuery{

private Entity eA, eB;
private String fromType, toType;

private String relType;

protected arcFactory =new ArcFactory();

public Abstractor(Entity eA, Entity eB, String fromType,

String toType, String relType)

50 6.4 Abstraction Algorithm

Abstraction—-Example

y . L W
[CAl J [CA2 CB1
J

/ /1 \‘ l(‘ ,/ ‘
a() \,’5 b() ,l > n() /‘ ™ y(

| \ y

Y/ VI —— X()

c() =1 m(

thgher—level entity |:| method

— — P contains — invokes

Figure 6.3: Source code model graph enriched by abstractedcs relationship betweerr A
and P B and computed coupling metrics.

this(eA, eB, fromType, toType, relType);
}

public Arc abstractRel()
Arc arc =null;

Il get entities of eA and entities of eB
Vector setA = eA.getContainedEntities(fromType);
Vector setB = eB.getContainedEntities(toType)

Il select relationships between entities of setA and setB
String sql ="select count) nr, ”
+ "count(distinct r.from) nrFrom, ”
+ "count(distinct r.to) nrTo ”
+”"FROM " + relType +'r”
+ "WHERE r.nodeFrom IN ("+ buildIDs(setA) +") ”
+”AND r.nodeTo IN (" + buildIDs(setB) +)";

Statement sqlStm = connection.createStatement();
ResultSet rs = sglStm.executeQuery(sql);

Chapter 6: Architectural View Abstraction 51

if (rs.next()){
/[create new abstract arc and add measures
arc = arcFactory.create(relType, eA.getID(), eB.gellD()
arc.addAttributefr”, rs.getint{nr”));
arc.addAttributéfrFrom”, rs.getint{nrFrom”));
arc.addAttributéfrTo”, rs.getint(nrTo”));

}

return arc;

}

The algorithm abstracts direct relationships of tyjpgpe between two entitiesA andeB. Step

1 accords to the initialization of the algorithm that is daméhe constructor. The algorithm itself
is implemented by thebstract Rel() method. According to step 2 it first computes the contained
entities ofeA ande B stored in the vectorset A andset B. The identifiers of entities of both sets
are used in the SQL-query that is composed next (step 3).ekasuted on the database table
relType and retrieves relationships with a source (from) entityt teacontained byet A and
with a target (to) entity that is contained byt B. The number of matched relationshipg) and
number of sourcer(r F'rom) and targetr10) entities are returned. If relationships have been
found then a new arc object of typelType betweerc A andeB is created. Retrieved measures
are assigned to the arc object that is returned to the catieitpod.

6.5 SUMMARY

The ArchView abstraction algorithm aggregates relatigmsbetween lower-level source code
entities along the containment hierarchy up to highertlenéties, such as classes, files, direc-
tories, packages, and respectively software modules doslystems. A relationship between
two higher-level entities is established whenever theet Isast one relationship between their
contained source code entities.

In addition to abstracted relationships, the algorithmveésrmeasures for each higher-level
entity and abstracted relationship. They are indicatarghe size of entities and the strength of
abstracted relationships. Established relationshipgedisas computed measures are added to
each source code model.

The abstraction step is applied to data models of selectedses. Enriched models are
used in the analysis and visualization phase to analyze esggipt higher-level views on the
implementation and its evolution.

52

6.5 Summary

CHAPTER Y

VISUALIZATION & A NALYSIS

This chapter describes the ideas and techniques used byiaveciio compute different views
on the integrated data model. Each view highlights a pddicspect and aids an engineer in
understanding the current implementation and its evatutio

7.1 INTRODUCTION

Visualization has been accepted as a useful means to uadérsbmplex data, because visual
displays allow the human brain to study multiple aspectsoohglex problems — like reverse

engineering — in paralle[[SDBPB8]. However, often the gi&zations themselves are hard to
interpret, and in the case of evolutionary data, they oftertsed in obscuring the relevant infor-
mation.

Visualization has to focus on the interesting informatiod &ide/filter information of minor
interest. With regard to architecture recovery the degfaaterestingness depends on: 1) the
architectural aspect/property the user wants to analyd@athe viewpoint from which the user
looks at the extracted, integrated, and abstracted datalshod

The aspect focused on by ArchView concerns the implememaitnd the evolution of soft-
ware systems. They comprise aspects of the:

e Logical structure of the implementation:
— Which are the main building blocks €., implementation units) of the software sys-
tem?

— Which units are coupled with each other and how strong argetbeupling depen-
dencies?

— Are there entities and relationships that indida&&l Smellssuch as cyclic coupling
dependencies @gsod Module8

53

54 7.2 Feature Vectors and Evolution Matrices

e Evolution:

— How did the software modules and the coupling dependene@sges— can we iden-
tify change prone modules aRad Smellssuch asDivergent Changer Shotgun
Surgery

— Which units were most vulnerable to problems and modifiedtrinequently?
— Are there change couplings between modules and how strerihey?

To answer these questions ArchView provides a number cdraifft views on the implemen-
tation and its evolution. In the following we present thesaws and describe the visualization
techniques that we use to compute them.

7.2 HEATUREVECTORS ANDEVOLUTION MATRICES

The data input to the visualization and analysis technigiéschView is obtained from the in-
tegrated data model stored in the ArchView repository. fttams the software module informa-
tion, the link to the source code entities that implementiwsse module, the aggregated source
code and change coupling dependencies between softwardes@hd lower-level source code
entities, and measured values of module and relationshipasi.e

Metric values of each module and relationship are repregdoy ani-dimensional feature
vectorM = {m;, ms, ..., m;}. To denote the evolution of a module or relationship the esiof
the same set of metrics are tracked onvaeleases. The results are per module or relationship
a set ofn feature vectors. The release number is added to the featgterdeading taV/" =
{m?},m%,...,m!'}. Based on these vectors the evolution of a module or relshipnris expressed
by the following evolution matrix® containing the: vectors with measured valuesiahetrics:

my m] .. m}

my my .. mb
Eixn =

m;, m! .. ml

Evolution matrices are computed for each selected modweedationship. The number of
metrics to be considered depend on the aspect to analyze oretlv to visualize respectively.
ArchView provides a predefined set of views and metric coméigans but also supports the user
to compose his/her own views.

Table[Z1 provides a tabular representation of an evolutiatmix. It lists an excerpt of metric
values used to characterize the size of a software modutbidexample, the software module
is Mozilla’s Document Object Model (DOM) module and metriglwes are of seven selected
Mozilla releases. The abbreviations of the metrics aredish the first column. Remaining
columns are headed by the release number and contain thene@asalues.

Chapter 7: Visualization & Analysis 55

Metric 0.92 0.97 1.0 1.2 1.4 1.6 1.7
NOD 44 45 50 50 50 50 49
NOF 397 405 443 464 ar7 485 492
NOC 459 476 528 566 595 607 609
NOM 9.802| 9.395| 10.346| 10.823| 11.104| 11.130| 11.068

NGF 333 880 288 325 341 334 330
NFM | 10.135| 10.275| 10.634| 11.148| 11.445| 11.464| 11.398
NOA 906 988 | 1.118| 1.236| 1.292| 1.316| 1.293

NGV 219 227 234 262 250 237 229
NOV 1.125] 1.215| 1.352| 1.498| 1.542| 1.553| 1.522

Table 7.1: Example of an evolution matrk,; containing measured values of 9 module size
metrics of Mozilla’'s DOM module of 7 releases.

The size values listed in the table clearly indicate a grgwodule. For instance, the number
of files (NFM) that implement the DOM module increased froni 89492 source files. A similar
trend can be observed for the number of global functions agttiods (NGF) that increased from
10.135 to 11.398 functions/methods.

In this form evolution matrices are input to the ArchView & and visualization tech-
niques to, for instance, generate views on one or seveezses.

7.3 HIGHER-LEVEL VIEWS ON A RELEASE

The basic principle of the ArchView visualization technégs the mapping of module and rela-
tionship metrics to graphical attributes. A recent apphahat concentrated on such a mapping
are the polymetric views introduced by Lanegial. [LD0O3]. Basically, the model data is visu-
alized with graphs whereby nodes represent the source coitieeand edges the relationships
between them. The extension to traditional graph visu@dinaapproaches is that nodes and
edges of graphs are rendered with metric values as demtatsbya Figurd_Z]1.

With the polymetric view technique up to 5 different metricsiodes and 3 different metrics
in relationships can be visualized. The five node metricsarthe width, height, color, x-, and

y-position of a node in a graph. The three edge metrics arénéowidth, length, and color of an
edge.

The width, height, length, and color metrics of nodes aneéesdgn be used in different graph
layouts. The x- and y-position metrics are not applicablgraph layouts in which the position
is computed by the layout algorithra.§.,tree, spring, etc.).

Fenton and Pfleeger call this rendering technioueasurement mappif&P96]. Their con-
dition is: “A measurement mappinty must map entities into numbers and empirical relations
into numerical relations in such a way that the empiricatiehs preserve and are preserved by
the numerical relations”. This condition is satisfied by glmdymetric views technique in that
larger values lead to larger glyphs.

56 7.3 Higher-Level Views on a Release

. . —— Width Metric —
X — Position Metric

y — Position Metric f

Heigth
Metric

'
f
Length Metric

'

Color Metric

Color Metric

\

Width Metric =

Figure 7.1: Mapping of metrics to graph attributes using/pudtric views.

ArchView adapts the polymetric views technique to visuatize various views on computed
data models. Metric values are retrieved from the evolutiatrices that in case of one release
are vectors. The mapping of the values of a vector to graphtt@utes {.e., size, color and
position) is done by the graph visualization tool.

We use Lanza’s CodeCrawlér [Lan03] to draw and layout thiemint views on the imple-
mentation ofonesoftware release. In addition to the existing polymetramg, we specify a set
of new views that also take into account our evolutionaryriogt The example views are taken
from the Mozilla case study that we present in Chagter 8.

For describing the configuration of each view we use the ¥olg schema:

Nodes Entity type represented by a node in the graph. We consafenare
modules (Mozilla), source files, packages, and classes.

Edges Relationship type represented by an edge in the graph.

Scope The scope of a view can be all or a selected set of moduleseobon
releases.

Node Metrics: List of graph node attributes and mapped module metrics. thaadi-

tional polymetric views graph node attributes are Size o€and Or-
der. For views with Kiviat diagrams we list the categoriesrtrics.

Arc Metrics: List of graph edge attributes and mapped relationshipiosetin this
thesis we limit the edge attributes to the Width of edges.

For each view we present the interpretation of the visudlinéormation on hand of an
example and the possible variations in the view configunatio

Chapter 7: Visualization & Analysis 57

1. MODIFICATION HOTSPOTS VIEW

The objective of this view is to highlight the implementationits that were most vulnerable to
problems and modified most frequently as well as the idle tadgesentities.

Nodes Software modules, source files
Edges -
Scope Full system of 1 release
Node Metrics:
Size: Width: NMR
Height: NPR
Color: CCMPLX
Order: NMR
Arc Metrics: -

View Interpretation Large nodes represent fault prone entities that were fregumodified
during a specified observation period. They are the entitiasinfluenced the evolution of a
system most. Small nodes represent entities that were mchéal during this time hence denote
the stable entities. The color of a node indicates the McCatotomatic Complexity of a module
whereby dark nodes represent the complex modules.

Figure[Z2 depicts an example taken from the Mozilla casgyst&volution metric values
are of modification and problem reports that were committediraported during the time from
release 1.6 to 1.7. The large nodes at the bottom represenh#inge prone source files with a
large number of reported problems and committed changessifiall nodes on the top represent
the stable entities. The color of nodes indicates that miosteochange prone source files have
also high values for the cyclomatic complexity and prografficdlty metrics.

OO00000000C0 00000000000
[[000000000001 00C [
JOCIC 00000000000 o] [o o

[] [[] goo [o o o o o
[] [[o |] 8 o o o o
Oooo0 [[o [[] o o o

I o o [| 1000 00 [[|]

0
DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

o T
DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

[0

e o

o S e

NN | e e

e DD |
) e o e A
e e e

I e e O D
) e e ==)

I e T T e L | .

Figure 7.2: Modification hotspots view on Mozilla 1.7 soufibes with measured evolution and
complexity metrics. Node: width=NMR; height=NPR; color€MPLX; order by NMR.

58 7.3 Higher-Level Views on a Release

Variations For the evolution metrics the user can select different sfasen periods. Instead
of the cyclomatic complexity the user can also select otlzerand complexity metrics, such as
lines of code (LOC), number of functions and methods (NFM)he Halstead program difficulty
(HALDIFF) metric.

2. SOURCE CODE COUPLING VIEW

This view is used to represent the coupling between impléatien units meaning software mod-
ules, source files, packages, or classes. The objectivehightight the strong coupled entities
and the strong coupling relationships. In the presentes ganfiguration coupling relationships
refer to function/method calls.

Nodes Software modules, source files, packages, classes
Edges invokes
Scope Selected elements of 1 release
Node Metrics:
Size: Width: IFan-out
Height: IFan-in
Color: NFM
Order: -
Arc Metrics:
Width: RNAI

View Interpretation Wide, narrow nodes represent implementation units thatursgional-
ity offered by other units but themselves are not used byraihés. They are typical service
requesters. Tall, narrow nodes denote service provideos&/provided functionality is used
by other units. The color indicates the amount of functidpaiplemented by a module — the
darker a node the more functionality the entity contains.

Figure[ZB depicts an example of a source code coupling vidwe. node on the right side
of the graph represents a typical provider of services tleatiaed by the requester node on the
left side. Edges represent the coupling relationshipsat@tue to function/method calls. The
direction of edges denotes the usage of functionality. @ccate the direction of a relationships
the edge is drawn from the bottom of the requester node toofheftthe provider node. The
width indicates the strength of the coupling relationshipgerms of number of function/method
invocations.

Variations Views can get complex when visualizing a large number oftiestand relation-
ships. To produce graspable views the user is able to imeApchView provides filtering and
user-selection. Thresholds are used to filter nodes andesigeh as standalone nodes and edges
of weak coupling relationships.

Regarding the type of coupling the user can select diffaggras of source code relationships
and use the corresponding fan-in, fan-out, and size meffimsinstance, to depict the coupling
by class inheritance we select tinderitsrelationship type, the IHFan-out and IHFan-in, and the
number of classes (NOC) metrics.

Chapter 7: Visualization & Analysis 59

Figure 7.3: Source code coupling view by function/methdi$ cd two software modules. Node:
width=IFan-out; height=IFan-in; color=NFM; Arc: width=NmR\I.

3. CHANGE COUPLING VIEW

This is similar to the source code coupling view but showsdh&nge dependencies between
implementation units instead of the source code coupliNgsialized metrics refer to an user-

specific observation period. The objective is to highlidtg entities that most frequently were

modified together and consequently have a strong changdirgup

Nodes Software modules, source files
Edges couples
Scope Selected elements of 1 release
Node Metrics:
Size: Width: NMR
Height: NMR
Color: -
Order: -
Arc Metrics:
Width: RNAC

View Interpretation Large nodes represent frequently modified entities, su¢heasode on
the right side of the graph of Figute¥.4. Small nodes reptestable entities. Each edge
denotes a change coupling between two entities that resiutien a modification that affected
both entities. The more such pairwise modifications occlitie stronger is the change coupling
as indicated by the width of an edge.

Variations The selection of the entities of interest as well as filtemeduces the amount of
information and keeps views understandable. Concerniagetiolution metrics the user can
select a different observation period to analyze the chaogeling that occurred during this
period.

60 7.4 Visualizing Multiple Evolution Metrics

A

A\

Figure 7.4: Change coupling view of two software modulesd&avidth=NMR; height=NMR,;
Arc: width=RNAC.

7.4 VISUALIZING MULTIPLE EVOLUTION METRICS

The ArchView visualization approach follows the polymetriews principles of mapping metric
values to graphical attributes. However, there is a probiétin the number of metrics that can
be visualized for a node using current tools, such as Coadéxrarhe primary reason lies in the
limited number of attributes for the glyphs used to draw ttegb nodes. In case of CodeCrawler
the glyphs support up to 5 metrics whereby the metrics foxtlaad y-position are not applicable
in all graph layout algorithms.

Kiviat (also called radar) diagrams are suited to presentivadate data. FigurE—7.5 shows
an example of a Kiviat diagram representing measured valigs metrics ofmodule A. The six
metricsM1, M2, ..., M6 are circularly arranged. For each metric there is a strdigatdrawn
from the center point of the diagram to its outer boundarye iue of each metria, , m,..., my
is plotted on its corresponding straight line and adjacahtes are connected by lines. The result
is a polygon witht vertices.

moduleA

M5 Mé

Figure 7.5: Kiviat diagram with values of 6 metrig$1, M2,, M6 of nodul eA.

Chapter 7: Visualization & Analysis 61

To prevent diagrams to become cluttered with informationace requirements have to be
met: 1) normalization of metric values to a maximal drawiegdth to prevent over-sized Kiviat
diagrams; 2) using a minimun.€., an offset) that is added to computed values to prevent in-
formation cluttering in the center of Kiviat diagrams. Metvalues are drawn with respect to
these minimum and maximum drawing range. We will see latahanthe limitation in size is
necessary to link Kiviat diagrams to Kiviat graphs.

In the following we present two new polymetric views with kKavdiagrams that aid in ana-
lyzing the size, complexity, and evolution of implemengatunits.

1. DETAILED SYSTEM HOTSPOTS VIEW

This view is an extension of the system hotspots view desdrity Lanzal[Lan03]. The primary
objective is to identify the large and small as well as comglied trivial implementation units.

Nodes Software modules, source files, packages, classes
Edges -

Scope Full system of 1 release

Node Metrics:

Complexity: CCMPLX, HALCONT, HALEFF, HALDIFF

Size: LOC, NOD, NOF, NOP, NOC, NFM, NOV

Arc Metrics: -

View Interpretation Kiviat diagrams with big circles indicate large and compdéaments. If
the circles are exceptionally large, then the elementGod Module In contrast, small circles
indicate trivial elements of small size and low complexity.

Circles can exhibit indentations and peaks. For instanpea& in the number of variables
(NQOV) metric indicates data storage elements. Diagramis avibw NFM value but high com-
plexity denotes modules that implement complex algorithms

Figure[Z6 shows an example of a Kiviat diagram of one softwaodule. The diagram
indicates a large, complex module that contains a large euwivariables and attributes. The
relation between the number of functions (NFM) and the LOGriceindicates a module with
few but long and complex functions and methods. The indemtdtty the number of packages
(NOP) metric is due to the fact that the developers did noGi€2-+ namespaces.

Variations Depending on the abstraction level the user can add or offeteint size metrics.
For instance, on the file and class level the NOD, NOF, and N@#fies are not used. Instead of
this metrics the user may add metrics quantifying the nurabattributes and methods according
to the different access modifiers.

2. DETAILED MODIFICATION HOTSPOTS VIEW

This view presents the evolution metrics of implementatimits that currently are software
modules and source files. The objective is to highlight teeneints with a large or small number

62 7.4 Visualizing Multiple Evolution Metrics

ENOC 5 NFM

7:NOP
10:NOV

6:NOF

0:CCMPLX

5:NOD 1:HALCONT
410C 2HALEFF

3:HALDIFF

Figure 7.6: Detailed system hotspots view of one softwardutewith complexity (nr. 0..3) and
size metrics (nr. 4..10).

of modifications and reported problems. The first categonpotis change prone modules to
which most of the maintenance and evolution activities wkygicated to. The latter category
denotes idle elements.

Nodes Software modules, source files
Edges -
Scope Full system of 1 release

Node Metrics:

Modifications: NMR

Problems: NPR, NPR-s-, NPR-blocker, NPR-critical, NPR;emNPR-major,
NPR-minor, NPR-normal, NPR-trivial, NPR-p-, NPR-p, NPR;P
NPR-P2, NPR-P3, NPR-P4, NPR-P5

Arc Metrics: -

View Interpretation Change prone modules are indicated by peaks for the numbaod{
ifications (NMR) and reported problems (NPR). The latterugter detailed by the different
problem report metrics. The most change prone modules healespn measured NPR-critical
and NPR-P1 and NPR-P2 metrics. The first metric denotes tdauof critical problems and
the latter the number of problem reports of high prioritygutie[[Z.¥ depicts an example of a
change prone software module.

Another characteristic diagram pattern denotes elembatsinderwent cosmetic modifica-
tions. They are indicated by relatively high values for theRNtrivial, NPR-P4 and NPR-P5
metrics that refer to the number of trivial problems with Ipviority.

Diagrams with small circles denote elements with few modifans and problems. We call
these elementslle elements.

Chapter 7: Visualization & Analysis 63

13:NPR-P2
12:NPR-P1__ 14:NPR-P3

TTNPR-p 15:NPR-P4
10:NPR-p-
16:NPR-P5

9:NPR-trivial

0:NMR
8:NPR-normal 1:NPR
7:NPR-minor 2:NPR-s-
6:NPR-major 3:NPR-blocker
5:NPR-enh

4:NPR-critical

Figure 7.7: Detailed modification hotspots view of one safisvmodule with modification and
problem report metrics.

Variations The user can reduce the number of metrics to one categorly, asiseverity or
priority metrics. Because the metrics are time dependenusier may also select different ob-
servation periods.

7.4.1 MSUALIZING DATA OF N RELEASES

In addition to visualizing and analyzing data of one releaisether objective of ArchView is
to communicate the evolution of metrics acreseeleases. So far we used Kiviat diagrams to
visualize multiple metrics. In this section we demonstrade we extended the Kiviat diagrams
to also visualize multiple metrics afreleases.

The two principles that allow ArchView to visualize data e/sral releases are: 1) normal-
izing metric values to the range determined by the minimuthraaximum of each metric; and
2) using a metric to represent the time-order of releases.

Reconsidering the evolution matrix ArchView computes theximum of each metric across
then releases.
MAX (M;) = mazx(m;,m; , ...,m")

2

The minimum of each metric can be consideted he effective drawing length of each metric
value is computed by normalizing the value by its maximumaahding an offset to it.

m; *c

length(m;') = of fset + MAX (M)

The constant specifies the maximum drawing size and together withathgset constant is
used to control the size of Kiviat diagrams. These constzarise configured by the user. The
different values computed for a metric acreseeleases are plotted in the diagram and adjacent

64 7.4 Visualizing Multiple Evolution Metrics

metrics of the same release are connected. The result igyeadiahat per release shows a
polygon that represents the normalized metric values ofestere vector.

The evolution of metrics is highlighted by filling the polyg®emerged between two sub-
sequent releases and adjacent metrics with different £oldsing appropriate color gradients,
such as the rainbow colors, the order of releases is madspteant and strong changes in metric
values are highlighted. But, there is a limit to the numbedath and releases because diagrams
get blurred with polygons and colors. Based on our expeegmdth the Mozilla project we set
this limit to 20 metrics of 10 releases.

Strong changes in metric values are further emphasized dyypgrg metrics according to
certain properties, such as size, complexity, or methddaalin and fan-out of modules. Re-
sulting sectors contain metrics that quantify certain atgpef the implementation and evolution
respectively and their trends. For example, by groupingiosethat quantify in-coming and out-
goinguses relationships in two separate sectors of the diagram usersategorize modules
into service providers and service requesters or both.

M3 M2

M1

Releases:
moduleA ‘ 1 -

M5 M6 ‘ 2 -

Figure 7.8: Kiviat diagram with 6 metrick/1, M2, ..., M6 of 3 releases afrodul eA.

Figure[Z.8 depicts an example of visualizing six metricenafiulc A of three releases, 2,
and3. Inthis examplé\/1 presents the number of modifications (NMR) between two syupeat
releases which also specifies the chronological order ebsels. Consequently, metA¢2 is
decreasing whereas the values of remaining metrics inefeas releasd to release. From
release to 3 the values of metrid/2, M3, andM6 increase whereby/4 and M5 decrease.

1. DETAILED SYSTEM HOTSPOTS EVOLUTION VIEW

This view is an extension to the detailed system hotspots piresented before. The extension
is by visualizing measured values of the same set of contglexid size metrics of up te
releases. The primary objective of this view is to reprefiemgrowth in size and complexity of
implementation units, such as software modules, files, ggek and classes.

Chapter 7: Visualization & Analysis 65

Nodes Software modules, source files, packages, classes
Edges -

Scope Full system ofn releases

Node Metrics:

Complexity: CCMPLX, HALCONT, HALEFF, HALDIFF

Size: LOC, NOD, NOF, NOP, NOC, NFM, NOV

Arc Metrics: -

View Interpretation The diagrams facilitate the detection of several evolupatterns that
have been described by Lanza in his thelsis [Lan03]. Fuksar is indicated by overlapping
polygons. A diagram with small circles in the earlier reksathat suddenly grew to a large circle
in one of the recent releases denot&igernovaln contrast, large circles in the earlier releases
that suddenly shrank to small circles indicai&/hite Dwarf Diagrams with large circles indicate
God Moduleghat were and still are large in size and complex. Lanzasédéethis pattern aRed
Giant. An Idle module is indicated by narrow polygons as shown by Figuie 7.9

ENOC 9NFm
7:NOP
10:NOV o
6:NOF eleases:
0:CCMPLX bl
' 2 - 3
5:NOD ®: -
1:HALCONT 4 - 5
: 5 - 6
HLoc 2:HALEFF
3:HALDIFF ®s - 7

Figure 7.9: Detailed system hotspots evolution view wittesand complexity metrics of 7 re-
leases indicating aldle module.

Variations For this view the set of variations of the detailed systenspaots view are appli-
cable. In addition, the number of releases can be configaréattis on a specific observation
period.

2. DETAILED MODIFICATION HOTSPOTS EVOLUTION VIEW

The focus of this view is on visualizing the trends of evaatimetrics. The objective is to
highlight elements that frequently were involved in modifions and problems as well as to
highlight the stable elements.

66 7.4 Visualizing Multiple Evolution Metrics

Nodes Software modules, source files
Edges -
Scope Full system ofn releases

Node Metrics:

Modifications: NMR

Problems: NPR, NPR-s-, NPR-blocker, NPR-critical, NPR;emNPR-major,
NPR-minor, NPR-normal, NPR-trivial, NPR-p-, NPR-p, NPR;P
NPR-P2, NPR-P3, NPR-P4, NPR-P5

Arc Metrics: -

View Interpretation Kiviat diagrams with large circles and polygons denote eets that

were most vulnerable to problems. They are the change pratiles with respect to the
evolution of the system. Typically, they have a high numidenodification (NMR) and prob-

lem reports (NPR). Indentations are possible for problgmomemetrics of low priority, such as
NPR-trivial or NPR- P5.

Diagrams that show large polygons in the earlier releasésiamow polygons in the recent
releases indicate elements whose evolution became staiglere[7.10 depicts such an imple-
mentation unit. The inner polygons show an increase of tinetan of reported critical problems
of high priority in the first three releases. Then, the polygbecame narrow that indicates a
reduction of reported problems.

13:NPR-P2
12:NPR-P1 14:NPR-P3
. _ N
TTNPRP 15:NPR-P4
10:NPR-p- .
p 16:NPR-P5 Releases:
9:NPR-trivial @ -
0:NMR
0:-:
7:NPR-minor 2:NPR-s- 4 - 5
6:NPR-major 3:NPR-blocker >~ 6
>:NPR-enh 4 \pR_critical @ -

Figure 7.10: Detailed modification hotspots evolution vigith evolution metrics of 7 releases.

Variations The user can select a different set of problem report metimicencentrate on the
evolution of a particular problem report category. Furtliee observation period can be config-
ured to show the changes in measured values between a spetiiicreleases.

Chapter 7: Visualization & Analysis 67

7.4.2 KVIAT GRAPHS

ArchView uses a Kiviat diagram per module to represent \&ffemultiple metrics and their
changes across several releases. But, although the dimgraride quantitative measurements
they do not explicitly show the coupling dependencies betwtae implementation units.

To also represent these dependencies ArchView links diagta Kiviat graphs. Nodes in the
graph represent the implementation units and edges reptésecoupling dependencies between
them.

1. SOURCE CODE COUPLING EVOLUTION VIEW

The view is an extension to the source code coupling viewoljsctive is to show the coupling
by function calls between implementation units. Couplingfmas presented by Kiviat diagrams
are of up ton releases and quantify the call fan-in and fan-out propexiemodules, files or

classes and changes in these metrics. Edges represengtbgatgd function call relationships.

Nodes Software modules, source files, packages, classes

Edges invokes

Scope Selected elements afreleases

Node Metrics:

Node: NFM, Fan-in (INAR-in, IFan-in, INCE-in, INR-in) andaR-out (INAR-
out, INCE-out, IFan-out, INR-out) metrics

Arc Metrics :

Width: RNAI

View Interpretation The view is extension to the Source Code Coupling View. lvjates
further measured metric values that facilitate the charation of an implementation unit into
service providers, service requesters or both. The nodbeoright side of the graph shown in
Figure[Z.T1 represents a typical requester — high fan-duesand fan-in values that are almost
zero. The node on the left side refers to an element that I laotequester and a provider of
functionality. Its diagram shows high fan-in and fan-ouiies.

Other interesting aspects visualized by this view conckendhange in the provider and
requester behavior. For instance, diagrams that showaogevalues for the fan-in and fan-out
metrics but a stable value for NFM metric indicates elemémas die. Either the functionality
has been moved to other elements or it became obsolete. Waesmlues reach zero then the
element represents dead code and should be removed.

Steadily increasing fan-in and fan-out metric values iathdncreasing coupling with other
elements. If the corresponding coupling relationship adgen one direction then it is not a
problem per se. However, a cyclic coupling dependency @sreotiesign flaw.

Variations Regarding the node metrics the same variations as mentfondloe source code
coupling view are applicable. The user also can selectrdiffeobservation periods to analyze
the coupling between entities at different points in time.

68 7.5 Summary

7:IFan-out 7:IFan-out

6:INCE-out 6:INCE-out

8:INR-out .
Releases:

onem @2 -

5:INAR-out 5:INAR-out

4:IN-iln 4:INR-in

1:INAR-in

3:NCE-in INCE-i
3INCEIN 5 iFan-in ‘6 -

w
i
N o wN

2:IFan-in

Figure 7.11: Source code coupling evolution view on the &aggy function calls with mea-
sured call fan-in and fan-out metric values of 7 releases.

7.5 SUMMARY

In this chapter we presented the concepts and techniquesatewiews that show implementa-
tion and evolution specific aspects of a software systemfddwes is on highlighting the change
prone modules and heavy coupling relationships.

For the creation of these views we built upon the polymetigeve technique and extended
it towards the visualization of multiple metrics nfreleases. Using polymetric views we intro-
duced a set of hotspots views that show the size, complexitycoupling metrics of a system’s
modules as well as their modification and problem report.d&tze, complexity, and coupling
metrics are used to assess maintenance and evolutiorsefftotspots refer to modules that in
relation to other modules need more effort. How much effasteris needed is indicated by the
number of problems and modifications.

In extension to the traditional polymetric views we presenthe Kiviat diagrams that we
use to: 1) visualize values of multiple metrics tracked aveeleases; and 2) visualize source
code and change couplings with Kiviat graphs. Based on dgisrtique we introduced several
views, such as the Detailed System Hotspots and Detailedfidatibn Hotspots Evolution View.
They facilitate a more detailed diagnosis by highlighting progression of metric values. Users
can spot strong increases and decreases in metric valuesitther indicate improvements or
degradations in the design and architecture. For instadesgn degradation is indicated by
strong increases in the coupling metrics that are accoragdnyiincreasing numbers of problems
and modifications. In contrast, an improvement is indicatelbw coupling values accompanied
by decreasing numbers of problems and modifications.

In the next chapter we demonstrate the ArchView techniquepplying them to the Mozilla
open source project.

CHAPTER 8

MozILLA CASE STUDY

To demonstrate and evaluate our approach we applied Arehidethe Mozilla open source
software project. The source code as well as the releasenhidata (CVS and Bugzilla) are
freely available on the Mozilla developers web-site. Thienpry objective of the case study is
to highlight aspects that concern the implementation aaetolution of Mozilla.

8.1 MOZzILLA PROJECT

The Mozilla data that we considered in the case study steoms # Mozilla releases starting
with release 0.92 (28th of June, 2001) up to release 1.7 @f7ibne, 2004). The time interval
between each two subsequent releases is about half a ydae[8[3 lists the set of releases
together with their release dates, the number of source filed€.h, .cpp, and .c) and the total
lines of C/C++ source code (LOC) per release.

Release Date #.h| #.cpp| #.c| NOF LOC
Mozilla 0.92 | 28th of June, 2001 4.695| 3.847| 1.600| 10.142| 3.306.122
Mozilla 0.97 | 21st of December, 2001 4.824| 3.896| 1.635| 10.355| 3.518.124
Mozilla 1.0 | 5th of June, 2002 5.258| 3.961| 1.970| 11.189| 3.868.025
Mozilla 1.3a| 13th of December, 20025.464| 4.119| 1.806| 11.389| 3.924.064
Mozilla 1.4 | 30th of June, 2003 5.585| 4.168| 1.832| 11.585| 3.986.466
Mozilla 1.6 | 15th of January, 2004 | 5.473| 4.161| 1.546| 11.180| 3.835.173
Mozilla 1.7 | 17th of June, 2004 5.662| 4.278| 1.562| 11.502| 3.912.631

Table 8.1: Selected Mozilla releases with the number of {iMSF) and lines of code (LOC)
metrics. The number of header files (#.h) includes headsrdié@erated from .idl files.

The table shows that the amount of source code is increasong rielease to release. For
instance, the number of source files increased by 360 fileB&bB69 LOCs from Mozilla release
0.92to 1.7.

69

70 8.2 Preparing the ArchView Repository

An interesting peak in terms of number of files and lines ofecisdby release 1.4 with 11.585
source files and 3.966.466 LOCs. Up to this release source ltasl been added permanently
due to addition of new features or extension of existinguiess. Then, from release 1.4 to 1.6
the amount of source code decreased by 405 source code &E29B). In particular, several .c
and .cpp files have been removed or sourced out to libranekel next release the source code
again increased.

The Mozilla release history data comprised 494.730 modiifioaeports (CVS log entries)
of 40.884 files obtained from Mozilla’'s CVS repositBr;The number of files included all moved
and deleted files. Regarding reported problems we proc&&&ed10 problem reports retrieved
from the Bugzilla repositoﬂ1

For demonstrating our approach we narrow the Mozilla casgysiown to a selected set of
seven software modules that implement the handling of timecd and layout of web pages.
These modules are amongst the Mozilla core modules. TaBlés8s the selected software
modules together with corresponding source code diresstaontaining their implementation.
The mapping between modules and source code directoriesdmsderived from Mozilla’'s
design documentatifin

Module Source Directories

MathML layout/mathml

New Layout Engine layout/base, layout/build, layout/html

XPToolkit content/xul, layout/xul

DOM content/base, content/events, content/html/content,

content/html/document, dom
New HTML Style System | content/html/style, content/shared

XML content/xml, expat, extensions/xmlextras
XSLT content/xsl, extensions/transformiix

Table 8.2: Mozilla content and layout modules and corredpansource code directories.

In the following section we provide the details about obtagnthe data from the different
sources and building the data models. They contain the &dmisit the implementation and
evolution of the content and layout modules of Mozilla.

8.2 PFREPARING THEARCHVIEW REPOSITORY

The basis for the ArchView repository is formed by the infatran stored in the source code of
the different releases and Mozilla’s CVS and Bugzilla réjooes.

Ihttp://www.mozilla.org/cvs.html
2https://bugzilla.mozilla.org
3http://www.mozilla.org/owners.html

Chapter 8: Mozilla Case Study 71

8.2.1 DURCECODE MODEL

In order to extract the source code models of each Mozilleas® we first checked out the
complete source code of each release from Mozilla’s CVSgigpy. We then configured and
compiled each Mozilla release to generate the header filesfou dl files and the Makefiles
for the C/C++ compiler. In the configuration for the compiee selected.inux as the target
platform, the GNU C/C++ compiler, and Mozilla’s standardmqmonents as pre-configured by
the Mozilla developers.

For parsing the C/C++ source code of each release we used1£lg§xl—4[ﬂ tool. The tool
comes with a C/C++ parser that does a full semantic parsirgpoifce files, analyzing all the
symbols in the code. The Imagix-4D parser is compiler indepat and is able to accurately
analyze source code developed for a number of C/C++ comspilEmulation of compilers is
facilitated by the use of compiler configuration files. Theytin the compiler specific settings,
such as the path to system include files, type definitionsn@ato definitions.

Regarding the Mozilla source code we selectedheux gcc as basis configuration. The
Mozilla specific compiler settings were added to this file.géb these settings we inspected the
different Makefiles of each Mozilla module and obtained ttditonal include paths, compiler
directives, and the set of files to exclude from the parsiruggss. For instance, we added the
directories that contain Mozilla specific header files togpstem include path. Mozilla specific
compiler directivesi(e., #defines) were taken from theozi | | a_confi g. h file. Mozilla’s
Makefiles contain also the list of directories and files tdude. This allowed us to determine
the list of files to exclude from the parsing process. Foraneg, files that contain platform
specific €.g.,Microsoft Windows) source code.

The Imagix-4D parser stores extracted source code facts lmagix-4D database that is a
proprietary database that can not be directly accesseddtudside the Imagix-4D tool. Using
our Imagix-4D plug-in we exported the database of each paseerce code release to an E-
FAMIX compliant (Rigi Standard File) RSF file. Exported faghclude the source code entities
and relationships as specified by the E-FAMIX meta model anoce code metrics computed
by the Imagix-4D parser.

We used the RSF file as an intermediate representation ofraesoode model because this
data format is understood by several reverse engineeriig, &uch as Rigil[MK88][[WWaon98] or
grok [EHOO]. We used these tools to edit, filter, cleanse \éswhlize exported source code mod-
els. For instance, we used grok to compute the transitivsictoof thecont ai ns relationships
which was needed in the data abstraction step. And we useddRagld the module structure
to each of the source code models. The structure is definetdebgnodule-source directories
relation as given by Tab[e8.2.

The cleansed RSF file of each source code release was inpBetbscript that generated the
SQL file which specified the layout and the contents of an Aret\source code model database
of one Mozilla release. We imported each SQL file issutggql dbnane < dbnane. sql
command that created and filled the source code model databadViozilla release.

4http://www.imagix.com

72 8.2 Preparing the ArchView Repository

Table[8B provides the measured size metrics of number cda®d source code entities of
the seven Mozilla modules per release. Size metrics reprabsolute values computed from the
snapshots that we took from the Mozilla source code at eaticylar release date. In its recent
release 1.7 the content and layout modules implementatiorpases 1.321 C/C++ source and
header files (NOF) that are contained by 145 directories (N@DPe files contain 1.677 classes
(NOC) with 22.130 methods (NOM) and 4.983 attributes (NCs)d 1.433 global C functions
(NGF) and 1.950 global variables (NGV).

Release NOD | NOF| NOC| NOM | NGF| NFM | NOA | NGV | NOV
Mozilla0.92| 146| 1.212| 1.369| 21.018| 1.610| 22.628| 4.361| 1.789| 6.150
Mozilla0.97| 147 | 1.242| 1.404| 20.189| 2.668| 22.857| 4.486| 1.996| 6.482
Mozilla 1.0 159| 1.347| 1.587| 22.369| 1.702| 24.071| 5.087| 2.079| 7.166
Mozilla1.3a| 154| 1.364| 1.677| 23.161| 1.420| 24.581| 5.159| 2.092| 7.251
Mozilla 1.4 147 | 1.317| 1.681| 22.487| 1.472| 23.959| 4.964| 2.033| 6.997
Mozilla 1.6 146 | 1.317| 1.687| 22.657| 1.443| 24.100| 5.000| 1.943| 6.943
Mozilla 1.7 145| 1.321| 1.677| 22.130| 1.433| 23.563| 4.983| 1.950| 6.933

Table 8.3: Size metric values of Mozilla’s content and laymodules of the seven releases.

The measured value of the size metrics of the seven diffeetgdses indicate that the number
of source code entities of the implementation of the coraentlayout modules increased up to
release 1.3a and after that slightly decreased. For instéme number of functions and methods
(NFM) increased to 24.581 in release 1.3a and then in the $iegleases decreased by more
than 1.000 functions/methods down to 23.563. Consequéinsiyfunctionality was added to the
seven modules which then was consolidated in the lattereasek.

8.2.2 CVSAND BuUGzILLA DATA

For retrieving the modification and problem reports we aggpthe RHDB Populator tool. The
tool traverses the Mozilla source code tree and for each fitaimed the modification reports
(MRs) from Mozilla’s CVS repository. Each report was parseth respect to the key informa-
tion as described in the Sectibnls.4. Extracted facts weredin the ArchView repository.

Next, we connected to Mozilla’s Bugzilla repository andiested the problem reports (PRs)
in XML format issuing thenget command. For instance, to retrieve bug number 12345 we
issuedwget https://bugzilla.nozilla.org/ xm.cgi?i d=12345. The down-
loaded XML files were parsed and extracted facts about thielgmoreports were stored in the
repository.

Overall we retrieved 494.730 MRs from the Mozilla CVS repasi and 255.310 PRs from
the Bugzilla database. The number of modification and probikeports are accumulated over
time. Modification and problem reports start with 28th of Blar1998 when the new Mozilla
project was set Lﬂ) The number of MRs and PRs that were involved in the evolutibthe
source files of Mozilla’s content and layout modules aretidty Tabld8H.

Shttp://www.mozilla.org/roadmap.html

Chapter 8: Mozilla Case Study 73

Release NMR NPR | NPR,; | NPR.itical | NPR.csoived | NPRfiged
Mozilla 0.92| 42.749| 15.946| 2.323 1.808 2.732| 14.316
Mozilla 0.97 | 48.729| 20.769| 3.174 2.009 5.383| 18.219
Mozilla1.0 | 56.714| 24.145| 3.622 2.397 7.183| 21.020
Mozilla 1.3a| 59.539| 26.230| 3.970 2.512 8.907| 22.673
Mozilla1.4 | 62.702| 28.003| 4.318 2.621 10.423| 24.159
Mozilla1l.6 | 66.441| 29.881| 4.650 2.702 12.114) 25.926
Mozilla 1.7 | 69.402| 30.650| 4.728 2.734 12.835| 26.528

Table 8.4: Accumulated number of modification and probleports obtained for the source files
of the content and layout modules. The number of PRs is fudétiled in four categories com-
prising the numbers of PRs with highest priori{, severitycri ti cal , statusr esol ved,
and resolutior i xed.

For instance, in the time from the 28th of March, 1998 to th#h 28 June, 2001 (release of
Mozilla 0.92) the Mozilla developers committed 42.749 dapafogs to Mozilla’s CVS repository
for the source files implementing the content and layout rresduThen, from release 0.92 to
release 1.7 another 26.653 modification reports were adsisl NMR column of TablE—8.4).
Regarding the problem reports different attributes existie Bugzilla database that allow for
a further categorization of PRs by its status, resolutiemesty, and priority. TablE8l4 lists the
total number of PRs and the numbers of four important categof problem reports:

e pl: mostimportant PRs with highest priority.

e criti cal : PRs with serious negative impact on the systee,ystem crashes, loss of
data, and severe memory leak).

e resol ved: PRs for which a resolution has been taken, and it is awavtndication.

e fi xed: PRs for which a fix is checked into the source code tree anedes

Similar to the size metrics of source code models the proloégrart metrics were computed
based on snapshots that we took from the Bugzilla databasetatn points in timei(e., when
we filled the release history database). However, problgrartettributes, such astatusand
resolutionchange over time because work is going on on bugs. For irestavieen a problem
is reported the report gets the statiesv. Then the problem iassi gned to a developer who
works on it and provides a resolution. When there is a remwiuhe problem reports gets the
statusr esol ved. The resolution has to be verifiedd(, tested) and finally if successful the
status of the problem report is changedver i fi ed. In this case study we did not take into
account the activity log and left out the metrics concerrimgstatus and resolution of problem
reports. This is part of our future work.

Referring to the metrics listed in Tallle B.4 we gained théliéearlier Mozilla releases more
problems (bugs) have been reported than in recent releksesnstance, up to release 0.97 in
total 20.769 PRs were entered into the Bugzilla databasectimcern problems in the content

74 8.2 Preparing the ArchView Repository

and layout modules. With respect to Mozilla release 0.92phésents an increase by 4.823 new
PRs. 851 PRs out of the added PRs 851 were of highest pritmityontrast, from release 1.6
to 1.7 the increase is by 769 PRs in total. This is a signiflgamaller amount of PRs taking
into account that the amount of time spent for moving froreask 1.6 to 1.7 is about the same
as from release 0.92 to 0.97. The other categories of probdgort metrics show a similar
tendency.

A possible interpretation is that Mozilla’s content anddaymodules were more “buggy” in
the earlier versions when developers introduced new lay@ehanisms and dom standards than
in recent releases.

LINKAGE OF MODIFICATION AND PROBLEM REPORTS

Using the algorithm described in Sectionl5.4 we establishedinks between modification and
problem reports. In total 323.409 links were computed betw225.978 different modification
and 36.474 different problem reports. Linked MRs involv&dd25 files out of all files managed
by Mozilla’s CVS repository. Our validation of these linkglicated that 91% of the referenced
reports fell either into the groupi xed/ resol ved or fi xed/ veri fi ed. The other cat-
egories were sparsely filled which may indicate a positigefaletection or incorrect tracking
status of PRs. By comparing this data with all reports doadén from the Bugzilla database,
we recognized that a large number of PRs within the graligd i cat e, i nval i d, won’ t
fix,andwor ks for ne were notreferenced. These results supported our assunipti@o
ways: 1) only records about PRs were made that have an effettteoCVS repository; 2) a
significant number of the identified IDs was valid if we presdhrthatdupl i cat e, boxed,
etc. reports were equally distributed over the ordinaryesctreport IDs.

Therefore, our conclusion from linked modification and peot reports were: references
to PRs are available in a sufficient quantity and quality #ilmwed for further analysis. More
details are presented in [FPGD3a] in which we analyzed thzlMaelease 1.3a.

CHANGE COUPLING

For the computation of the change coupling relationshipséen source files we configured the
Algorithm[5.8 presented in Secti@n b.4 with a search radfubaninutes and applied it to the
modification reports stored in the ArchView repository. détel the algorithm detected 4.058.473
change coupling relationships between 16.029 differentcsofiles. For each relationship the
algorithm also output the total number of involved MRs, thiener of MRs for which there is a
link to a problem report, and the sum of lines added and d#:Idteese attributes characterize the
strength of a change coupling relationship. Both, relaimps and their attributes were stored in
the ArchView repository.

For more information on the computation of change coupliwgsrefer the reader to the
related publications of our group [PEG05] and Zimmermanal. [ZWDZ04].

Chapter 8: Mozilla Case Study 75

8.2.3 DATA INTEGRATION

This step is concerned with establishing the links betwéenfite identifiers of the different
source code models and the release history data. [able@&es the numbers of established
links including also the number of multiple linked files.

Release NOF | #links | #SCM files| #RHDB files | #multi. SCM | #multi. RHDB
Mozilla0.92| 1.212| 1.422 1.165 1.394 225 28
Mozilla0.97 | 1.242| 1.461 1.193 1.433 233 28
Mozilla1.0 | 1.347| 1.606 1.318 1.578 242 28
Mozillal.3a| 1.364| 1.614 1.348 1.610 233 4
Mozilla1.4 | 1.317| 1.558 1.308 1.554 221 4
Mozilla1l.6 | 1.317| 1.559 1.315 1.559 218 0
Mozilla1.7 | 1.321| 1.559 1.319 1.557 213 2

Table 8.5: Number of established links between files of ssaole models and release history
data together with the numbers of multiple linked files.

For release 0.92 and 0.97 the tool established around 968¢ tihks between file entities of
the different data models (1.165 out of 1.212 SCM files). Thesmg 4% of the links basically
were due to files that were generated during Mozilla’s comfigon and pre-compilation steps.
Most of these files had a dummy entry in the release historgbdae and zero modification
reports that caused the filtering of these files. In the l&tter releases these files were not part
of the source code release that was input into the Imagix-&Bgp. This led to a recall ratio of
more than 99.8% (1.319 out of 1.321 SCM files).

MULTIPLE LINKED FILE ENTITIES

The fact that several entries for the same file existed indiece code and also release history
data models led to multiple links between file entities. #al t. SCMcolumn of Tabl¢ 815
lists the number of multiple linked files of each source coaeleh. For instance, in release 0.92
225 files have more than one pendant in the release histayttadel. An investigation of these
files in the release history data yielded that multiple estare due to the reasons mentioned
in Section®.b. All entries of the file in the release histoagadwere linked without any false
positive link. Hence, it is possible to navigate from eactkéd file in the source code model to
all its modification reports in the release history data model.

In the other direction the number of multiple linked rele&assory data files was 28 in the
first three releases (see colusimul ti. RHDB of Table[83%). This number decreased to 2
files in subsequent Mozilla releases. A check of these filgiestin the source code models
yielded that multiple links were due to duplicated entriesthe same file in the source code
models. It turned out that the duplicates were generatethdymagix-4D parser because sev-
eral exemplars of the same file existed in different sourcke alirectories and the parser was
not able to distinguish between them. Most of these dugdantries referred to header files.
For instance, in release 0.92 the headerditen h existed in the two source code directories

76 8.2 Preparing the ArchView Repository

../ xm /dom and../xm /donf st andal one/ which led to two different file entities in
the source code models. But, because links were establighedch of the duplicated file entity
also the navigation to the corresponding release histadeywas possible from each entity.

Our conclusion is that the number of false positive linksow land as a consequence es-
tablished links are provided in reasonable quality. Thalitates a detailed integration of the
different source code and release history data models &sded by our approach.

INTEGRATION OF CHANGE COUPLING RELATIONSHIPS

Source code models contain the file entities that existduegpoint in time of a release. In con-
trast, change couplings occur during the development a aase hence at arbitrary points in
time. To integrate the change coupling relationships withsource code model data the differ-
ent change coupling relationships are aggregated. Thegaton involves the accumulation of
the metric values of a change coupling relationship (se¢cT@B).

Based on the containment hierarchy we query the source codelrof each release to get
the list of source files implementing the content and layoatintes. With this list we apply
a query to the mapping table that returns the list of file idiems known by the release history
data model. Using this list of identifiers and the dates ofswlsequent releases we finally query
the change coupling table. The query aggregates the mattla@de coupling relationships and
sums up the number of involved MRs (RNMR), the number of MRkdd with a problem report
(RNMRPR), and the number of lines added and deleted (RENT).

For each aggregated coupling relationship a record isexldatthe database that holds the
references to the two files of the source code model and theradated attribute values. Ta-
ble[8.® lists the numbers of integrated change couplingiogiships (#rels), number of affected
file entities of the source code models, and the file with tigldst number of change couplings.

Release #rels| #affected files| #rels per file| peak

Mozilla 0.92| 59.985| 908 (74,92%) 66,06 | 428 (nsXULElement.cpp)

Mozilla 0.97| 39.279| 837 (67,39%) 46,93 | 358 (nsPresShell.cpp)

Mozilla 1.0 | 30.401| 807 (59,91%) 37,67 | 341 (nsPresShell.cpp)

Mozilla 1.3a| 25.168| 754 (55,28%) 33,38| 321 (nsPresShell.cpp)

Mozilla1.4 | 51.866| 840 (63,78%) 61,75| 412 (nsCSSStyleRule.cpp)
Mozilla1.6 | 40.613| 676 (51,33%) 60,08 | 425 (nsCSSFrameConstructor.cpp)
Mozilla 1.7 | 27.648| 642 (48,60%) 43,07 | 271 (nsPresShell.cpp)

Table 8.6: Number of integrated change coupling relatigossper Mozilla release.

The numbers listed by Tadle 8.6 indicate that regarding ¢éiméent and layout modules most
of the change couplings occurred in the development of tleereheases 0.92 (59.985 created
relationships between 908 files) and 1.4 (51.866 creatatioakhips with 840 files). Relatively
low change coupling arose in the releases 1.0, 1.3a and he/rate of affected source files of
total files decreased from 74,92% in release 0.92 to 48,6%emtost recent release 1.7. This
indicates improvements in the implementation of Mozilledsmtent and layout modules.

Chapter 8: Mozilla Case Study 77

The#rels per file shows the number of change coupling relationships noreliz
by the number of affected source files. The largest value$rane the releases 0.92, 1.4, and
1.6. For instance, in release 1.4 the number of change cmgotif each affected source code
model file is 61.75 on average. Theak column lists the largest number of change coupling
relationships of a source file of each release. For instamtiee time between release 1.4 and 1.6
the filens CSSFr aneConst r uct or . cpp was changed together with 425 out of 1.317 source
files or 32.37% respectively.

CONCLUSION OFDATA INTEGRATION

Links between the source code and release history data smageé established in reasonable
quality and stored in the mapping tables. Multiple entriebath the release history and source
code data models were resolved by our mapping algorithnmd.tbie name of file entities turned
out to provide a reasonable work around for this issue.

The result of the ArchView data integration step a data mutudslfacilitates the navigation
from source code model entities to corresponding releagterfidata and vice versa. For in-
stance, we can navigate from the source code model data efta fis modification and problem
report data in the release history including computed soocle and evolution metrics as well
as dependencies with other source files. The model formsatsis for our abstraction, analysis,
and visualization algorithms.

8.2.4 DATA ABSTRACTION

For the abstraction of the data models we selected the @lasand module level. The enriched
source code model of each release was input to the abstractibthat implements the abstrac-
tion algorithm presented by Listifg $.1. According to thestasction level we configured the
tool to:

e Abstract relationships of lower-level entities as spedifiiy the containment hierarchy
model;

e Compute the size and complexity metrics of classes, filassaftware modules;
o Compute the evolution metrics out of modification and probteport data; and

e Compute the source code and change coupling metrics of das$, ¢ile, and software
module.

Concerning the abstracted relationships TabIk 8.7 listslififerent types of relationships per
abstraction level. Additionally, the right column listettypes of relationships that we considered
for the computation of the coupling metrics.

Abstracted relationships and computed metric values wered in the ArchView reposi-
tory. This concludes the data preparation phase. The sesale integrated and abstracted data

78 8.3 Views on Mozilla Release 1.7

Level Rel. types to aggregate Rel. types for coupling measurements

Class | aggregates, invokes, overrides, adnherits, aggregates, invokes, over-
cesses, hasType rides, accesses, hasType

File all relationship types of Class levekll of Class level plus couples and in-
plus inherits cludes

Module | all relationship types of File level plussame as for File level
couples and includes

Table 8.7: Abstraction levels and types of relationshipssatered for abstraction as well as for
computation of the coupling metrics of implementation sinit

models enriched with a set of source code and change couplatigcs and other source code
metrics as presented in Sectionl6.3. In the next sectionsewmudstrate the usage of the data
models to analyze and visualize certain aspects of the mmgaléation of Mozilla’s content and
layout modules ant their evolution.

8.3 VIEWSONMOZILLA RELEASE1.7

In the first analysis step we concentrate on the most recentllslcelease 1.7. The objective of
the analysis is to compute views on the integrated data mbdehddress and provide answers
to the analysis issues of the scenario described at therbagiof this chapter. The analysis
follows the order of these issues starting with highligptihe large and complex entities. For
each issue we present views on the module level that arevietldy views on the level of source
files. First views aid in gaining an initial understandingtthext is detailed by the views on the
file level. Each analysis issue is concluded by a presentatial interpretation of the findings.
Further, when presenting polymetric views we provide thé&rimenapping in the caption of the
figure.

8.3.1 LARGE AND COMPLEX ENTITIES

To get an initial understanding of the implementation of Mas content and layout modules
we start top-town with building views on the system hot-spdfor the composition of these
views we apply the CodeCrawler todl [Lan03].

Module Views Figure[81 depicts a system hot-spots view on the contentagodit software
modules using three module size metrics. The node widtlesgmits the number of contained
global variables and class attributes (NOV), the heighteggnts the number of contained func-
tions and methods (NFM), and the color represents the nuofliges (NOF).

From Figure[81l we gain that the largest modul®©@M with 1.522 global variables and

attributes and 11.398 functions contained in 492 sourcs. filehe second largest module is
NewLayout Engi ne that contains 1.394 variables and 4.404 functions in 22¢cediles. The

Chapter 8: Mozilla Case Study 79

Figure 8.1: System hotspots view on the Mozilla 1.7 contect layout modules with module
size metrics. Node: width=NOV; height=NFM; color=NOF; erdby NOV.

module with the highest amount of variableNesWHTM_St y| eSyst emdepicted on the right
side. It contains 1.572 variables.

Figure[B.2 depicts the same set of modules but this time withdomplexity metrics. The
width of nodes represents the McCabe cyclomatic compleriyric (CCMPLX). The height
represents the Halstead program difficulty metric (HALDJRRd the node color maps to the
number of functions (NFM) implemented by a module.

ol

Figure 8.2: System hotspots view on Mozilla 1.7 content aydlit modules with module com-
plexity metrics. Node: width=CCMPLX; height=HALDIFF; cai=NFM; order by CCMPLX.

DOMis the most complex software module with an accumulatedaoyatic complexity value
of 26.873 and an accumulated Halstead program difficultyevalf 51.425. It is drawn as a
large dark rectangle. The color gradient of the nodes inelicenat the modules with the largest
number of functions are the most complex ones.

File Views Software modules as used by the Mozilla project are rathsirati entities that
consist of a number of source files. To get more into detail@mdt out finer-grained hot-spots
we decrease the abstraction level down to source files.

Figure[88 depicts the 1.321 C/C++ source files implemertiegseven software modules.
Files with a high number of variables and functions are higtted by mapping the NOV and

80 8.3 Views on Mozilla Release 1.7

nsHTMLAtomList.h

000 00 OO ':I':I:"I:II:IH I
-] OOCONGT T
TOACI0000E IO0OOCICI I

I I IO OOOA0C I
N000NOONOCL,
L= ' I
| [0 [

[0
[1 I
1
LI AMOE L SO

LI AL 0

|
R)

nsCSSFrameConstructor.cpp /
nsIDOMCSS2Properties.h

Figure 8.3: System hotspots view on Mozilla 1.7 content ayduit source files with file size
metrics. Node: width=NOV; height=NFM; color=LOC; order bfFM.

NFM metrics to the width and height of nodes. The color of rogaps to the length of files in
lines of code (LOC).

The source files that contain a large number of functiongstexl on the bottom of the figure.
For instance, the file with the highest number of functionsg$ DOMCSS2Pr operti es. h
which contains 340 functions and is 3.516 lines long. Begaiusontains zero variable declara-
tions it is drawn as a long small rectangle on the right of tbtdm row. As highlighted by the
black color the largest file iss CSSFr ameConst r uct or . cpp with 13.320 lines of code. It
implements 208 functions and declares 36 global variabidsattributes.

Source files that contain an large number of global variadtgdutes but almost zero func-
tions are depicted in the top rows of the graph. They are dasftat small rectangles. Most of
them are header files that declare constants for the diffeagrelements, such as for 233 HTML
tags innsHTMLAt onLi st . h, or 214 MathML tags imsMat hMLAt o i st . h.

Figure[B4 depicts the same set of files with complexity rastmapped to the width and

Chapter 8: Mozilla Case Study 81

height of nodes. The width of nodes depicts the accumulate@aie cyclomatic complex-
ity metric (CCMPLX), the height of nodes depicts the Haldtpaogram difficulty (HALDIFF)
metrics, and the color depicts the number of contained fonst(NFM). Using this mapping
files with a high complexity are drawn as large dark rectasgle

e

Figure 8.4: System hotspots view on Mozilla 1.7 content ayadut source files with file com-
plexity metrics. Node: width=CCMPLX; height=HALDIFF; aai=NFM; order by CCMPLX.

The last row of the figure highlights source code files withhhagmplexity. The last four
nodes depict (from right to left) the filess CSSFr aneConst r uct or . cpp,
ns@ obal W ndow. cpp, nsTabl eFr anme. cpp, andnsSel ecti on. cpp. The accumu-
lated cyclomatic complexity of these files is above 1.200 @ach contains the implementation
of more than 200 functions.

Files with low complexity are located in the top rows of theghn. Most of them are header
files (.h). They contain less implementation hence theirmerity is low.

Results Presented hotspots views give an initial insight into thplementation of Mozilla’s
content and layout features by depicting involved elemergsther with size and complexity
metrics. The views clearly point out ti@Mmodule as the largest and most complex module.
With respect to the source files we identified 40 files that&@iort00 functions and more. Almost
all of these files are highly complex as highlighted by thepbreal node attributes.é., width,
height, and color). They are the files that implement mogtefcontent and layout functionality
hence are those most likely to be involved in evolution anthteaance activities.

8.3.2 FREQUENTLY MODIFIED AND “BUGGY” ENTITIES

In addition to the size and complexity metrics we computealigionary metrics that concern
the number of reported problems and the frequency of changssalizing these metric values

82 8.3 Views on Mozilla Release 1.7

yields the list of software modules and source code files ichuvmost of the work was dedicated
to. For the analysis we take into account the time period éetvihe releases 1.6 and 1.7.

Another analysis aspect concerns the check of the hypetitiesi “complex elements are
more vulnerable to problems and modifications than are elesneith low complexity”. The
following set of module and file views deal with this aspectl daghlight the elements with
exceptional high metric values.

Module Views Figure[85 shows the seven software modules with the valuesotution and
complexity metrics. The width of nodes represents the nurabmodification reports (NMR),
the height represents the number of problem reports (NRR)) tlze color attribute is used to
represent the accumulated cyclomatic complexity of theutes(CCMPLX).

Figure 8.5: Maodification hotspots view on Mozilla 1.7 cortand layout modules with evolution
and complexity metrics. Node: width=NMR; height=NPR; agl6CMPLX; order by NMR.

From the graph we obtain that ti@M module is the module with the highest number of
reported problems and modifications. In detail from releageto 1.7 1.496 new modification
and 554 problem reports were assigned to this module. Ther @mad the color gradient of
nodes indicate that the complex modules are modified mogaiémtly than modules with low
complexity.

File Views Figure[8® shows the graph with the 1.321 source files erttietith values of
evolution and the cyclomatic complexity metrics. The widthnodes represents the number
of modification reports (NMR), the height of nodes represeéhé number of problem reports
(NPR), and the color represents the accumulated cyclomatinplexity metric (CCMPLX).

Using this configuration the view highlights the source filest have been most worked on
during the development of the new release 1.7. Thesena@SSFr aneConst r uct or. cpp
(53 MRs),nsPresShel | . cpp (47 MRs),nsCGener i cHTM_EI enent . cpp (38 MRs), and
nsHTM.Docunent . cpp (37 MRs). These files are also amongst the files with a largebeum
of reported problems. In detail, fors CSSFr anmeConst r uct or . cpp 16 PRs, for
nsPresShel | . cpp 14 PRs, fomsGener i cHTMLEI enent . cpp 18 PRs, and for
nsHTMLDocurnent . cpp 19 PRs were reported.

Ordering the nodes by the NMR values the graph highlightstugce files with zero or few
modifications. These files are positioned at the top of thplgr&or instance, from release 1.6
to 1.7 742 out of the 1.321 source files were modified not mae tince. Consequently, more
than 56% of the files are almost stable. Furthermoer, for 984 that are about 70% of the

Chapter 8: Mozilla Case Study 83

OO00000000C0 00000000000
000000000001 00C [
00000000000 o] [o o

[] [[] goo [o o o o o
[] [[o |] 8 o o o o
Oooo0 [[o [[] o o o

I o o [| 1000 00 [[|]
OOOCCOOO0O0000000 000000000 C00000000000

5 5 o

5 1 o

I S | | o

e

o S e

NN | e e

e DD |
) e o e A
e e e |

I e e O D
0 I) [B =

wuumuumul_u_luuul_n_l-l—ll_lg_l--gg--

Figure 8.6: Modification hotspots view on Mozilla 1.7 coritand layout source files with evo-
lution and complexity metrics. Node: width=NMR; height=R{Pcolor=CCMPLX; order by
NMR.

files no problems were reported. The relation between théwadd height of nodes is almost
proportional. Hence, the more problem reports are repdotea file the more modifications had
to be performed.

The graph provides further clues to verify the hypothesasest before. According to the
order and color of nodes complex files are more vulnerabledblpms and are more frequently
modified than files with low cyclomatic complexity. But, tkeeis a small number of complex
source files that conflicts with the hypothesis. For instaxoet ok_i npl . c orxm parse. ¢
are rated as complex files but refer to zero MRs and zero PRscdinclusion is that although
the implementation of these files is complex it is stable.

Results From the views presented in this section the user derivesdahef software modules
and source files to which most of the evolution and maintemautivities were dedicated to.
Concerning the content and layout modules the views idedtifieDOM module as the most
complex, default prone, and frequently modified module. Vieg on the source files yielded
that 56% of the source files were not touched. In contrastplice files were modified more
than 20 times in the observation period from release 1.640Qn the problem report side 76%
of the investigated source files are stable.

The combination of the modification and problem report nestwith the cyclomatic com-
plexity measure of software modules clearly showed thatytebomatic complexity is propor-
tional to the number of problems and modifications. The viewh® source files further verified
this hypothesis with a few exceptions to report. Basicalgse exceptions indicated stable
source files. Both, stable and unstable elements were gightl by the system hotspots views.

84 8.3 Views on Mozilla Release 1.7

8.3.3 MEWS WITH MULTIPLE METRICS

In order to reason about the relations between multipleiosetve mapped the values of multi-
ple metrics to graph nodes. This functionality is providgdooir Kiviat diagram visualization
technique that we applied to compose views with multipleriogt

Module Views Figure[8.Y depicts the main size, complexity, and evolutietrics of Mozilla’s
content and layout modules. The order of metrics of eachalKdiegram corresponds to the three
categories of metrics. Metrics that belong together aratéxt side by side: 0..3 - complexity
metrics; 4..9 - size metrics; 10,11 - evolution metrics.

9:NOV
8:NFM 10:NMR

7:NOC TT:NPR
9
6:NOF 0:CCMPLX
R 9
5NOD 1:HALCONT . "
410C 2:HALEFF) .

3:HALDIFF

NewHTMLStyleSystem ° 1

4 2

NewLayoutEngine

MathML

Figure 8.7: Detailed system hotspots view on Mozilla 1. Aenhand layout modules with Kiviat
diagrams showing evolution, size and complexity metrics.

The graph highlights th®OMmodule as the largest and most complex module that also is

Chapter 8: Mozilla Case Study 85

changed most frequently. The big circle drawn in the diagnagicates theDOM module as a
“God Module”.

The second largest module MewLayout Engi ne followed by XPTool ki t. Peaks in
certain metric values are also highlighted by the Kiviatgdéens. For instance, the diagram
representing th&lewHTMLSt y| eSyst emmodule shows a peak in the number of contained
variables (NOV).

Bugzilla allows the categorization of problem reports idiiferent severity and priority lev-
els. According to this categorization we established diwmiumetrics that we measured in the
Mozilla case study. An excerpt of these metrics are deplayatie Kiviat diagrams of Figufeg.8.

13:NPR-P2
12:NPR-P1 14:NPR-P3
1T:NPR-p, 15:NPR-P4
10:NPR-p-
16:NPR-P5

9:NPR-trivial
0:NMR

8:NPR-normal 1:NPR

2:NPR-s-
3:NPR-blocker
4:NPR-critical

7:NPR-minor

6:NPR-major
5:NPR-enh

5 4 3
NewHTMLStyleSystem ’ s

MathML

3

5 4
NewLayoutEngine

Figure 8.8: Detailed modification hotspots view on Mozilld tontent and layout modules with
Kiviat diagrams showing metrics of different categoriepadblem reports.

As already shown with the system hotspots view D@ module by far is the module with
the most problem and modification reports. However, the mgistal bugs in the development

86 8.3 Views on Mozilla Release 1.7

of release 1.7 have been assigned to Ne&layout Engi ne module with 28 critical PRs
followed by theDOMmodule with 20 critical PRs. The other severity categorgesmare leaded
by theDOMmodule.

The results of measurements that concern the priority oblpm reports draw a similar
picture. DOMwas assigned the highest number of PRs with highest pritoitgwed by the
NewLayout Engi ne module.

Certain diagrams contain single peaks, such as the mo&i8e$ for the NPR-P3 met-
ric, NewHTMLSt y| eSyst emfor the NPR-trivial metric, an&KM. for the NPR-blocker metric.
They tend to indicate a high number of problems but basi@kydue to the algorithm that we
use for normalizing the values to the size of the Kiviat deegs. For instance, the maximum
for the NPR-blocker metric is 2. Having another NPR-blockeatric of value 1 results in a
normalized value that is 50% of the maximum length.

File Views On the level of source files we investigated similar aspexisrathe module level
before. However, to maintain the clearness of graphs weertdrate on the critical source code
files. Figurd 8P depicts the top 7 critical source code fildee interest is on the distribution of
the metric values of the different problem report categorie

The file with the highest number of assigned problem repsms HTM_Docunent . cpp
with 19 PRs. The Kiviat diagram depicts that almost all ofsthd9 PRs have been rated as
nor mal and of low priority. 16 PRs were assignedit®CSSFr aneConst r uct or. cpp but
10 of these reports have been rated of highest pri®¥itandP2. This clearly indicates this file
as the most critical file. Another two files that are changeprarens XULEI enent . cpp and
nsPresShel | . cpp (see NPR-P1 metric).

Results In this section we used Kiviat diagrams to visualize a nundfelifferent size, com-
plexity, and evolution metrics. On the module level we firshcentrated on the size and com-
plexity metrics. The resulting graph indicated tBé&M module as a “God Module” and the
NewlLayout Engi ne as exceedingly complex.

The objective of the second module diagram was to show thedaison of metric values of
the different problem report categories as offered by thgz8la database. According to the dia-
grams most of the critical bugs with highest priority wersigsed to théNewlLayout Engi ne
module directly followed by th®©OMmodule. As shown by the graph the center of gravity in
maintaining and evolving Mozilla’s content and layout bébain the time between the releases
1.6 and 1.7 was on these two modules.

On the file level we investigated similar aspects and presenome view on the most change
prone source filed.€., files with the most modification and problem reports). In jgaitr, this
view indicated one change prone file whicmsCSSFr ameConst r uct or. cpp.

8.3.4 SDURCE CODE COUPLING

The next couple of views present information about the dagptelationships between the
Mozilla content and layout modules and their contained g@tites. An interesting aspect to

Chapter 8: Mozilla Case Study 87

13:NPR-P2
T2:NPR-P1 14:NPR-P3

11:NPR-p 15:NPR-P4
10:NPR-p-

16:NPR-P5
9:NPR-trivial
0:CCMPLX

8:NPR-normal T:INCIn

7:NPR-minor, 2:NGF

6:NPR-major 3:NMR
5:NPR-critical 4:NPR

16 nsEventStateManager.cpf) . 2

3

nsPresShell.cpp

3

nsXULEIément.cpp

5

s
nsGenericElement.cpp

Figure 8.9: Detailed modification hotspots view on freqiyemtodified Mozilla 1.7 content and
layout source files with Kiviat diagrams showing size, coexpil, and evolution metrics.

highlight is the intermodule coupling — which modules aremed and how strong are these
couplings. Showing the cyclic coupling dependencies ig silfject to these views. They indi-

cate “Bad Smells” in the design which should be removed.
The focus of the views is on showing the strong coupling i@teships. Therefore, we apply

filtering by thresholds to clarify views. The values for tihegsholds are given in the caption of

the figures.

Module Views On the level of modules we are interested in tlsesand inheritancerela-

tionships as well as the change coupling between the saftwardules. FigurE_810 depicts
the function calls crossing the module boundaries. Thehnidtnodes represents the fan-out
of modules (IFan-out), the height the fan-in (IFan-in), d@hd color represents the number of
contained methods and functions (NFM). To highlight strongpling relationships we map the

number of aggregated function calls (RNAI) to the width ofjesl

88 8.3 Views on Mozilla Release 1.7

Figure 8.10: Source code coupling view (invokes) on MoZlla content and layout modules.
Node: width=IFan-out; height=IFan-in; color=NFM; Arc: dth=RNAI; Arc-filter: RNAI<50.

The view emphasizes the strong coupling relationships) siscbetween thBOM and the
XPTool ki t modules or between tHeOMand theNewHTM_St y| eSyst em nodul es. The
first edge represents 702 and the latter 870 aggregated anedlis. Another module strongly
coupled with these three modules is thenM_ayout Engi ne module. The color of nodes and
the width of edges indicate that strong couplings basicflsct the large modules.

We mapped the values of fan-in and fan-out metrics of funatials to the width and height
of nodes to distinguish the modules into service providers requesters of or both. For in-
stance, th&XM., XSLT, andMat hM. modules are marked as service requesters. In contrast to
these modules, thBewHTM_St yl eSyst emmodule is a service provider. The module con-
tains 1.760 functions whereby 322 (18,29%) out of them aesl Uy other modules. On the
other side, only 108 functions (6,14%) of this module cahdtions of other modules. The
DOMandNewlLayout Engi ne module play both roles because the width and height of nodes
representing the two modules are of equal size.

The graph also depicts several cyclic dependencies betwedules that indicate shortcom-
ings in the design. The strongest cycle is betweerD@dandNewl.ayout Engi ne modules
spanned by two aggregated invokes relationships with 38188 aggregated function calls.

Another cyclic call dependency is between Meav_ayout Engi ne andXPTool ki t mod-
ules. It consists of a strong and a relatively weak coupleigtionship. The weak relationship
comprising 137 function calls is the candidate to removeadsplving the cyclic coupling. We
will come back to this issue when presenting the views on teddvel.

The next view depicted by Figufe—8]11 shows the inheritateetsire of the content and
layout modules. The width and height of nodes representuheer of contained classes (NOC),

Chapter 8: Mozilla Case Study 89

the color the fan-in of overriding methods (OFan-in). Thelthiof arcs represents the number
of aggregated inheritance relationships crossing the hedzhundary (RNAIH).

Figure 8.11: Source code coupling view (inherits) on Mazill7 content and layout modules.
Node: width=NOC; height=NOC;color=OFan-in; Arc: widthNRIH; Arc filter: RNAIH < 5.

The view presents theOMmodule as the basis module from which all other modules inher
methods and attributes. The OFan-in value indicatesDB&tis the module whose methods are
overridden most by methods of other modules. According éseétmetric values the inheritance
of the content and layout module is soundly implemented.

The cyclic coupling analysis of the inheritance relatidpsievealed only minor design flaws
that are subject to re-factor. For instance, there are aehgint-weight cyclic coupling depen-
dencies due to class inheritance that are of strength up@3he level of source files we will
further elaborate on this.

File Views The objective of the file-level views is to visualize the fiteat are most involved
in the coupling between the content and layout modules ofildaelease 1.7. Furthermore, we
provide details about the cyclic coupling relationshipst thave been detected on the module-
level. Coupling dependencies include the different sowame relationships, such as file in-
cludes, class inheritances, method calls, or variablessese

Figure[BIP depicts the intermodule coupling by methodscalodes represent the source
files whereby the width and height of nodes maps to the numbé&inetions (NFM) met-
ric. Edges represent method invocations whereby the widtpsnto the number of aggregated
method calls between two source files (RNAI). To clarify thegh we applied a threshold filter
of 30 to the RNAI metric - relationships with less than 30 aggted functions calls are filtered.

90 8.3 Views on Mozilla Release 1.7

XPToolkit

XML

— DOM

\ MathML

mil
/ —
.
NewLayoutEngine NewHTMLStyleSystem

Figure 8.12: Source code coupling view (invokes) on MoZillacontent and layout source files.
Node: width=NFM; height=NFM; Arc: width=RNAI; Arc-filterRNAI<30.

The filtering results in a graph that shows 29 nodes and 22sedgeesenting the source
files that are most involved in the coupling between the meslulOut of these files there are
three source files that have strong call relationships witr #nore source files. These files
arensl Cont ent . h, nsRul eNode. cpp, andnsl Frane. h. The other nodes represent
source files that also have been highlighted by the systespbtst view before. For instance,
nsCSSFr anmeConst r uct or . cpp, nsXULDocumnent . cpp, ornsXULEl enment . cpp.

Regarding the detailed analysis of the cyclic coupling deleacies detected on the module-
level we navigated the graph of involved modules down tarthaurce files and isolated the files
that cause this design flaw. In terms of the cyclic couplingyveen theNewlLayout Engi ne
andXPTool ki t modules we found out that involved functions are containefiMe files of the
moduleNewl.ayout Engi ne: nsCSSFr aneConst r uct or . cpp,
nsLi st Cont r ol Frane. cpp,nsText Cont r ol Frane. cpp,
nsG xScrol | Frane. cpp,andnsScr ol | Port Frane. cpp.

The analysis of the cyclic coupling by inheritance yieldeé source files:
nsText Cont r ol Franme. h,ns& xScr ol | Frane. h,andnsScr ol | Port Frane. h. In-
teresting is that these source files are also involved inytbiécacoupling by function calls. Con-
sequently, clearing the inheritance contributes to theluéi®n of the cyclic coupling by function
calls.

Chapter 8: Mozilla Case Study 91

Results For the analysis of the source code coupling between M&itlantent and layout
modules we presented two views on the module level and omeonéhe file level. The views on
the module level highlighted the strong couplings by metimvdcations and class inheritance.
Concerning the first type of source code coupling the fowdar modules also are the modules
that are coupled most with each other. Several cyclic cgeddencies between these modules
were detected that needed a detailed analysis. The vieweomltieritance hierarchy yielded
a clear structure in which thBOM module is the super-module from which all other modules
inherit behavior.

The detailed analysis of the intermodule coupling was damehe level of source files.
The intention was to highlight the source files that contelbmost to the coupling between the
content and layout modules or are involved in cyclic coupliiependencies. The view on the
coupling by method invocations yielded 29 source that aupleal with files of other modules
by more than 30 method calls. The modules heavily involvethe coupling are the mod-
ules already pointed out at the module levBOM XPTool ki t, NewLayout Engi ne, and
NewHTM_.St yl eSyst em

8.3.5 &HANGE COUPLING

The views presented in this subsection are used to visuhlkzehange coupling dependencies
between software modules and their source files. They caeniie source code coupling views
by highlighting the implementation units that most freqiyewere changed together.

Module Views Figure[8.IB depicts the change coupling between the seveardand layout
modules. The width and height of nodes indicate the numberaafifications that were commit-
ted to the CVS repository during the time between Mozilleasks 1.6 and 1.7. Edges represent
the aggregated change coupling relationships. The widtdgés maps to the accumulated num-
ber of pairwise changes (RNMR). To filter out weak relatiopshve used a threshold of 200 on
the RNMR metric.

The graph again highlights ti@®OMmodule that with an NMR value of 1.496 is the module
most frequently changed. The module exhibits strong changpling relationships to all soft-
ware modules except tiéat hML module. The strongest change coupling is betweerDdéd
andNewlLayout Engi ne modules with 2.635 shared modification reports (RNMR). Aeot
two strong change coupling dependencies occur betweeKRMeol ki t and DOM (RNMR
of 1.783) andXPTool ki t andNewlLayout Engi ne modules (RNMR of 1.323). Almost all
modifications that occur in one of these three modules atkitte other modules.

File Views Figure[8I} depicts the change coupling relationships éetwsource files that
cross the module boundaries. We configured the mapping tegept the number of modifica-
tion reports (NFM) on the width and height of nodes. Edgesasgnt change coupling relation-
ships between source files whereby the size of edges maps toithber of shared modification
reports (RNMR).

92 8.3 Views on Mozilla Release 1.7

Figure 8.13: Change coupling view on Mozilla 1.7 content dagbut modules. Node:
width=NMR; height=NMR; Arc: width=RNMR; Arc-filter: RNMR:200.

Using a threshold of 5 we filtered out the weak change coupéladionships and standalone
nodes. Remaining files present the candidates that mosigindlgy were changed together. Ac-
cording to the size of nodes the set also includes the filasntloat frequently were touched
during the development of release 1.7. The detailed iryatin of the CVS history yielded that
these files are among the “top-ten” of all source files conngrthe number of committed MRs
during the development of the Mozilla release 1.7.

Most of the modifications and most of the pairwise changescedtl source files of the three
modulesDOM XPTool ki t, andNewLayout Engi ne. The remaining four modules contain
only one source file having high couplingNL andNewHTM_St y| eSyst em) or none KSLT
andMat hM.). Related to the module view presented by Fidurel8.13 thaw Yurther verifies
our previous results that the first three modules are mastalrfor source code modifications —
modifying the implementation of one of these modules impabianges to the other two mod-
ules.

Results The views presenting the modification measurements andyeheoupling relation-
ships derived the software modules and source files thatetreneged together most frequently.
On the module level the view clearly highlighted the threestaiependent modules. The view on

Chapter 8: Mozilla Case Study 93

DOM XML

XPToolkit —

ewHTMLStyleSystem

NewLayoutEngine

Figure 8.14: Change coupling view on Mozilla 1.7 content $ybut source files. Node:
width=NMR; height=NMR; Arc: width=RNMR; Arc-filter: RNMR:5.

the file level further strengthened this effect and providetailed information about the source
files most involved in the strong change couplings.

8.4 EVOLUTION FROM MoOzILLA RELEASEQ.92T01.7

In the previous section we demonstrated that our integddeimodel facilitates the generation
of different polymetric views on one release of a softwargam. In this section we go one step
further and increase the amount of data to visualize uprieases.

The primary objective of these views is to sketch the evolutbtf Mozilla’s content and
layout modules by including the dimension of time. For theswsed the Kiviat graph tool that
facilitates the composition of measurements and strustfrdifferent Mozilla releases.

94 8.4 Evolution from Mozilla Release 0.92t0 1.7

9:NOV
8:NFM T0:NMR

7:NOC 11:NPR

6:NOF 0:CCMPLX

1:HALCONT
5:NOD

410C 2:HALEFF
3:HALDIFF

NeWLayc;utEngineg

9

Releases:

@092 - 097

=o.97 ~ 10

| 2 1.0 - 13a
XPToolkit 132~ 14
14 ~ 16

@5 - 17

Figure 8.15: Detailed system hotspots evolution view on iNzontent and layout modules
with size and complexity metrics of 7 releases from 0.92 70 1.

8.4.1 B/OLUTION OF MODULES

The first set of views concerns the evolution of the seven Néozontent and layout modules.
Figure[8.1Ib depicts the Kiviat diagrams with the source e and complexity metrics. Each
circle denotes a release starting with release 0.92. Therelift colors indicate the time periods
between two subsequent releases. For instance, the biggopapanned by the two inner circles
denotes the change in the measured metric values betweasedd.92 and release 0.97. The
different values depicted by the Kiviat diagrams are noizedl by its corresponding maximum.

The graph highlights th®0OM module as the module that over the seven releases was the
largest and most complex module. The color gradient of itsgdiagram indicates continuous
growth in the different size and complexity metrics.

The Kiviat diagrams highlight outstanding changes in ngetalues, such as for théVL
and theNewHTM_St y| eSyst emmodule. The diagram of théVL module indicates a strong

Chapter 8: Mozilla Case Study 95

13:NPR-P2
12:NPR-P1 14:NPR-P3

9:NPR-trivial

8:NPR-normal

7:NPR-minor

6:NPR-major
5:NPR-enh

2:NPR-s-
3:NPR-blocker
4:NPR-critical 8

3

MathML

Releases:

: . @092 - o9
, i ®os7 - 10
LN @0 - 13
XPToolkit 132 — 14

14 ~ 16

@5 - 17

Figure 8.16: Detailed modification hotspots evolution vimwMozilla content and layout mod-
ules with problem report metrics of 7 releases from 0.9270 1.

change in almost all values between release 1.3a and 1.ssfedtion of this change revealed
that the value decreased because there was a change in tkél®tidat reduced the amount of
files needed for building théM_ module. Another change highlighted by our approach hagpene
to theNewHTMLSt yl eSyst emmodule. It affected the HALEFF metric that from release 1.4
to 1.6 decreased from 3.989 to 1.247. This change in contplisxiurther strengthened by the
decreasing values for the HALCONT and CCMPLX metrics. Therimevalues of the other
modules indicate a stable evolution of these modules wilymimor changes.

The view depicted by Figufe 8116 sketches the differentlprolieport metrics. The intention
of this view is to highlight large increases or decreasekemiumber of problem reports over the
seven releases. Large polygons highlight these stronggelsan the Kiviat diagrams.

The diagrams show that tidewlLayout Engi ne and theDOMmodule were assigned the
largest number of the critical problem reports. For Mesv_ayout Engi ne module most of

96 8.4 Evolution from Mozilla Release 0.92t0 1.7

the problems were reported in the time between release 8®2.8 as indicated by the blue and
cyan polygons. The color gradient of tB®&Mmodule indicates thddOMwas most vulnerable
to problems in the time from release 0.92 to 1.3a.

Interestingly, the largest number of trivial reports anplars with lowest priority (P5) were
reported for theXxSLT module. From release 0.92 to 0.97 the number of trivial gmobteports
increased from 56 to 159 (NPR-trivial). The smallest nunddgsroblem reports were reported
for theMat hML, XML, andNewHTM_St y| eSyst emmodules. In relation to the other modules
and from the perspective of problem report metrics theseutesdare stable.

8.4.2 BE/OLUTION OF CRITICAL SOURCE FILES

On the level of source files we applied the Kiviat visualiaattechnique to sketch the evolution
of the seven most critical source files. Figlre 8.17 showKthiat diagrams with the size and
complexity metrics. As on the module level the intention lwktview is to point out strong
changes of these values over time.

Regarding complexity thes CSSFr aneConst r uct or . cpp was and is the most complex
source file. And, this fact did not change during the develepnof release 1.7. Overall, the
Kiviat diagrams highlight only few strong changes. For amgte, the decrease of the HALEFF
and NOV metrics ohsd@ obal W ndow. cpp between the releases 1.3a and 1.4 or the decrease
of the NOC, NFM, and NOV metrics afsPr esShel | . cpp between the releases 1.0 and 1.3a.

Figure[BIB depicts the different problem report metricsesbed over the seven Mozilla
releases.

The file most affected by problems was anchsCSSFr aneConst r uct or. cpp. Its
Kiviat diagram shows a continuous increasing number oicaliproblems (NPR-blocker, NPR-
critical, NPR-major) whereby most of them were reportedhe earlier releases. The same
behavior can be stated for the number of problems with highesrity (NPR-P1, NPR-P2,
NPR-P3). The measured metric valuesiePr esShel | . cpp show a similar behavior except
that the problems reported for this file were of lower pripritFurthermore, big changes in
metric values are depicted by the diagrams1efd obal W ndow. cpp (NPR-s-, NPR-enh)
andnsEvent St at eManager . cpp (NPR-P4).

Taking into account the previous view that showed the sizecamplexity metrics most of
the reported problems concerned existing features andheocaddition of new features. Rel-
atively small increasing size and complexity metrics beidily high increasing numbers of
reported problems verify this hypothesis. The decline pbreed problems in the latter releases
indicates that these source files became more stable indéetneleases.

8.4.3 KIVIAT GRAPHS

The focus of the views presented in this section is on pragidnore detailed graphs on the
coupling dependencies between software modules. For #higss the Kiviat graph visualiza-
tion technique that connects the set of Kiviat diagrams lyesdvhich represent the coupling

Chapter 8: Mozilla Case Study 97

7:NOC 8:NFM

6:LOC 9:NOV

5:HALDIFF

4:HALEFF

Releases:

‘0.92 - 097
‘0.97 - 1.0

s 0
‘1.0 - 13a

3 2
nsHTMLDocument.cpp 13a - 14
14 - 16
3 2

nsCSSFrameConstructor.cpp ‘1‘6 - 17

Figure 8.17: Detailed system hotspots evolution view on iNzontent and layout source files
with size and complexity metrics of 7 releases from 0.92 70 1.

dependency. For the Kiviat diagrams we select the correipgrian-in and fan-out metrics to
visualize the service provider and requester behaviordi saftware module.

Figure[8.IP shows the module coupling by function calls. é&sddenote aggregated function
calls taken from the recent Mozilla release 1.7. We appli¢tt@shold of 50 to filter the weak
relationships. The values of fan-in metrics are represeoyethe attributes 1-4. Fan-out values
are represented by the attributes 5-8. The attribute ldibdid shows the number of functions
and methods contained by a module. The measurements andraikethe Mozilla releases 0.92
tol.7.

The view is an extension to the view shown by FigureB.10.dhhghts the strong coupling
relationships and several cyclic dependencies betweennfimdules. Several changes in the
values are emphasized by the Kiviat diagrams. For instaheeyumber of out-going function
calls (INR-out) of theDOMmodule steadily increased from release to release ungihsel 1.6.
After that release the value decreased by 499 from 1.808 dovir309 calls. This denotes a
decoupling of thedOM module in release 1.7. On the in-coming side of B@& module the

98 8.4 Evolution from Mozilla Release 0.92t0 1.7

13:NPR-P2
12:NPR-P1 14:NPR-P3
15:NPR-P4
16:NPR-P5

0:NMR

8:NPR-normal 1:NPR

7:NPR-minor
6:NPR-major
5:NPR-enh

2:NPR-s-
3:NPR-blocker
4:NPR-critical

1

Releases:

@052 - 097

©o97 - 10

@0 - 13

nsPresShell.cpp 132~ 14

14 — 16

nsCSSFrameConstructor.cpp ‘1.6 - 17

Figure 8.18: Detailed modification hotspots evolution viawMozilla content and layout source
files with problem report metrics of 7 releases from 0.92 o 1.

number of function calls between the releases 1.4 and lréased by 360 up to 1.459 calls.

The Kiviat diagram representing tiNewHTM_St y| eSyst ememphasizes changes in the
in-coming calls metrics between the two recent releases. value of the IFan-in metric con-
tinuously increased until the release 1.6 but then in reldag decreased by 173 down to 547
functions. The Kiviat diagrams of the remaining nodes shaly aninor changes except the
diagram ofXPTool ki t which shows an up and down for the metrics of out-going fuomcti
calls.

Figure[B.2D represents the content and layout modules hétlatjgregated inheritance re-
lationships and corresponding fan-in and fan-out metriRegarding the filtering of the weak
relationships we applied a threshold of 5.

The graph provides detailed information to the view depidig Figured(8.1l. By grouping
the fan-in and fan-out metrics the diagrams categorize tbeéutes into sub- and super-classes

Chapter 8: Mozilla Case Study 99

7:IFan-out

6:INCE-out

8:INR-out
5:INAR-out

0:NFM

4:INR-in
T:AINAR-in

3:INCE-in
2:IFan-in

Releases:

@02 - 097
®os7 - 10
) @0 - 13
2
XPToolkit 13a — 14
Ei 14 - 16
MathML @5 - 17

Figure 8.19: Source code coupling evolution view on Mozletent and layout modules with

metric values of in-coming and out-going call relationshipalues are of 7 releases from 0.92
to 1.7. Edges denote aggregated invokes relationships fa#en release 1.7 filtered using a
threshold of 50 for RNAL.

whereby high fan-out values denote sub-classes and higim feuper-classes. In addition, the
diagrams show the evolution of these metric values. Foait#, in the earlier releases the
XPTool ki t module inherited more than 40 super-classes from other leedurhen, from
release 1.3a to 1.4 the number decreased to 30 super-cla$seshange is highlighted by the
big green polygon.

Other large changes are indicated by the diagrams dfelniTM_St y| eSyst emandDOM
modules. Both diagrams denote a decrease of inter-mocdugeiiance relationships.

8.4.4 RESULTS

In this section we presented a number of views that were &xtusth visualizing multiple met-
rics and their evolution over the seven selected Mozillaasés. Using the Kiviat diagram ap-
proach these views highlighted the strong changes in theawatues that were clearly indicated

100 8.4 Evolution from Mozilla Release 0.92t0 1.7

7:IHFan-out

6:IHNCE-out

8:IHNR-out
5:IHNAR-out

0:NOC

4:IHNR-in

7
s
6
1:IHNAR-in (\Z ‘s
3AHNCEAN 5 hFan-in N\

7
6

~D

N\
, |
: \) N Releases:

NewLayoutEngines ‘ ‘ @02 - o
S @os7 - 10

. a4 @0 - 13

: DOIZ\/l 132 - 14

, 14 - 16

XSLT @5 - 17

Figure 8.20: Source code coupling evolution view on Mozlbetent and layout modules with
metric values of in-coming and out-going inheritance refaghips. Values are of 7 releases from
0.92 to 1.7. Edges denote aggregated inherits relationsaiken from release 1.7 filtered using
a threshold of 5 for RNAIH.

by large polygons.

Regarding Mozilla’s content and layout modules the diagragain highlighted th&OM
module andns CSSFr anmeConst r uct or . cpp file as the most critical entities concerning
size, complexity, past modifications, and reported probleBut, the trend of the metrics of the
two entities also yielded that the most critical phase otweentities was in the earlier releases.
In the recent release they became more stable as indicatbe Byviat diagrams.

For the detailed analysis of the inter-module couplingtr@tships we composed Kiviat dia-
grams to Kiviat graphs. The focus was on visualizing thedreicoupling metrics together with
the different types of aggregated relationships that donstthe coupling. We presented two
views on the module level, one on intermodule function c¢alfsl another view on intermodule
class inheritance relationships. Also in these views thegiKdiagrams indicated improvements
of the most critical modules whose values of coupling msttiecreased in recent releases. This
corresponds to the overall impression that we got from tlse caudy: the implementation of

Chapter 8: Mozilla Case Study 101

Mozilla’s content and layout functionality became moret#an recent releases.

Summarized, our proposal to the Mozilla developer is ta $ipdi critical entities highlighted
by our views and to resolve the cyclic dependencies. Theg waed are the central cost factors
in terms of numbers of modifications and problems. And, withe directed refactoring they
will remain these factors in the up-coming releases.

8.5 SIUMMARY OF RESULTS

In this section we summarize the case study results andge@nswers to the questions con-
cerning the implementation and evolution of the seven Mamnilodules:

e Which are the main building blocks?
In the recent Mozilla release 1.7 seven modules includiBg@Il source files implement
Mozilla’s content and layout handling. THEOM module is by far the largest and most
complex module. It consists of more than 11.000 functiortsrarthods contained in 492
source files. Another module pointed out as large and comglsgwlayout Engi ne.
It consists of 4.404 functions and methods contained in 2k8ce files. Compared to
these two modules the remaining five modules are small asdttaaplex (see Figuie 3.1,
Figure[8.2, Figuré&8l7).

On the file level the views highlighted 40 source files with entran 100 functions and
high cyclomatic and program complexity. Among these thgdat file is

nsCSSFr ameConst ruct or. cpp. It comprises 13.320 lines of code that implement
208 functions (see Figufe8.3, Figlrel8.4, Fiduré 8.9).

e Which units are coupled with each other and how strong arsdl®upling dependencies?
In the case study we analyzed the source code and changencprgshtionships between
modules and their source files. The views on the functiors cllbwed weak intermodule
coupling. However, there is the problem of cyclic couplirgpedndencies that are between
theDOMNewlLayout Engi ne, andXPTool ki t modules. A deeper investigation on the
file-level pointed us to 29 source files that make up most ottheling. Concerning the
cyclic coupling we determined five source files that are ladlgicesponsible for that (see
Figure[8.ID, Figure8.12).

The view on the inheritance relationships depicted a wedlgieed inheritance structure.
We found only one weak cyclic coupling between MeaM_ayout Engi ne and the
XPTool ki t module that has to be removed. Interestingly, three of tes ihusing the
inheritance cycle also are involved in the cyclic functiati€ (see FigurE8.11).

e Are there entities and relationships that indicate Bad sfel
On the module level we identified ti@®Mmodule as a “God Module”. Compared to the
other modules it is too large and complex and therefore shioelre-factored into smaller
sub modules.NewlLayout Engi ne is another module that should be divided into sub

102

8.5 Summary of Results

modules. It also is large, complex, and strongly coupleti tie other modules. Reducing
the size will reduce the complexity and improve maintaifighband evolvability of these
modules (see Figufe3.3, Figilirel8.4, Figure 8.9).

On the file-level we identified 40 source files that implemeaterthan 100 methods. This
is far too much behavior that is difficult to understand andhtaén. The developers should
re-factor the files and move methods to new files (see FIg@d&yurd 8.1, Figure8.9).

With regard to intermodule method invocations and claseritémce we identified a num-
ber of cyclic coupling relationships between the content @yout modules. Basically,
the modules involved in these design shortcomings are tige @nd complex modules,
namelyDOM NewlLayout Engi ne, XPTool ki t, andNewHTMLSt y| eSyst em The
analysis on the file level retrieved the set of source filesdhase the cycles. For instance,
the cycle between the NewLayoutEngine and XPToolkit maslblsically is caused by
five source files and a small shortcoming in the inheritaneegtre (see see Figure 8110,
Figure[8.11, Figure812).

How did the implementation units (i.e., modules) and caougptiependencies evolve?
Views on the modules indicated a growing content and layoptémentation most of all
in the large and complex modulB&MandNewl.ayout Engi ne. However, the increase
dropped in the recent releases (see Fidurel 8.15). The vietheotargest source files
further strengthen this trend: size and complexity incedas earlier releases but dropped
in recent releases (see Figlire 8.17).

The decrease in size and complexity is also visible in thgrdias showing the intermod-
ule coupling dependencies. They highlight strong couplinitpe earlier Mozilla releases
that have been reduced in recent releases (see Higuie &ueeB.20). Concerning the
intermodule coupling this clearly denotes improvements.

Which modules were most vulnerable to problems and modifed fnrequently?

Here the module views showed a clear picture: the large antpblex modules were
most affected by high-priority problems and therefore wassigned the highest num-
ber of modification reports. Normalizing the metric valugstihe number of source files
(NOF) we obtain that thélewl.ayout Engi ne module by far is the most change prone
module. On average 44 problem reports were assigned to af filssomodule that is
more than twice as much as for the other modules. For inst@&ié¢ XPTool ki t, and
NewLayout Engi ne have a problem report rate of 20 reports per source file (sge Fi
ure[8.8). The progression of these metrics indicated alatidn regarding the number
of new problems and modifications (see FigureB.16).

On the file level we identified the change prone source fileg rébulting graph is domi-
nated by thens CSSFr anmeConst r uct or . cpp file that was and still is the most change
prone file followed bynsPr esShel | . cpp,andnsd obal W ndow. cpp. But also for
these files the progression of evolution metric values depreduction in the number of
new problems and modifications (see Fidure18.18).

Chapter 8: Mozilla Case Study 103

e Are there change couplings between modules and how stranipey?
We visualized the change coupling relationships betweersdfftware modules that oc-
curred from Mozillarelease 1.6 to 1.7. The graph shows tkadgt one modulevat hM.)
all modules have change couplings with @&/ module. Consequently, changes to the
DOMmodule lead to changes in the other modules. Other two medlde are involved in
the change coupling adédPTool ki t andNewLayout Engi ne (see Figuré&8.13).

Details about the change coupling are provided by the fiteteiew. They showed that
the heavy change coupling relationships are between filéseothree modules pointed
out on the module level. The source files that were most irbia this kind of coupling
between the releases 1.6 and 1.7 are those files that arenatdeed in the intermodule
coupling via method invocations. They truly propagated iications across modules to
other source files. To find out the reasons for this we havevisiigate the problem and
modification reports in more detail than the file level.

8.6 DISCUSSION OFRESULTS

The Mozilla case study demonstrated that our integrateadrdatiel and visualization techniques
facilitate the identification of the implementation unitsdathe coupling dependencies that are
critical for maintaining and evolving the content and layowodules. The integration of the
release history allowed for the computation of evolutiorinoe that addressed the frequency of
modifications and problems as well as the change couplings.

Based on this data model we applied the polymetric viewsaliiation technique. Resulting
views showed that this technique is useful to point out thigies and relationships of interest by
mapping metric values to graphical attributes of one rele¥ée demonstrated that our extension
of polymetric views to Kiviat graphs facilitated the visizaition of multiple metrics of up ta
releases. Kiviat diagrams and graphs provided additidnabkoof the evolution of implementa-
tion units and in particular highlighted the strong changbgh were of primary interest. They
indicate improvements but also degradation in the impleat&m.

During the case study with the Mozilla open source softwaogept we encountered a num-
ber of problems that affected our results. These probleme wencerned with extracting the
facts, integrating the data models, and creating the views.

8.6.1 FACT EXTRACTION

In the fact extraction the primary issues were related witpprly configuring the C/C++ parser
to obtain a fact base of reasonable quality. For the Moziltagat we had to manually inspect
the Makefiles of the different software modules to obtaindbmpiler settings. The effect of
these settings emerged in certain metric measurementsomsequently graphs. For instance,
the Kiviat diagram of the XML module depicted in Figlre 8. tows such a strong change that
basically results from a change in the Makefile between tleases 1.3a and 1.4. In the latter

104 8.6 Discussion of Results

the directoryschenma andsoap were not included by default as was done in release 1.3a. The
result is a decrease in size and complexity of the XML module.

The quality of the parser influences the results. The versi0r2 of the Imagix-4D parser
performs a full semantic analysis but fails when parsingaeeiC/C++ template constructs. Be-
cause of this deficiency the parser missed a considerablargrabfunction calls that occur in
the Mozilla source code. Basically, missed function calislved functions of classes that are
wrapped by &PComcomponent. XPCom is the component framework of Mozilla tresvily
uses C/C++ templates which caused the parsing problems.

Listing[B1 depicts an example of a class (interface) nsl&dle that is implemented with
the XPCom framework.

Listing 8.1: C/C++ template example of a function call msbg the Imagix-4D parser.

/I nsIScrollable.h
class NSNO_VTABLE nsliScrollable : public nsISupports
public:
NS_IMETHOD GetDefPrefs(PRInt32 scrollOrientation,
PRInt32x«scrollbarPref) = 0;

-

/I nsBarProps.h
NS_IMETHODIMP ScrollbarsProplmpl::GetVisible(PRBoeg&Visible) {
nsCOMPtknsiIScrollable- scroller(daQueryinterface(docshell));

/I Missing/Mismatched function declarator
scrolle—>GetDefPrefs(nslScrollable::ScrollOrientatidh &prefValue);

The classis| Scr ol | abl e contains a metho@et Def Pref s(..) thatis called by the
GetVisible(..) method of another class nangd ol | bar sPr opl npl . The reference to this
call is missed by the Imagix-4D parser because it can natatigtdetermine the type of the class
to which the methodet Def Pr ef s belongs to. This effected the quality of our fact base and
the analysis results of the coupling by function calls. Ttieeocalls were fully retrieved hence
there was sufficient function call information available tur analysis. However, having also
the set of missed calls would further improve our analysssilts. It is part of our on-going and
future work to develop a workaround that uses the GNU gccegpdosobtain the missed calls.
The initial approach and first results are presented Iin [GRGO

The other data extraction issues concerned the CVS and IBudata, in particular the link-
age of modification and problem reports. The links were rettanted by matching the bug num-
bers in the messages entered by the Mozilla developers wdramitting their changes to the
CVS repository. Because these numbers were entered agXtabdre is a number of false pos-
itives and negatives that have to be considered. Summaitizenresults presented in [FPGD3a]

Chapter 8: Mozilla Case Study 105

we retrieved a high number of correctly established linikda@atow number of false positives and

negatives. However, we have to thank the Mozilla develofmrentering the report numbers.

Without this information the linkage of modification and plem report data needs a serious
workaround.

8.6.2 DATA MODEL INTEGRATION

In the current version of our approach we consider integmatif data models on the level of

source files and higher. As mentioned in the integration stepe Mozilla case study we used
the short file name for determining the links between the fiities of the source code and
release history data models. The percentage of establistiesdwas 96% in the earlier and

99.8% in the latter Mozilla releases. This resulted in a wigrated data model that was useful
to perform analysis on the level of source files and softwavdutes.

But, to perform a more detailed analysis of modificationsanodlems on the level of classes
and methods the model integration algorithm has to be refWédkreas, for linking source files
the file name is sufficient, it is not for classes and moreovenfethods. Typically, in a large
source code base there exists several methods with the sameeand even the same signature
that lead to false positive matches. Further, methods are ti@ly to be changed or moved
around. Determining a link between such methods is notalriand subject of on-going and
future research.

8.6.3 MSUALIZATION

The Polymetric Views technique and in particular the hotspeews turned out to be useful to
get an overview of the system by highlighting its core eletseim addition to the views of Lanza

et al. in [LDO3] we incorporated additional metrics that addrestie source code and coupling
between entities as well as metrics computed of the reldag@hdata. Including these metrics
we were able to compute views that highlight the entities tere the critical cost factors in

terms of number of modifications and problems.

By extending the polymetric views technique to use Kiviaiggtams instead of rectangles our
approach facilitates the visualization of multiple metric each node. In the Mozilla case study
the diagrams facilitated us to put more details about agegspects, such as size and complexity
or usage relationships between software modules, intoieme They also enabled us to analyze
the relation between certain metrics, such as betweenzbasd complexity and the number of
modifications of a module in one and multiple releases.

In this context, a lesson learned from the case study wasttbaiser has to make sure:

e To select the proper set of metrics to be visualized.(avoid too many metrics); and

e To properly order metrics in the Kiviat diagranesd.,group metrics that belong together).

106 8.6 Discussion of Results

The views we presented in the case study considered thesetaigmd represent an initial set
of views from which the user can derive other view configuraéi However, to claim a view
configuration to be useful we need user-studies that at@astdpen issue.

Using the Kiviat diagrams to present multiple metrics olaedrover several subsequent
Mozilla releases proofed to be suitable to highlight strohgnges in metric values. We identi-
fied such changes in several software modules and sourceffiészilla. During the case study
we encountered also a number of limitations of the Kiviaggdaan approach but also potential
solutions to handle them. These are:

1. Views become cluttered with information when visualizimgplex graphs or a large num-
ber of metrics Information cluttering can be handled by reducing the $etrtities to
visualize or by applying filters.

2. Polygons representing the metric values of recent releaseslap polygons of earlier
releases This problem emerges especially when visualizing measuaties of multiple
metrics of a large number of releases. A workaround is tacseldy the releases with the
large changes in metric values and redraw the graph again.

3. Normalization to the maximum obfuscates small valdesgain insights into the entities
with little changes we remove the large and complex entiies) the list of selected
entities. This lowers the different maxima and emphasimesisnetric values.

In summary, the ArchView approach provided us with sevezethhiques to analyze the as-
pects that we mentioned in the Mozilla scenario. The quafithe integrated data model as well
as the abstraction and visualization techniques providesith the views that we needed for the
analysis. The interpretation of the views then is subjecister.

CHAPTER9

CONCLUSION

In this chapter we summarize the contributions of this dissien, discuss the benefits of our
approach, and indicate directions of future work.

9.1 CONTRIBUTIONS

In this dissertation we tackled the issues concerned wihtorg and presenting higher-level
views on the implementation of a software system and itsutdwl. Summarized, these issues
comprised:

e The building of an integrated data moddlhe analysis of evolutionary aspects needs the
consideration of different data sources that provide mfion about the implementation,
problems, and modifications of a software system. We predahe techniques and tools
to process these data sources and extract the correspatatanghodels. For the integra-
tion of the different data models we introduced the E-FAMIX¥tammodel that serves for
subsequent abstraction, visualization, and analysistasie E-FAMIX meta model facil-
itates the navigation of entities and relationships acsossce code releases, from source
code to release history data, and vice versa.

e The Abstraction of lower-level dataThe sheer amount and complexity of information
obtained from several source code releases, versions,unceporting systems of large
software systems blurs views. We built on an existing aggiieg technique to condense
implementation and evolution specific information to higlevel views. In this context
we presented the containment hierarchy model that spetiigesntities and paths along
which lower-level entities and relationships are abse@db the level of modules. The
abstraction was accompanied by the computation of sizeplepaty, modification, and
problem report metrics. The latter two metrics represembgabrtant extensions to existing
source code metrics. Basically, they were used to hightighthange prone modules and
heavy change coupling relationships.

107

108 9.1 Contributions

e The creation of coarse and fine-grained graphical viewer the creation of these views
we built upon the existing polymetric views technique anteeged it towards the visu-
alization of multiple metrics of up ta releases. We realized these extensions by using
Kiviat diagrams instead of trivial graph glyphs. We desedlihe measurement mapping
technique and showed the composition of Kiviat diagramsitgeKgraphs. Based on the
integrated, abstracted, and enriched data model we paadet of new hotspots views
used to answer questions concerning structural and egohry aspects of the implemen-
tation. In particular, we were able to:

— ldentify the main modules of a software system their sizeamdplexity.

— Show the inter-module coupling relationships and the typ strength of these re-
lationships.

— ldentify the modules and coupling dependencies indicatesign shortcomings (Bad
Smells, such as God Modules, cyclic dependency, and deaj.cod

— ldentify the modules that have been most vulnerable to probl(.e.,change prone
modules) and, on the other side, the stable modules.

— Show the heavy change coupling relationships indicatieguent propagation of
changes between moduleg(, Shotgun Surgery).

— Show the growth in size and complexity of modules acrossasele and identify
periods with improvements or degradations.

— Show the progression of problem vulnerability and modifaratrequency and iden-
tify modules that are or tend to become vulnerable and maduigt are or tend to
become stable.

The different techniques and algorithms have been intedtiato the ArchView approach. In
order to demonstrate the ArchView approach we applied fi¢mpen source project Mozilla that
provided us with a representative amount and complexitpofce code and release history data.
The focus was on analyzing the implementation of Mozillastent and layout functionality, and
in particular its structural and evolutionary aspects.

The results of the case study comprised a number of viewseoletel of software modules
and source files identifying the large, complex, buggy, aeduently modified modules and
source files as well as the heavy source code and changermmughktionships. In addition, we
presented views depicting metric trends indicating imprognts and degradations in the design
and implementation of Mozilla’s content and layout modul@siestions, such as when has the
number of problem reports of modukeincreased rigorous, could be answered. In this way
the ArchView views identified the change prone content agddamodules and source files to
which most of the maintenance effort has been dedicatedhiey flepresent the candidates for a
refactoring and this was what we claimed to provide in the casdy.

Regarding the case study we also presented a discussiomm@hlts and described possible
pitfalls and shortcomings of the ArchView approach. A numbfethese pitfalls and shortcom-
ings are subject to future work described in the next section

Chapter 9: Conclusion 109

9.2 HUTUREWORK

In the following we list open issues in the area of architeetn@covery and software evolution
analysis that showed up while developing the ArchView appho Basically, they concern data
extraction, model integration, view visualization, andwianalysis.

e Dynamic analysisA possible extension to ArchView is by the inclusion of riime data
that can be obtained from execution traces. We then can @pphWView for analyzing
the structural and evolutionary aspects of features, comms, and connectors. Initial ap-
proaches that address these issues have been presentsdhisydtial. [EG0Z[FOGGOB].
Future work is concerned with integrating these technigutesArchView.

e Extraction and evolution of patternSimilar to feature data obtained from dynamic anal-
ysis we plan to integrate data from extracted patterns aatyzs how they influenced
the evolution of software systems. Patterns range from patterns, over object-oriented
design pattern to architectural patterns and styles. Gomgecode patterns we plan to
integrate the Revealer approaCh [PEGJ02] into ArchViewotpattern-supported architec-
ture recovery and analysis [PG02].

e Fine-grained analysis of modification¬her possible direction of future work is in the
detailed analysis of modifications, such as which classethads, fields, or even more
detailed which statements where inserted, added, or chafités enables the reconstruc-
tion of modifications and a detailed analysis of them. Fotanse, based on the detailed
information a categorization of changes into “good” chantfet led to improvements
and “bad” changes that led to “Bode Smells” is possible. Basethese categorization
of modifications “Evolutionary Smells” can be identified. oilg with the detailed infor-
mation about modifications another open issue is concerithdie detailed analysis of
reported problems. Questions, such as which problems wheia to solve and which
caused changes in the design and architecture of a systdchtmanswered. Both issues
give deeper insights into the evolvability of software syss.

e Inclusion of bug-activity dataln the current version of ArchView we do not take into ac-
count the bug activity log data as tracked by the Bugzilla taggprting system. Basically,
this data describes the work that is going on to resolve ategpproblems. It keeps track
of the bug fixing process starting with reporting the prohl@ssigning it to a developer,
and usually ending with verifying the resolution. With tldata it is possible to navigate
the history of each report and perform more detailed aralgbihe problem resolution
process. Preferable, this open issue has to be combinedheife-grained modification
analysis to develop an early-warning-system that, integranto an IDE, warns the devel-
oper when a class or method exceeds its allowed fault andyelf@oneness threshold.

e Data extraction from framework-based software system®sur previous work[[POG03]
and [KP0O3B] we showed that the extraction of framework spedicts is mandatory to
analyze framework-based software systems. The problehaigptogram logic is hidden

110

9.2 Future Work

away in extra configuration files or even in comments. Futusekws needed to develop
extraction tools that obtain and integrate the framewosdcH data within source code
model and release history data. This allows for the detalealysis of such software
systems. Because of the diversity of existing frameworkspvapose to start with the
major frameworks, such as Sun’s J2EE or Microsoft's .NET.

Data mining Taking into account the fine-grained modification and buiyeyg data the
fact repository contains a richness of data to analyze.rEwtork can be spent on applying
sophisticated data mining algorithms to this data with foon the source code and evolu-
tion metrics. Issues, such as what is the relation betwemnasievhich metrics have to be
computed for the characterization of the evolvability dtware systems, are there metrics
that are irrelevant, or prediction of problems and modiftre have to be addressed.

View visualization The amount and type of data provided by the ArchView repogit
demands improvements of visualization techniques. Inqdatr, future work has to be
done in the presentation and navigation of views. There amengber of ideas future re-
search can play with, such as using animations or 3D graphidsualize the evolution of
software systems. Animations, for instance, show the sefisnapshots taken from parts
or the whole system animating the change in size, complgxibblem and modification
frequency. In addition, further support for navigating btlugie amount of complex data has
to be investigated and tested.

APPENDIXA

THE EXTENDED FAMIX M ETA MODEL

This chapter provides the background information aboutrtee& model that is used by ArchView
to store extracted and abstracted source code and conitgunanagement data.

Recent and ongoing work in the field of meta models is conckwith integrating existing
source code meta models into a common meta model that candreled towards programming
language and application specific requirements.

The FAMIX model [Saf99] from the University of Bern followhis ideas. FAMIX is a meta
model for a language-independent representation of cbjgehted source code. It supports
extension points to tailor the meta model to include prognamg language specific features
such as C++ templates.

A.1 E-FAMIX META MODEL

ArchView uses the E-FAMIX meta model which is an extensiof£dMIX source code meta
model. The FAMIX model[[Sof99] was developed by the Univgrsif Bern and provides a
meta model for a language-independent representatiorjexftetriented source code. It supports
extension points to tailor the meta model to include progrnamg language specific features such
as C++ templates. We use these extensions points to include:

e Entity and relationship types that are related with represg modification and problem
report data as obtained from the CVS and Bugzilla systemac€raing relationships we
add the “couples” relationship type that denotes a changplicw.

e Metrics that are computed for abstracted entities andioalstiips. Entity metrics denote
the size, complexity, modification report, problem repargd coupling metrics (see Ta-
ble[61, Tabld 8l2, Table8.3, Talilel6.4, and TabIé 6.5). tRakship metrics denote the
weight of an abstracted source code or change couplingaetip (see Tableg.6).

111

112 A.1 E-FAMIX meta model

|:| Entit contains
nti .
y_) Directory
— Relationship
—>Inheritance contains
Y ; includes
File
Source Code Meta Model CO"W Release History Meta M
& hasType mapsTo
hasType
™ Type belongsTd
. hasType Releas > Product
contains Zr inherits
associates
- aggregates _ belongsTo
contains - contains Y ; follows
Packagé contding] Class «— . invokds belongsTjo Modif;
T contains ltem =~—"" porornt .
_ P committedBy
ehaviour]
v accesse Entity linksTo r Author
Structural % ?es&gr{]eedg)?
Entity contains Problem
[F] hod patches Report
[‘ ‘ l Function Metl Oﬂ o dependsO
Global Local ; Formal attachedTp
Variablel | Variable Attribute Paramete overrides
* * writtenBy
contains Patch

Figure A.1: E-FAMIX meta model - based on the FAMIX source eodeta model, extended by
the release history meta model.

Figure[AZ shows the the core of the E-FAMIX meta model. Theanmodel consists of
two major models - the source code model and the releasenhisitodel. Entities common to
both models are directories and files. In the source code Infibeke contain the source code
(implementation) specific entities such as packages, edassethods, and attributes. Files can
include other files€.g.,C/C++ header files) and are contained in a directory. Direztonay be
nested and often base directories contain the implementatia specific software module. With
respect to the release history model files are items thatanaged by configuration management
systems. Modifications are made to files and checked in ietedlirce code repository managed
by such systems. Therefore, files are first class entitiesd@blishing links between the source
code model and release history model.

The E-FAMIX meta model described above can be extended tsatae inclusion of addi-
tional entity and relationship types that are mandatorysfiecific analysis tasks. In context of
this thesis the current version of E-FAMIX is sufficient.

Appendix A: The Extended FAMIX Meta Model 113

A.2 SOURCECODE MODEL

The ArchView source code model specifies the source codiededatity and relationship types
needed to represent source code of object-oriented andgua like programming languages.
Figure[A depicts the core of the E-FAMIX source code modebr a detailed description
interested readers are referred to the FAMIX documentdBoi@9]. The following is a brief
description of the model:

e Entities:

— Package: A Package is a named source code unit used to gnowge ode entities
that logically belong together. Packages are programnangdage dependent, for
example, Java uses packages whereas C++ uses hamespaces.

— Type: The Type entity represents data types as used by tygsetiipprogramming
languages. For example, Java supports primitive data (gogsboolean, int, long)
and complex data types€., classes). Regarding C++ the Type entity also represents
type aliasing by typedef statements.

x Class: Class is derived from the Type entity to represerdgsels as used by
object-oriented programming languages. Different tygetasses such as C/C++
structs, unions or Java interfaces are not supported peit satbe distinguished
by setting corresponding attribute values.

— Behavioral Entity: This entity type comprises source codtties that implement
behavior. Based on the scope of the entity E-FAMIX considers

x Function: Functions are behavioral source code entitiggaidal scope. Typ-
ically, they are used by procedural/functional prograngrianguages such as
C.

x Method: Methods are similar to functions but denote behavientities of a
class. Object-oriented programming languages such a®d&ret+ use the con-
cepts of methods whereas in C++ methods are called membaidos.

— Structural Entity: Structural entities are source codatiestthat concern the rep-
resentation of the state of a system. They denote locatiomseimory where in-
formation about the current state is stored. Depending erstiope we distinguish
between:

x Global Variable: Structural entities of global scope areated global variables.
The global scope implies that these variables are globalessible and valid
during the lifetime of the running system.

« Local Variable: In contrast to global variables local vates are defined locally
within a behavioral entityi(e., function, method). Access to local variables is
limited to entities within the scope of the function or medho

114 A.3 Release History Model

x Attribute: Attributes are used in object-oriented prognaimg languages to de-
fine structural entities within the scope of a class or instaof a classi(e.,
object).

«x Formal Parameter: Formal parameters are similar to loc&hblas in that their
scope also is limited to functions or methods in which they @eclared. The
difference to local variables is that they specify arguraghat are passed to a
behavioral entity.

e Relationships:

— contains: Relationships of this type define the containroéentities by other enti-
ties. Based on these relationships a containment-higrasastablished that defines
the path along which low-level elements are abstractedgsegor®).

— hasType: These relationships are used to define the datatygiauctural entities
and the return type of behavioral entities. Further, tyjpesalg €.9.,C++ typedef)
is expressed by these relationships.

— includes: The inclusion of files is a functionality that ipigal for the C/C++ pro-
gramming language. An includes relationship denotes thaduace file includes
another source file to, for instance use the class declaratithe included file.

— inherits: The inherits relationships reflects the inhecwbetween classes. Inheri-
tance is a basic concept used by object-oriented prograghlaimguages to inherit
responsibilities from base classes. The application af¢bncept in source code is
interesting on the design and architectural level.

— associates, aggregates: These two relationship typedbandaken from the Unified
Modeling Language (UML) to denote relationships betweeasss in the design
level. However, implementation of these relationshipywarsource code and often
can not be distinguished by the parser.

— invokes: Invocations denote calls between behavioratiestsuch as function are
methods calls.

— overrides: Overriding is a concept used by object-oriept@gramming languages
to override functionality inherited from a base class. Bated relationships provide
information about the use of inherited and added functignal

— accesses: Accesses to structural entities are denotedatipmehips of this type.
Currently, ArchView does not distinguish between set ardlirey of structural enti-
ties.

A.3 RELEASEHISTORY MODEL

The ArchView release history model specifies entity andti@iaghip types that are related to
modification specific data such as version, modification antlpm report data as obtained from

Appendix A: The Extended FAMIX Meta Model 115

configuration management systems. Integration of relesseryr data into source code model
data is beneficial in that it adds information about changastrce code entities. Consequently,
ArchView uses this information to analyze the impact of dsto certain source code entities
to other entities. The core of the release history modelsotied in Figurd”AL. It consists of:

e Entities:

— Product: Products are the results of software engineefiog® Usually, the output
of software projects comprises a number of products thad@reered to customers.

— Release: According to Jacobsenal. [JBR99] a release is a relatively complete and
consistent set of artifacts that is delivered to internaéxternal users. During the
lifetime of software products several releases are deeelopgasically, each devel-
opment cycle concludes with a product release that is readgdlivery. Regarding
version management systems a release is a snapshot on the sode repository
whereas source files are tagged with the release number.

— Item: Item denotes entities that are subject to store inimersrxanagement sys-
tems. Basically, items are files such as source and configaries or design doc-
uments but may be of any type that can be handled by versioageament systems.
ArchView focuses on implementation units and thereforeceatrates on source and
configuration files that implement a particular release affensare product.

— Problem Report: Problem reports are created by users thed\dr bugs or are re-
sponsible for reporting bugs in the system. The evidence migareport leads to
modifications €.g.,bug fixes) in the implementation of a software system.

— Modification Report: A modification report describes a marar modification to an
item that has been committed to the repository. Changestotplementation of a
software system may affect n files. When committing theseg@bs n modification
reports are generated (one per affected file). From the pbinew of the modifica-
tion (e.g.,bug fix, add feature, refactoring) such commits bring abbange related
couplings between affected itemse(, source files) that are utilized by the ArchView
architecture recovery approach.

— Author: Author denotes software developers that repontaroent or fix bugs, or
commit modifications to source code repositories managagtsjon systems.

— Patch: Patches denote bug fixes. Typically, patches aredaain form of source
code and contain information about the source files the gatebts and the lines of
code be added or deleted. Depending on the bug reportingmsysdtches often are
attached to bug reports.

e Relationships:

— belongsTo: Similar to contains these relationships decatéainment. They are used
to organize entities in hierarchies.

116 A.3 Release History Model

— follows: Each commit of modifications to a particular itensu#ts in an increment of
the revision number assigned to each item by the version geanent systems. In
addition to the revision numbers these relationships destne sequence of modifi-
cations to a particular item.

— linksTo: Bug reports typically lead to bug fixes which leadrtodifications in source
files. Relationships of this type reflect this change proeesisdenote the bug reports
that led to associated modification reports.

— dependsOn: These relationships denote dependenciesdetwgs, for example, a
new bug occurred from a fix of a previous bug.

— reportedBy, assignedTo, writtenBy, committedBy: Thesati@enships indicate users
reporting bugs and users who are responsible for fixing thiéanther, they denote
the user who implemented a patch to fix a bug and the user whmastfixes to the
source code repository.

— attachedTo: Often patches are attached to bug reports.e Takionships describe
this attachment and consequently indicate the patch thest &xgiven bug.

— patches: These relationships denote the application aftwpéatches have been ap-
plied to which source files.

For each entity and relationship type there are a numbetridfes that result from extrac-
tion and abstraction processes. During extraction of tlhwecgocode model details and metrics
about each entity are extracted that are stored in the srdityibutes. For example the file loca-
tion of entities, the signature of methods, access contralifiers of methods and attributes, etc.
In the release history model attributes include the dateasfification or bug reports, the size of
modifications €.g.,lines added/deleted), severity, priority, and status of teports, etc.

APPENDIX B

PUBLICATIONS

This chapter presents the list of publications on which disertation is based on.

B.1 VISUALIZATION & A NALYSIS

Visualizing Multiple Evolution Metrics

Abstract: Observing the evolution of very large software systems si¢lee analysis of large
complex data models and visualization of condensed viewthersystem. For visualization
software metrics have been used to compute such conderesesl Wlowever, current techniques
concentrate on visualizing data of one particular releaseiging only insufficient support for
visualizing data of several releases. In this paper we pteéke RelVis visualization approach
that concentrates on providing integrated condensed gaphews on source code and release
history data of up to n releases. Measures of metrics of sorwde entities and relationships
are composed in Kiviat diagrams as annual rings. Diagragtdight the good and bad times of
an entity and facilitate the identification of entities amthtionships with critical trends. They
represent potential refactoring candidates that shouladideessed first before further evolving
the system. The paper provides needed background infamaid evaluation of the approach
with a large open source software project.

Published:In Proceedings of the ACM Symposium on Software Visual@atpages 67-75,
St. Louis, Missouri, 2005. ACM Press.

Towards an Integrated View on Architecture and its Evolution

Abstract:Information about the evolution of a software architectar be found in the source
basis of a project and in the release history data such adioaitin and problem reports. Ex-
isting approaches deal with these two data sources selyamatkdo not exploit the integration
of their analyses. In this paper, we present an architectoaysis approach that provides an
integration of both kinds of evolution data. The analysiplegs fact extraction and generates

117

118 B.2 Architectural View Abstraction

specific directed attributed graphs; nodes represent smade entities and edges represent re-
lationships such as accesses, includes, inherits, inyakelscoupling between certain architec-
tural elements. The integration of data is then performed ometa-model level to enable the
generation of architectural views using binary relaticaigebra. These integrated architectural
views show intended and unintended couplings betweentaothral elements, hence pointing
software engineers to locations in the system that may kieadrior on-going and future main-
tenance activities. We demonstrate our analysis approsicly @& large open source software
system.

Published: In Electronic Notes in Theoretical Computer Science, 1pT83-196, April
2005.

B.2 ARCHITECTURALVIEW ABSTRACTION

Abstracting Module Views from Source Code

Abstract:In this paper we present ArchView an approach for abstrgetind visualizing soft-
ware module views from source code. ArchView computes abstm metrics that are used to
filter out architectural elements and relationships of minterest resulting in more reasonable
and comprehensible module views on software architectures

Published:In Proceedings of the International Conference on SoftWéaitenance, page
533, Chicago, USA, 2004. IEEE Computer Society Press.

B.3 MODEL EXTRACTION & | NTEGRATION

Towards the Integration of Versioning Systems, Bug Reportand Source Code Metamod-
els

Abstract: Concurrent Versioning System (CVS) repositories and bagking systems are
valuable sources of information to study the evolution ofi¢éaopen source software systems.
However, being conceived for specific purposes,to support the development or trigger main-
tenance activities, they do neither allow an easy inforomalirowsing nor support the study of
software evolution. For example, queries such as locatidgaowsing the faultiest methods are
not provided.

This paper addresses such issues and proposes an apprdacframework to consistently
merge information extracted from source code, CVS reposg@and bug reports. Our infor-
mation representation exploits the property conceptseftkiMIX information exchange meta-
model, allowing to represent, browse, and query, at diffelevel of abstractions, the concept of
interest. This allows the user to navigate back and fortmf@VS modification reports to bug
reports and to source code. This paper presents the anfareiswork and approaches to popu-
late it, tools developed and under development for it, a$ agelessons learned while analyzing
several releases of Mozilla.

Published:In Electronic Notes in Theoretical Computer Science, 128{3-99, April 2005.

Appendix B: Publications 119

Analyzing and Understanding Architectural Characteristics of COM+ Components

Abstract:Understanding architectural characteristics of softwaraponents constituting dis-
tributed systems is crucial for maintaining and evolvingrth One component framework heav-
ily used for developing component-based software systsrivBarosoft's COM+. In this paper
we particularly concentrate on the analysis of COM+ comptsand introduce an iterative and
interactive approach that combines component inspeaticmiques with source code analysis
to obtain a complete abstract model of each COM+ componehné rifodel describes impor-
tant architectural characteristics such as transactgewyrity, and persistency, as well as cre-
ate and use dependencies between components, and maphkitiesdevel concepts down to
their implementation in source files. Based on the modeline®gs can browse the software
system’s COM+ components and navigate from the list of &&chiral characteristics to the cor-
responding source code statements. We also discuss thd Btgper application with which
our approach has been validated.

Published:In Proceedings of the International Workshop on Program @ehension, pages
54-63, Portland, Oregon, 2003. IEEE Computer Society Press

120 B.3 Model Extraction & Integration

BIBLIOGRAPHY

[14700]

[ABF04]

[AH90]

[APGPO5]

[Arn96]

[BCKO3]

[BDW99a]

[BDW99b]

[BE96]

[Bel99]

IEEE Std 1471-2000. leee recommended practicerébitactural description of
software-intensive systemiEEE Std 1471-200@000.

Erik Arisholm, Lionel C. Briand, and Audun Foyen. Bgmic coupling measure-
ment for object-oriented softwaréEEE Transactions on Software Engineerjing
30(8):491-506, 2004.

Hiralal Agrawal and Joseph R. Horgan. Dynamic progiglicing. InProceedings
of the Conference on Programming Language Design and Ingai@tion pages
246-256, White Plains, NY, June 1990. ACM Press.

Giuliano Antoniol, Massimiliano Di Penta, Hara&ll, and Martin Pinzger. To-
wards the integration of versioning systems, bug reportssaurce code meta-
models. Electronic Notes in Theoretical Computer Scient27(3):87-99, April
2005.

Robert S. Arnold. Software Change Impact Analysi$EEE Computer Society
Press, 1996.

Len Bass, Paul Clements, and Rick Kazm&aftware Architecture in Practice
Addison-Wesley, 2nd edition, 2003.

Lionel C. Briand, John W. Daly, and Jurgen K. Wu#t unified framework for
coupling measurement in object-oriented systdBSE Transactions on Software
Engineering 25(1):91-121, January 1999.

Lionel C. Briand, John W. Daly, and Jurgen K. Wis&tsing coupling measure-
ment for impact analysis in object-oriented systemsPioceedings of the Inter-
national Conference on Software Maintenangages 475-482, Oxford, England,
UK, 1999. IEEE Computer Society Press.

Thomas Ball and Stephen G. Eick. Software visualzatn the large. IEEE
Computer 29(4):33-43, 1996.

Bell Canada Inc.DATRIX - Abstract semantic graph reference mandza? edi-
tion, July 1999.

121

122 Bibliography

[Ber74] Jacques BertinGraphische SemiologiéValter de Gruyter, 1974.

[BM99] Elizabeth Burd and Malcolm Munro. An initial apprdatowards measuring and
characterizing software evolution. Rroceedings of the Working Conference on
Reverse Engineeringpages 168-174, Atlanta, Georgia, 1999. IEEE Computer
Society Press.

[Boe81] Barry W. BoehmSoftware Engineering Economid3rentice Hall, 1981.

[CALO94] Don Coleman, Dan Ash, Bruce Lowther, and Paul Omasing metrics to evalu-
ate software system maintainabililEEE Computer27(8):44—-49, 1994.

[CBBT02] Paul Clements, Felix Bachmann, Len Bass, David Garkame3 Ivers, Reed Lit-
tle, Robert Nord, and Judith Staffol@ocumenting Software Architectures: Views
and Beyond Addison-Wesley, 2002.

[CC90] Elliot J. Chikofsky and James H. Cross. Reverse axgging and design recovery:
A taxonomy.|EEE Software7(1):13-17, January 1990.

[CFV9I9] Aniello Cimitile, Anna Rita Fasolino, and Giusepyisaggio. A software model
for impact analysis: a validation experiment. Rnoceedings of the 6th Working
Conference on Reverse Engineeripgges 212-222, Atlanta, GA, 1999. IEEE
Computer Society Press.

[CMO3] Davor Cubrani¢ and Gail C. Murph. Hipikat: recomndérg pertinent software
development artifacts. IRroceedings of the 25th International Conference on
Software Engineeringpages 408-418, Portland, Oregon, 2003. IEEE Computer
Society Press.

[CMS99] Stuart K. Card, Jock D. Mackinlay, and Ben Shneiderneditors.Readings in
Information Visualization — Using Vision to Thinklorgan Kaufmann, 1999.

[CMWO02] Katja Cremer, André; Marburger, and Bernhard \éagitel. Graph-based tools
for re-engineeringJournal of Software Maintenanc#4(4):257-292, 2002.

[Dav9s] Alan M. Davis.Principles of Software DevelopmemicGraw-Hill, 1995.

[DDNO2] Serge Demeyer, Stéphane Ducasse, and Oscar md&rst Object-Oriented
Reengineering Patterndlorgan Kaufmann, 2002.

[EKRWO02] Jurgen Ebert, Bernt Kullbach, Volker RiedigendaAndreas Winter. Gupro -
generic understanding of programg&lectronic Notes in Theoretical Computer
Science72(2):59-68, 2002.

[FBBT99] Martin Fowler, Kent Beck, John Brant, William Opdyke ddbon RobertsRefac-

toring: Improving the Design of Existing CodAddison-Wesley, 1999.

Bibliography 123

[FGO04] Michael Fischer and Harald Gall. Visualizing feawevolution of large-scale
software based on problem and modification report dalaurnal of Software
Maintenance and Evolution: Research and Practibg385-403, 2004.

[FHOO] Hoda Fahmy and Richard C. Holt. Software architesturansformations. In
Proceedings of the International Conference on SoftwarenMaancepages 88—
96, San Jose, CA, October 2000. IEEE Computer Society Press.

[FHK*T97] Patrick Finnigan, Richard C. Holt, Ivan Kallas, ScottrKeKostas Kontogian-
nis, Hausi A. Muller, John Mylopoulos, Stephen G. Perelartin Stanley, and
Kenny Wong. The software bookshelfBM Systems JournaB6(4):564-593,
November 1997.

[FKvO98] Loe Feijs, Rene Krikhaar, and Rob van Ommering. latrenal approach to sup-
port software architecture analysisurnal of Software Practice and Experience
28(4):371-400, 1998.

[FOOO] Norman E. Fenton and Niclas Ohlsson. Quantitatiayesis of faults and failures
in a complex software systenEEE Transactions on Software Engineerj26(8),
2000.

[FOGGO05] Michael Fischer, Johann Oberleitner, Harald Gaid Thomas Gschwind. Sys-
tem evolution tracking through execution trace analysis.Pioceedings of the
International Workshop on Program Comprehensipages 237-246, St. Louis,
Missouri, 2005. IEEE Computer Society Press.

[FP96] Norman E. Fenton and Shari Lawrence Pfleeger, editSoftware Metrics: A
Rigorous and Practical Approacifhomson Computer Press, 2nd edition, 1996.

[FPGO03a] Michael Fischer, Martin Pinzger, and Harald G&halyzing and relating bug
report data for feature tracking. FProceedings of the 10th Working Conference
on Reverse Engineeringages 90-99, Victoria, B.C., Canada, November 2003.
IEEE Computer Society Press.

[FPGO3Db] Michael Fischer, Martin Pinzger, and Harald G&bpulating a release history
database from version control and bug tracking system®rdceedings of the
International Conference on Software Maintenanpages 23-32, Amsterdam,
Netherlands, September 2003. IEEE Computer Society Press.

[Fre03] Free Software Foundatioviersion Management with CY$.11.14 edition, 2003.
http://www.cvshome.org/docs/manual.

[GAO95] David Garlan, Robert Allen, and John Ockerbloomcliitectural mismatch: why
reuse is so hardEEE Software12(6):17-26, 1995.

124

Bibliography

[GDLO4]

[GHJ98]

[GHJ04]

[GHJIV95]

[GJIKO3]

[GIKTI7]

[GIRI9]

[GLO1]

[GLOO]

[GMO3]

Tudor Girba, Stéphane Ducasse, and Michele LaNeaterday’s weather: Guid-
ing early reverse engineering efforts by summarizing thawtion of changes.
In Proceedings of the International Conference on SoftwarendMaance pages

40-49, Chicago, lllinois, 2004. IEEE Computer Society Bres

Harald Gall, Karin Hajek, and Mehdi Jazayeri. Détat of logical coupling
based on product release history.Aroceedings of the International Conference
on Software Maintenan¢pages 190-198, Bethesda, Maryland, USA, 1998. IEEE
Computer Society Press.

Daniel M. German, Abram Hindle, and Norman Jordasu#&lizing the evolution
of software using softchange. Rroceedings the 16th Internation Conference on
Software Engineering and Knowledge Engineeripgges 336-341, 3420 Main
St. Skokie IL 60076, USA, June 2004. Knowledge Systemstiristi

Erich Gamma, Richard Helm, Ralph Johnson, and Jdissides. Design Pat-
terns: Elements of Reusable Object-Oriented Softwadslison-Wesley, 1995.

Harald Gall, Mehdi Jazayeri, and Jacek Krajewskis @lease history data for
detecting logical couplings. IRProceedings of the International Workshop on
Principles of Software Evolutigrmpages 13—-23, Helsinki, Finland, 2003. IEEE
Computer Society Press.

Harald Gall, Mehdi Jazayeri, René R. Klosch, &wbrg Trausmuth. Software
evolution observations based on product release historyProceedings of the
International Conference on Software Maintenangages 160-166, Bari, Italy,
1997. IEEE Computer Society Press.

Harald Gall, Mehdi Jazayeri, and Claudio Riva. ¥ising software release his-
tories: The use of color and third dimension.Rroceedings of the International
Conference on Software Maintenangages 99-108, Oxford, UK, 1999. IEEE
Computer Society Press.

Keith Brian Gallagher and James R. Lyle. Using progsdicing in software main-
tenancelEEE Transactions on Software Engineeriig(18):751-761, 1991.

Michael W. Godfrey and Eric H. S. Lee. Secrets from thenster: Extract-
ing mozilla’s software architecture. Iroceedings of the Second International.
Symposium on Constructing Software Engineering Taatserick, Ireland, June
2000.

Nicolas Gold and Andrew Mohan. A framework for undarsling conceptual
changes in evolving source code.Rroceedings of the International Conference
on Software Maintenan¢c@ages 432-439, Amsterdam, The Netherlands, 2003.
IEEE Computer Society Press.

Bibliography

125

[GPGO04]

[GSVO02]

[Hal77]

[HNSO00]

[Hol98]

[HS95]

[HWS00]

[Jaz02]

[JBRO9]

[JRvALOO]

[KC99]

[Ker05]
[KPO3]

Thomas Gschwind, Martin Pinzger, and Harald Galarfalyzer—analyzing tem-
plates in c++ code. IdProceedings of the 11th IEEE Working Conference on
Reverse Engineeringpages 48-57, Delft, Netherlands, November 2004. IEEE
Computer Society Press.

David Grosser, Houari A. Sahraoui, and Petko VatcHredicting software sta-

bility using case-based reasoning. Rroceedings of the 17th International Con-
ference on Automated Software Engieneripgges 295-298, Edinburgh, Scot-
land, UK, September 2002. IEEE Computer Society Press.

Maurice H. Halstead. Elements of software scieoperating, and programming
systems serie€lsevier 7, 1977.

Christine Hofmeister, Robert Nord, and Dilip Sospplied Software Architecture
Addison-Wesley, 2000.

Richard C. Holt. Structural manipulations of softse architecture using tarski
relational algebra. IfProceedings of the Working Conference on Reverse Engi-
neering pages 210-219, Honolulu, Hawai, 1998. IEEE Computer 8pPBieess.

Brian Henderson-SellersObject-Oriented Metrics: Measures of Complexity
Prentice-Hall, 1995.

Richard C. Holt, Andreas Winter, and Andy Schirrxl:GToward a standard
exchange format. IRroceedings of the 7th Working Conference on Reverse En-
gineering pages 162-171, Brisbane, Australia, November 2000. |IE&BfTiter
Society Press.

Mehdi Jazayeri. On architectural stability andlewon. In Proceedings of the
Reliable Software Technlogies-Ada-Eurppages 13-23, Vienna, Austria, 2002.
Springer Verlag.

Ivar Jacobson, Grady Booch, and James RumbaitghUnified Software Devel-
opment ProcessAddison-Wesley, 1999.

Mehdi Jazayeri, Alexander Ran, and Frank van diedén. Software Architecture
for Product Families: Principles and Practicddison-Wesley, 2000.

Rick Kazman and S. Jeromy Carriére. Playing detectReconstructing software
architecture from available evidend&utomated Software Engineerirti(2):107—
138, 1999.

Joshua KerievskyRefactoring to PatternsAddison-Wesley, 2005.

Jens Knodel and Martin Pinzger. Improving fact esti@n of framework-based
software systems. IRroceedings of the 10th Working Conference on Reverse En-
gineering pages 186-195, Victoria, B.C., Canada, November 2003 IE&EmM-
puter Society Press.

126

Bibliography

[Kri99]

[Kru95]

[KS03]

[KWC98]

[Lan01]

[Lan03]

[LB85]

[LDO3]

[LK94]

[LPR*97]

[LPROS]

[LRO3]

Rene Leo Krikhaar.Software Architecture ReconstructioRhD thesis, Univer-
siteit van Amsterdam, 1999.

Philippe B. Kruchten. The 4+1 view model of archiiee. IEEE Software
12(6):42-50, 1995.

Rainer Koschke and Daniel Simon. Hierarchical relexmodels. IlProceedings
of the 10th Working Conference on Reverse Engineepages 36—45, Victoria,
Canada, 2003. IEEE Computer Society Press.

Rick Kazman, Steven G. Woods, and S. Jeromy CarfiRequirements for inte-
grating software architecture and reengineering modedsui@ ii. In Proceedings

of the 5th Working Conference on Reverse Engineepages 154-163, Honolulu,
Hawai, 1998. IEEE Computer Society Press.

Michele Lanza. The evolution matrix: Recoveringtaare evolution using soft-
ware visualization techniques. Rroceedings of the International Workshop on
Principles of Software Evolutigpages 37-42, Vienna, Austria, September 2001.
ACM Press.

Michele Lanza. Object-Oriented Reverse Engineering - Coarse-grainedeFi
grained, and Evolutionary Software VisualizatiorPhD thesis, University of
Berne, 2003.

Manny M. Lehman and Les Beladf2rogram Evolution — Processes of Software
Change London Academic Press, 1985.

Michele Lanza and Stéphane Ducasse. Polymetriwyie- a lightweight visual
approach to reverse engineerinlEEE Transactions on Software Engineering
29(9):782—-795, September 2003.

Mark Lorenz and Jeff Kidd, editor€Object-Oriented Software Metrics: A Practi-
cal Guide Prentice-Hall, 1994.

Manny M. Lehman, D. E. Perry, J. F. Ramil, W. M. Turski, adD. Wernick.
Metrics and laws of software evolution - the nineties viewProceedings of the
4th International Software Metrics Symposiuymages 20-32, Albuquerque, NM,
USA, 1997. IEEE Computer Society Press.

Manny M. Lehman, Dewayne E. Perry, and Juan F. Ramiblications of evolu-
tion metrics on software maintenance Aroceedings of the International Confer-
ence on Software Maintenangeges 208-217, Bethesda, Maryland, USA, 1998.
IEEE Computer Society Press.

James Law and Gregg Rothermel. Whole program pasiedaynamic impact
analysis. InProceedings of the 25th International Conference on Soéwgi-
neering pages 308-318, Portland, Oregon, 2003. IEEE Computeetydeiess.

Bibliography 127

[LTPO4] Timothy Lethbridge, Sander Tichelaar, and ErhdogBereder. The dagstuhl mid-
dle metamodel: A schema for reverse engineertilgctronic Notes in Theoretical
Computer Scienc®4:7-18, 2004.

[McC76] Thomas J. McCabe. A complexity measurl=EE Transactions on Software
Engineering2(4), 1976.

[MK88] Hausi A. Miller and K. Klashinsky. Rigi — a system fprogramming-in-the-large.
In Proceedings of the 10th International Conference on Saéivizngineering
pages 80-86, Singapore, April 1988. IEEE Computer Societgs

[MMCG99] Spiros Mancoridis, Brian S. Mitchell, Yih-Farn €h, and Emden R. Gansner.
Bunch: A clustering tool for the recovery and maintenanceaffware system
structures. InProceedings of the IEEE International Conference on Sa#wa
Maintenance pages 50-59, Oxford, England, September 1999. IEEE Canput
Society Press.

[MMFO3] Jonathan I. Maletic, Andrian Marcus, and Louis Fer@purce viewer 3d (sv3d):
a framework for software visualization. Proceedings of the 25th International
Conference on Software Engineerjnqapges 812—-813, Portland, Oregon, 2003.
IEEE Computer Society Press.

[MNSO01] Gail C. Murphy, David Notkin, and Kevin J. SullivarSoftware reflexion mod-
els: Bridging the gap between design and implementatieBE Transactions on
Software Engineerin®27(4):364-380, April 2001.

[Par72] David Lorge Parnas. On the criteria to be used in mgosing systems into
modules.Communications of the ACM5(12):1053-1058, 1972.

[Par94] David Lorge Parnas. Software aging. Aroceedings of the 16th international
conference on Software engineeripgges 279-287, Sorrento, Italy, 1994. IEEE
Computer Society Press.

[PFGO5] Martin Pinzger, Michael Fischer, and Harald Gatiwards an integrated view on
architecture and its evolutiofElectronic Notes in Theoretical Computer Science
127(3):183-196, April 2005.

[PFGJO02] Martin Pinzger, Michael Fischer, Harald Gall, &tehdi Jazayeri. Revealer: A
lexical pattern matcher for architecture recoveryPhceedings of the 9th Work-
ing Conference on Reverse Engineeripgges 170-178, Richmond, Virginia, Oc-
tober 2002. IEEE Computer Society Press.

[PFIGO04] Martin Pinzger, Michael Fischer, Mehdi Jazayani Harald Gall. Abstracting
module views from source code. Rroceedings of the International Conference
on Software Maintenan¢pages 533-533, Chicago, USA, 2004. IEEE Computer
Society Press.

128

Bibliography

[PGO02]

[PGFLO5]

[PGG03]

[POGO3]

[PW92]

[Riv04]

[Sab01]

[SBLEOOQ]

[SDBP98]

[SFM99]

[SG96]

Martin Pinzger and Harald Gall. Pattern-supportetiigecture recovery. IRro-
ceedings of the 10th International Workshop on Program Gehgmsion pages
53-61, Paris, France, June 2002. IEEE Computer Societg.Pres

Martin Pinzger, Harald Gall, Michael Fischer, adtchele Lanza. Visualizing
multiple evolution metrics. IfProceedings of the ACM Symposium on Software
Visualization pages 67-75, St. Louis, Missouri, 2005. ACM Press.

Martin Pinzger, Harald Gall, Jean-Francois Girard,sJ€nodel, Claudio Riva,
Wim Pasman, Chris Broerse, and Jan Gerben Wijnstra. Aathiterecovery for
product families. InProceedings of the 5th International Workshop on Product
Family EngineeringLecture Notes in Computer Science, pages 332-351, Siena,
Italy, 2003. Springer-Verlag.

Martin Pinzger, Johann Oberleitner, and Harald.Galalyzing and understand-
ing architectural characteristics of com+ component®&rbteedings of the Inter-
national Workshop on Program Comprehensipages 54—63, Portland, Oregon,
2003. IEEE Computer Society Press.

Dewayne E. Perry and Alexander L. Wolf. Foundatianstiie study of software
architecture ACM SIGSOFT Software Engineering Not&%(4):40-52, 1992.

Claudio Riva. View-Based Software Architecture Reconstructid?hD thesis,
Vienna University of Technology, 2004.

Michael Saboe. The use of software quality metriteeé materiel release process
experience report. IRroceedings of the 2nd Asia-Pacific Conference on Quality
Software pages 104-109, Hong Kong, 2001. IEEE Computer SocietysPres

Houari A. Sahraoui, Mounir Boukadoum, Hakim Losinand Frédéric Etheve.
Predicting class libraries interface evolution: an inigggton into machine learn-
ing approaches. IRroceedings of 7th Asia-Pacific Software Engineering Qenfe
ence pages 456—-464, Singapore, December 2000. IEEE Computetperess.

John T. Stasko, John Domingue, Marc H. Brown, aradrngl A. Price, editors.
Software Visualization — Programming as a Multimedia Exgae The MIT
Press, 1998.

Margaret-Anne D. Storey, F. David Fracchia, and $ia. Muller. Cognitive
design elements to support the construction of a mental hthdeng software
exploration.Journal of Systems and Softwade(3):171-185, 1999.

Mary Shaw and David Garlasoftware Architecture: Perspectives on an Emerg-
ing Discipline Prentice-Hall, 1996.

Bibliography

129

[SMO5]

[Sof99]

[SomO00]

[Tufo0]
[Tuf97]

[UniO5]

[VRDO4]

[WarQ0]

[Won98]

[WSHH04]

[YCM78]

[YMNCCO04]

[ZDZ03]

Margaret-Anne D. Storey and Hausi A. Muller. Manlging and documenting
software structures using shrimp views.Rroceedings of the 1995 International
Conference on Software Maintenangeges 275-284, Opio, France, October
1995. IEEE Computer Society Press.

Software Composition Group, University of Berddgne FAMIX 2.0 specificatign
2.0 edition, August 1999. http://www.iam.unibe.ch/ sogtive/famoos/FAMIX/.

lan Sommerville.Software Engineering Addison-Wesley, 6th edition edition,
2000.

Edward R. Tufte Envisioning InformationGraphics Press, 1990.
Edward R. Tufte Visual ExplanationsGraphics Press, 1997.

Uni Stuttgart.Bauhaus: Software Architecture, Software Reengineeand,Pro-
gram UnderstandingMay 2005.

Filip Van Rysselberghe and Serge Demeyer. Studgioityare evolution infor-
mation by visualizing the change history.Pnoceedings of the 20th International
Conference on Software Maintenangages 328-337, Chicago, lllinois, USA,
September 2004. IEEE Computer Society Press.

Colin Ware.Information VisualizationMorgan Kaufmann, 2000.

Kenny Wong.The Rigi User's Manual — Version 5.4.4niversity of Victoria,
5.4.4 edition, 1998.

Jingwei Wu, Claus W. Spitzer, Ahmed E. Hassan, actid&td C. Holt. Evolution
spectrographs: Visualizing punctuated change in softeaoéution. InProceed-
ings of the 7th International Workshop on Principles of &afe Evolution pages
57-66, Kyoto, Japan, September 2004. IEEE Computer Sderess.

Stephen S. Yau, J. S. Collofello, and T. MacGregoripdke effect analysis of
software maintenance. Ifhe IEEE Computer Society’s Second International
Computer Software and Applications Conferenuages 60-65. IEEE Computer
Society Press, 1978.

Annie T. T. Ying, Gail C. Murphy, Raymond Ng, and kkeC. Chu-Carroll. Pre-
dicting source code changes by mining change histdéBEE Transactions on
Software Engineering30(9):574-586, September 2004.

Thomas Zimmermann, Stephan Diehl, and AndreaseZelow history justifies
system architecture (or not). Rroceedings of the 6th International Workshop
on Principles of Software Evolutippages 73-83, Helsinki, Finland, 2003. IEEE
Computer Society Press.

130 Bibliography

[ZWDZz04] Thomas Zimmermann, Peter Weissgerber, StephanlDand Andreas Zeller.

Mining version histories to guide software changes.Ptoceedings of the 26th

International Conference on Software Engineeripgges 563-572, Edinburgh,
Scotland, 2004. IEEE Computer Society Press.

CURRICULUM VITAE

Personal Information
Name:
Nationality:

Date of Birth:
Place of Birth:

Education

2001 - 2005

1996 - 2001

1996 - 1996
1993 - 1995

1989 - 1993

1980 - 1989

Martin Pinzger
Austria

September 8th, 1974
Zams, Tirol, Austria

Dr. techn. in Computer Science in the Distrib&gstems Group at the
Vienna University of Technology
Subject of the Doctoral Thesis: “ArchView - Analyzing Evahnary
Aspects of Complex Software Systems”

Student in Computer Science at the Vienna UniyafsTechnology
Master in Computer Science in the Distributed Systems Gaiupe
Vienna University of Technology
Subject of the Diploma Thesis: “Re-engineering von Flugplegssoft-
ware” at the EADS Dornier GmbH in Friedrichshafen, Germany

Military service in the Austrian Federal Armeddes

Kolleg for EDV und Organisation at HBLV fur Tditdustrie in Vienna
Graduation on September 26th, 1995

Scientific Bundes- Oberstufenrealgymnasiunaimdieck
Graduation on June 13th, 1993

Primary Schools in Pfunds

	Introduction
	Problem Statement
	The Approach
	Contributions
	Thesis Outline

	Software Architecture and Evolution
	Software Architecture
	Architectural Views and Viewpoints
	Abstraction Levels
	Software Evolution
	Controlling Software Evolution

	Related Work
	Software Evolution
	Architecture Recovery
	Information Visualization

	The ArchView Approach
	Introduction
	Change-Prone Modules
	ArchView Process
	Key Features
	Module View Example
	Summary

	Building the ArchView Repository
	Introduction
	The E-FAMIX Meta Model
	Source Code Fact Extraction
	Release History Data
	CVS
	Bugzilla
	Change Couplings

	Data Integration
	Summary

	Architectural View Abstraction
	Introduction
	Source Code Containment Hierarchy
	Establishing the links between the hierarchical levels

	Software Metrics
	Module Metrics
	Relationship Metrics

	Abstraction Algorithm
	Summary

	Visualization & Analysis
	Introduction
	Feature Vectors and Evolution Matrices
	Higher-Level Views on a Release
	Visualizing Multiple Evolution Metrics
	Visualizing Data of n Releases
	Kiviat Graphs

	Summary

	Mozilla Case Study
	Mozilla Project
	Preparing the ArchView Repository
	Source Code Model
	CVS and Bugzilla Data
	Data Integration
	Data Abstraction

	Views on Mozilla Release 1.7
	Large and complex entities
	Frequently modified and ``buggy'' entities
	Views with multiple metrics
	Source code coupling
	Change Coupling

	Evolution from Mozilla Release 0.92 to 1.7
	Evolution of modules
	Evolution of critical source files
	Kiviat graphs
	Results

	Summary of Results
	Discussion of Results
	Fact extraction
	Data model integration
	Visualization

	Conclusion
	Contributions
	Future Work

	Appendix
	The Extended FAMIX Meta Model
	E-FAMIX meta model
	Source Code Model
	Release History Model

	Publications
	Visualization & Analysis
	Architectural View Abstraction
	Model Extraction & Integration

	Bibliography

