
Mining and Analyzing  
Source Code Changes

Martin Pinzger & Veit Frick
Software Engineering Research Group

Universität Klagenfurt, Austria
http://serg.aau.at

http://serg.aau.at

Kartendaten © 2014 Basarsoft, GeoBasis-DE/BKG (©2009), Google 100 km

Google Maps https://www.google.at/maps/preview

1 of 1 28/06/14 11:17

Pfunds

PhD

Postdoc

Assistant
Professor

Univ. Prof.

Helping developers to
understand changes and
their impact

My research goals

 3

Build the next generation of software development tools and online
collaboration platforms

Improve evaluation and
validation in software
engineering

Automating software
engineering tasks

More info
https://pinzger.github.io/

Helping developers to
understand changes and
their impact

My research goals

 4

Build the next generation of software development tools and online
collaboration platforms

Improve evaluation and
validation in software
engineering

Automating software
engineering tasks

Course overview

1. Fine-grained source code change extraction

ChangeDistiller and IJM

Hands on IJM and DiffViz

2. Using the fine-grained source code changes …

Hands on analyzing the evolution of a system

For bug prediction and change summarization

 5

Lehman’s Law of Software
Evolution
Continuing change

A program that is used in a real-world environment must
change, or become progressively less useful in that environment.

Increasing complexity

As a program evolves, it becomes more complex, and extra
resources are needed to preserve and simplify its structure.

For more information read Lehman and Belady, 1985

 6

Lehman’s Laws in Mozilla

 7

What did change?

 8

What is the change impact?

 9

Do the changes affect my code?

 10

Understanding changes and their
impact
Existing tools lack support for comprehending changes

“How do software engineers understand code changes? - an
exploratory study in industry”, Tao et al. 2012

Developers need to reconstruct the detailed context and
impact of each change which is time consuming and error
prone

“An exploratory study of awareness interests about software
modifications”, Kim 2011

 11

We need better support to analyze and
comprehend changes and their impact

 12

Overview of our tools

ChangeDistiller and IJM

Fine-grained evolution of Java classes

WSDLDiff

Evolution of service-oriented systems

FMDiff

Evolution of feature models

 13

ChangeDistiller: tree differencing
for fine-grained source code
change extraction

Beat Fluri, Michael Würsch, Martin Pinzger, and Harald Gall

Extracting source code changes
using ASTs
Using tree differencing, we can determine

public void method(D d) {
if (d != null) {

d.foo();
d.bar();

}
}

public void method(D d) {
d.foo();
d.bar();

}

 15

Using tree differencing, we can determine

Enclosing entity (root node)

public void method(D d) {
if (d != null) {

d.foo();
d.bar();

}
}

public void method(D d) {
d.foo();
d.bar();

}

Extracting source code changes
using ASTs

 16

Using tree differencing, we can determine

Enclosing entity (root node)  
Kind of statement which changed (node information)

public void method(D d) {
if (d != null) {

d.foo();
d.bar();

}
}

public void method(D d) {
d.foo();
d.bar();

}

Extracting source code changes
using ASTs

 17

public void method(D d) {
if (d != null) {

d.foo();
d.bar();

}
}

public void method(D d) {
d.foo();
d.bar();

}

Extracting source code changes
using ASTs
Using tree differencing, we can determine

Enclosing entity (root node)  
Kind of statement which changed (node information)  
Kind of change (tree edit operation)

 18

ChangeDistiller model

uniqueName
shortName
type

SourceCodeEntity
structureEntity
sourceCodeEntity
type

ChangeOperation

parentEntity
Insert

parentEntity
Delete

oldParentEntity
newParentEntity

Move
newEntity
parentEntity

Update

uniqueName
type
bodyChanges
declarationChanges

StructureEntity

*

changeType
changeOperations

SourceCodeChange
*

structureEntity
version

StructureEntityVersion

attributeVersions
AttributeHistory

methodVersions
MethodHistory

*
classVersions
attributeHistories
innerClassHistories
methodHistories

ClassHistory

*

*

*

Revision

link to

org.evolizer.model.versioning

BodyChange

DeclarationChange
*

*

 19

Change type categories

cDecl = changes to class declarations

oState = insertion and deletion of class attributes

func = insertion and deletion of methods

mDecl = changes to method declarations

stmt = insertion, deletion, ordering of executable statements

cond = changes to conditional expressions

else = insertion and deletion of else-parts

 20

ChangeDistiller tool

Dem

 21https://bitbucket.org/sealuzh/tools-changedistiller/wiki/Home

https://bitbucket.org/sealuzh/tools-changedistiller/wiki/Home

GumTree

Improvements over ChangeDistiller

 22
“Fine-grained and accurate source code differencing”, Falleri et al. 2014

GumTree AST used for diffing

 23

Fig. 6. Tree on the left shows the excerpt of the AST generated by GT and MTD for the source code of the class UnescapeUtils (see Figure 1). Tree
on the right shows the same excerpt of the AST generated by IJM. Marked nodes represent simple name nodes that are merged or removed by IJM.

Fig. 7. Example edit script generated using GT where the nodes representing
fields and hasNext, and isEmpty and hasNext are inaccurately
matched.

added to measure whether or not the single actions of an edit
script accurately depict the changes in a given revision. As
fourth criterium, we evaluate the helpfulness of complete edit
scripts to see if they further the understanding of the occurring
changes in a revision.

We use 10 well-known open source Java projects as data set
for the evaluation as can be seen in Table I. We chose these
projects to cover a broad bandwidth of projects of different
sizes, ranging from 269 to over 10,000 classes and from 1,327
to 17,948 commits. All projects are open-source and publicly
available from GitHub to ensure reproducibility. We ran the
three approaches IJM, MTD, and GT on all file revisions from
all non-merge commits of those 10 projects to generate the
edit scripts. 11,353 out of 392,492 (2.89%) revisions could
not be handled by MTD with our setup, since the process
ran out of memory (we ran MTD with dedicated 40 GB of
RAM). Neither GT nor IJM ran into this problem. To allow
for a fair comparison of the approaches, we excluded these
revisions from the data set. We also excluded any revisions
that have changes in JavaDoc (76,785), since IJM focuses on
source code changes and is not able to detect JavaDoc changes.
Using this process, we generated a total of 307,081 edit scripts
per approach. Note that IJM ran on the reduced AST whilst
GT and MT ran on the larger unmodified AST.

TABLE I
DESCRIPTIVE STATISTICS OF THE 10 JAVA OPEN SOURCE PROJECTS USED

IN THE EVALUATION

Poject Commits Revisions LOC Methods Classes
ActiveMQ 7,413 44,829 405,747 41,730 4,940
Commons IO 1,327 4,443 29,267 44,448 269
Commons Lang 3,742 11,034 74,477 51,062 539
Commons Math 5,010 32,132 186,566 65,695 1,646
JDT Core 3,658 26,884 1,400,678 137,155 7,842
HBase 17,948 89,119 1,116,946 254,346 8,491
Hibernate ORM 10,097 63,393 643,299 321,547 10,758
Hibernate Search 6,002 87,465 137,468 335,372 2,576
JUnit 4 1,376 6,276 28,749 339,376 1,145
Spring Roo 4,467 26,917 106,454 347,608 998
All 61,040 392,492 4,129,651 1,938,339 39,204

TABLE II
MEDIAN AND MAXIMUM EDIT SCRIPT SIZE PER PROJECT AND APPROACH

Project Median Maximum
GT MTD IJM GT MTD IJM

ActiveMQ 13 13 10 20,171 20,173 15,313
Commons IO 10 10 8 2,273 3,276 1,847
Commons Lang 13 13 10 4,494 4,494 3,912
Commons Math 7 8 6 8,332 8,334 6,442
JDT Core 17 18 14 30,532 30,552 22,344
HBase 11 11 8 76,057 76,059 59,932
Hibernate ORM 9 11 6 27,605 27,607 20,250
Hibernate Search 8 8 6 2,543 2,539 1,947
JUnit 4 13 14 10 2,000 2,002 1,530
Spring Roo 13 13 10 3,830 4,160 3,093
All 12 12 9 76,057 59,932 76,059

A. Edit Script Size
Existing work on tree differencing, such as [4], [5], and

[14], argue that smaller edit scripts are better in terms of un-
derstandability. Table II presents the results in terms of median
and maximum edit script size per project and approach. The
minimum edit script size for each approach and project is 1.

When used on the 307,081 revisions from the data set, IJM
produces edit scripts, whose median size is 9. The median

AST Diff of GumTree

 24

1. public class UnescapeUtils {
2. public static final CharSequenceTranslator

UNESCAPE_JAVA =
3. new AggregateTranslator(
4. new UnicodeUnescaper(),
5. new LookupTranslator(
6. new String[][] {
7. {"\\\\", "\\"},
8. {"\\\"", "\""},
9. {"\\'", ""},
10. {"\\r", "\r"},
11. {"\\f", "\f"},
12. {"\\t", "\t"},
13. {"\\n", "\n"},
14. {"\\b", "\b"},
15. {"\\", ""}
16. })
17.);
18. // ...
19. }

1. public class UnescapeUtils {
2. public static final CharSequenceTranslator

 UNESCAPE_JAVA_CTRL_CHARS =
3. new LookupTranslator(
4. new String[][] {
5. {"\\b", "\b"},
6. {"\\n", "\n"},
7. {"\\t", "\t"},
8. {"\\f", "\f"},
9. {"\\r", "\r"}
10. });
11.
12. public static final CharSequenceTranslator UNESCAPE_JAVA =
13. new AggregateTranslator(
14. new UnicodeUnescaper(),
15. UNESCAPE_JAVA_CTRL_CHARS,
16. new LookupTranslator(
17. new String[][] {
18. {"\\\\", "\\"},
19. {"\\\"", "\""},
20. {"\\'", "'"},
21. {"\\", ""}
22. })
23.);
24. // ...
25. }

DELETE
UPDATE
INSERT
MOVE

Too many unnecessary edits!

IJM: generating accurate and
compact edit scripts using tree
differencing

Veit Frick, Thomas Grassauer, Fabian Beck, and Martin Pinzger

IJM

Iterative Java Matcher (IJM)

Builds upon GumTree

Improvements over GumTree

Partial matching

Merged name nodes

Name-aware matching

 26

Partial matching

Series of specialized matchers

Restricted scope per matcher

Inner Type Matcher, Field Matcher, …

 27

Merged name nodes

Merges name nodes with their parents

Reduces AST size

Prevents name mismatches

 28

1. public class Test {
2. public void foo() {
3. }
4. }

1. public class Test {
2. public void bar() {
3. int foo = 1;
4. }
5. }

Name-aware matching

Adding name-awareness to bottom-up phase of
GumTree

Similarity of node names is taken into account

Similarity threshold is a Levenshtein distance of < 0.3

 29

Evaluation

Comparison between IJM, GumTree, and MtDiff

Edit Script Size, Runtime, Accuracy, Helpfulness

10 open source Java Projects

61,040 commits, 392,492 revisions

307,081 revisions excluding JavaDoc and out of
Memory revisions

 30

Evaluation: edit script size

Evaluated all 307,081 revisions

IJM has smallest edit script (alone or shared) in 95.22% of the
revisions

GumTree in 53.08%
MtDiff in 54.53%

IJM ran on the reduced AST (merged name nodes) while MtDiff
GumTree ran on the full AST

Effect statistically valid but negligible

 31

GumTree MtDiff IJM

Median	Size 12 12 9

Evaluation: accuracy

2400 randomly selected single edit actions evaluated
200 per action type and matcher

Classified as accurate/inaccurate

Criteria for accurate edit actions:
Comprehensive

Helpful

No simpler solution

 32

Evaluation: accuracy

MR: Misclassification Rate

NotA: Number of total actions

 33

GumTree MtDiff IJM
MR NotA MR NotA MR NotA

Move 58.2% 720,303 81.5% 3,121,607 43.5% 510,250

Update 40% 938,288 37% 759,177 17% 503,423
Insert 5.5% 12,225,111 6% 9,642,897 5.5% 10,236,135

Delete 12% 5,478,973 11% 4,038,471 11.5% 5,021,193

Relative	 10.98% 21.91% 8.9%

Evaluation: helpfulness

11 independent external experts

3 randomly selected revisions per project

Each revision consisting of ≥20 and ≤100 edit actions

Including >= 1 move or update action

Each participant ranks the output of GumTree, IJM, and MtDiff
according to helpfulness

Each participant evaluates one revision per project

 34

Evaluation: helpfulness

IJM ranks first in

49 out of 110 cases (44.5%)

18 out of 30 revisions (60%)

Pearson’s Chi² shows dependency between matcher and rankings

 35

1st 2nd 3rd
GumTree 30 39 41
MtDiff 31 39 40

IJM 49 32 29

Summary of results

IJM improves accuracy & helpfulness at no additional
costs in runtime and edit script size

IJM on Github:

https://github.com/VeitFrick/IJM

DiffViz: tool for navigating and visualizing diffs

https://www.youtube.com/watch?v=RF93ey9GYoc

 36

Research opportunities

Further improve the performance (precision) of the extraction
algorithm(s)

Extract changes of dependencies (our current work)

E..g, consider changes in call, access, inheritance, and type dependencies

Integrate and visualize changes

Extract changes from other source files, e.g., configuration files, project
and build files (FEVER)

Integrate and visualize them to allow engineers to better understand them

 37

Some references
Umldiff: An algorithm for object-oriented de- sign differencing. Xing et al. 2005

Change distilling: Tree differencing for fine-grained source code change extraction. Fluri et al. 2007

Fine-grained and Accurate Source Code Differencing. Falleri et al. 2014

Move-optimized source code tree differencing. Dotzler et al. 2016

Generating simpler AST edit scripts by considering copy-and-paste. Higo et al. 2017

Generating Accurate and Compact Edit Scripts Using Tree Differencing. Frick et al. 2018

DiffViz: A Diff Algorithm Independent Visualization Tool for Edit Scripts. V. Frick et al. 2018

ClDiff: generating concise linked code differences, Huang et al. 2018

FEVER: An Approach to Analyze Feature-Oriented Changes and Artefact Co-Evolution in Highly
Configurable Systems, Dintzner et al. 2018

 38

Hands on IJM and DiffViz

 39

Hands on analyzing the
evolution of a system

Sources at: https://github.com/pinzger/siesta2019

https://github.com/pinzger/siesta2019

