
Comparing fine-grained source code changes and code churn
for bug prediction - A retrospective

Martin Pinzger
Department of Informatics Systems

Universität Klagenfurt
Klagenfurt, Austria

martin.pinzger@aau.at

Emanuel Giger
Zurich, Switzerland
gigerem@gmail.com

Harald C. Gall
Department of Informatics

University of Zurich
Zurich, Switzerland
gall@ifi.uzh.ch

ABSTRACT
More than two decades ago, researchers started to mine the data
stored in software repositories to help software developers in mak-
ing informed decisions for developing and testing software systems.
Bug prediction was one of the most promising and popular research
directions that uses the data stored in software repositories to pre-
dict the bug-proneness or number of bugs in source files. On that
topic and as part of Emanuel’s PhD studies, we submitted a paper
with the title Comparing fine-grained source code changes and code
churn for bug prediction [8] to the 8th Working Conference on Min-
ing Software Engineering, held 2011 in beautiful Honolulu, Hawaii.
Ten years later, it got selected as one of the finalists to receive the
MSR 2021 Most Influential Paper Award. In the following, we pro-
vide a retrospective on our work, describing the road to publishing
this paper, its impact in the field of bug prediction, and the road
ahead.

ACM Reference Format:
Martin Pinzger, Emanuel Giger, and Harald C. Gall. 2021. Comparing fine-
grained source code changes and code churn for bug prediction - A ret-
rospective. In Woodstock ’18: ACM Symposium on Neural Gaze Detection,
June 03–05, 2018, Woodstock, NY . ACM, New York, NY, USA, 3 pages. https:
//doi.org/10.1145/1122445.1122456

1 SETTING THE SCENE
State-of-the-art approaches in bug prediction 10–15 years ago typi-
cally used traditional machine learning algorithms, such as linear
regression, binary logistic regression, decision trees, or support
vector machine, fed with code metrics and/or process metrics to
train models to predict the bug-proneness of source files. Several
such approaches have been proposed by researchers that combined
different metrics and machine learning algorithms. Furthermore,
studies such as by Moser et al. [15], found out that process metrics
perform explicitly well. Regarding process metrics, Nagappan et
al. [16] published a seminal work in 2005, in which they show that
the relative code churn (sum of lines added, deleted and modified
weighted by the total lines of code) is a significant indicator for

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MSR ’21, May 23–24, 2021, Madrid, Spain
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

buggy source files. This approach represented the state-of-the-art
in bug prediction at that time.

A key ingredient for training prediction models is a large amount
of cleansed data for training, testing, and validating the models.
In our research group at the University of Zurich we had access
to such data that we mined with the Evolizer platform [6]. Most
important for our work has been the ChangeDistiller [5], a key com-
ponent of Evolizer, that is capable of mining detailed information
on code changes from versioning archives. In contrast to traditional
line-based differencing, such as used for computing code churn,
ChangeDistiller applies tree-based differencing to two versions of
a source file to capture syntactical and some semantical informa-
tion on code changes. For that it classifies the extracted changes
according to its change type taxonomy that consists of more than
45 different changes types. For instance, it can capture changes
that inserted, modified, or deleted an if-statement. This way it also
filters formatting changes that can bias the code churn.

Motivated by previous work and by the availability of the more
detailed information on code changes (in the following denoted as
SCC), we hypothesized to improve existing prediction models, in
particular the ones that use code churn (in the following denoted
as LM) as a predictor. Using the data from 15 Eclipse plugins, we
investigated the following three hypotheses:

H1: SCC does have a stronger correlation with the number of
bugs than LM.

H2: SCC achieves better performance to classify source files into
bug- and not bug-prone files than LM.

H3: SCC achieves better performance when predicting the num-
ber of bugs in source files than LM.

2 RUNNING THE EXPERIMENTS
As a first step, we used Evolizer and ChangeDistiller to prepare the
dataset for our experiments. Figure 1 depicts an overview of these
steps.

First, we used Evolizer to fetch and process all the log entries
for each source file and to compute the LM for each file revision.
Second, we used Evolizer to search the commit messages of the log
entries for references to bug reports and compute the number of
bugs per file revision. Third, we used ChangeDistiller to extract the
code changes between pairs of subsequent revisions and counted
the number of changes for each change type per file revision. Both,
Evolizer and ChangeDistiller, store the results into the Evolizer data-
base, that made it easy for us to compute the features for training
the prediction models. Note, both tools are still publicly available,
though maintenance for the Evolizer platform has stopped.

DOI: 10.1145/3468744.3468751
https://doi.org/10.1145/3468744.3468751

ACM SIGSOFT Software Engineering Newsletter Page 21 July 2021 Volume 46 Number 3

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

MSR ’21, May 23–24, 2021, Madrid, Spain Martin Pinzger, Emanuel Giger, and Harald C. Gall

4. Experiment

2. Bug Data

3. Source Code Changes (SCC)1.Versioning Data

CVS, SVN,
GIT

Evolizer
RHDB

Log Entries ChangeDistiller

Subsequent
Versions

Changes

#bug123

Message Bug

Support
Vector

Machine

1.1 1.2

AST
Comparison

Figure 1: Overview of the data extraction process.

Following good practices for conducting empirical studies, we
first had a look at the descriptive statistics and distribution of our
data. We soon found out that several change types occurred very
rarely, therefore, we decided to aggregate the change types to 9
change type categories with the hope to obtain more balanced
numbers. Next, we investigated whether the change type categories
exhibit a stronger correlation with the number of bugs than LM.
Computing the Spearman correlation with the numbers summed
up for each file over the full observation period, we found that this
is true for the aggregated number of changes (SCC) leading us to
accept hypothesis H1. Note, this result was a strong indicator that
the number of changes might contain more valuable information
to predict the bug-proneness of source files and even the number
of bugs than LM.

Next, we investigated hypothesis H2 by computing prediction
models for each project, once with LM and once with SCC using
binary logistic regression and 10-fold cross validation. The results in
terms of precision, recall, and AUC all show that the models, except
for the Eclipse Help plugin, trained with SCC outperformed the
models trained with LM with amedian𝐴𝑈𝐶𝑆𝐶𝐶 of 0.90 vs. a median
𝐴𝑈𝐶𝐿𝑀 of 0.85. We also found that neither considering the single
change type categories nor consideringmultiple other classifiers did
help to improve the AUC values. Finally, we investigated hypothesis
H3 by fitting an asymptotic model to estimate the number of bugs
based on the number of changes, again once using LM and once
using SCC. For each project, the model trained with SCC showed
a higher 𝑅2 value confirming our assumption that SCC has more
explanatory power compared to LM. For more details, we refer the
reader to our original paper [8].

Summing up the results, the key take away message from this
paper is: SCC contains more detailed information on code changes
therefore has more explanatory power than code churn for predicting
the bug-proneness of source files. Consequently, future studies should
use SCC instead of code churn. Whether they did that and why not
is discussed next.

3 WHAT IS THE IMPACT?
Addressing the question from the previous section, we had a look
at the citations for our paper on google scholar. We found that our
work received a constant number of citations each year with peaks

in the years 2012–2015. Looking at a sample of these works, we
found that our work mainly inspired and impacted research on: 1)
using detailed information on code changes to improve program
repair e.g., [14], patch propagation [12] and merge support, [2];
2) further improving bug/defect prediction, e.g., [1, 3, 7, 13, 17]; 3)
being careful when choosing a machine learning technique and
checking the assumptions/prerequisites for using that technique,
e.g., [9, 10]; and 4) diverse other studies, such as on the repeti-
tiveness of code changes [18], antipatterns in source code [19],
plagiarism detection [11], and taint analysis [20].

Regarding our question whether these studies favored fine-grai-
ned changes over code churn, we found no clear answer. While
several studies follow or support the key take away message of
our paper, such as [2, 12, 14], several other studies, such as [13,
17], also cited our work to motivate the usage of code churn. The
reason seems to be that code churn is a measure that can be easily
obtained while the extraction of fine-grained code changes needs
more sophisticated techniques, such as a parser, that needs to be
provided for each programming language.

4 MOVING FORWARD
In our opinion, the most promising road ahead is the research on
techniques and tools that use detailed information on code changes
to automate some of the recurring development activities, such
as automatically fixing (simple) bugs or regression test selection,
or to support software developers, for instance, in understanding
changes and their impact. Key for walking this research road is
the availability of detailed information on code changes. Since
the introduction of ChangeDistiller [5], several other approaches
for extracting detailed information on code changes have been
introduced.Most notable is the GumTree framework [4] and various
improvements of it that support other programming languages.
However, there is still lots of room for improving these tools, for
instance to support the variety of technologies that are used to
develop modern software systems, such as cloud native applications.
These are some of the topics, that we are currently working on and
that will keep us busy for the next couple of years.

REFERENCES
[1] HDArora and Talat Parveen. 2019. Computation of Various EntropyMeasures for

Anticipating Bugs in Open-Source Software. In Software Engineering. Springer,
235–247.

[2] Caius Brindescu, Iftekhar Ahmed, Rafael Leano, and Anita Sarma. 2020. Planning
for untangling: Predicting the difficulty of merge conflicts. In Proceedgins of the
International Conference on Software Engineering. IEEE, 801–811.

[3] Nélio Cacho, Thiago César, Thomas Filipe, Eliezio Soares, Arthur Cassio, Rafael
Souza, Israel Garcia, Eiji Adachi Barbosa, and Alessandro Garcia. 2014. Trading
robustness for maintainability: an empirical study of evolving c# programs. In
Proceedings of the International Conference on Software Engineering. IEEE, 584–
595.

[4] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Martin
Monperrus. 2014. Fine-Grained and Accurate Source Code Differencing. In
Proceedings of the International Conference on Automated Software Engineering.
ACM, 313–324.

[5] Beat Fluri, Michael Würsch, Martin Pinzger, and Harald C. Gall. 2007. Change
Distilling: Tree Differencing for Fine-Grained Source Code Change Extraction.
IEEE Transactions on Software Engineering 33, 11 (2007), 725–743.

[6] Harald C. Gall, Beat Fluri, and Martin Pinzger. 2009. Change Analysis with
Evolizer and ChangeDistiller. IEEE Software 26, 1 (2009), 26–33.

[7] Emanuel Giger, Marco D’Ambros, Martin Pinzger, and Harald C Gall. 2012.
Method-level bug prediction. In Proceedings of the International Symposium on
Empirical Software Engineering and Measurement. IEEE, 171–180.

ACM SIGSOFT Software Engineering Newsletter Page 22 July 2021 Volume 46 Number 3

Comparing fine-grained source code changes and code churn for bug prediction - A retrospective MSR ’21, May 23–24, 2021, Madrid, Spain

[8] Emanuel Giger, Martin Pinzger, and Harald C. Gall. 2011. Comparing Fine-
Grained Source Code Changes and Code Churn for Bug Prediction. In Proceedings
of the Working Conference on Mining Software Repositories. ACM, 83–92.

[9] Tihana Galinac Grbac, Goran Mausa, and Bojana Dalbelo Basic. 2013. Stability of
Software Defect Prediction in Relation to Levels of Data Imbalance.. In Proceedings
of the Workshop on Software Quality Analysis, Monitoring, Improvement and
Applications. CEUR-WS.org, 1–10.

[10] Hadi Hemmati, Sarah Nadi, Olga Baysal, Oleksii Kononenko, Wei Wang, Reid
Holmes, and Michael W Godfrey. 2013. The msr cookbook: Mining a decade of re-
search. In Proceedings for the Working Conference on Mining Software Repositories.
IEEE, 343–352.

[11] Vedran Ljubovic and Enil Pajic. 2020. Plagiarism Detection in Computer Pro-
gramming Using Feature Extraction from Ultra-Fine-Grained Repositories. IEEE
Access (2020).

[12] Aravind Machiry, Nilo Redini, Eric Camellini, Christopher Kruegel, and Giovanni
Vigna. 2020. Spider: Enabling fast patch propagation in related software reposito-
ries. In Proceedings of the Symposium on Security and Privacy. IEEE, 1562–1579.

[13] Lech Madeyski and Marian Jureczko. 2015. Which process metrics can signifi-
cantly improve defect prediction models? An empirical study. Software Quality
Journal 23, 3 (2015), 393–422.

[14] Matias Martinez and Martin Monperrus. 2015. Mining software repair models for
reasoning on the search space of automated program fixing. Empirical Software
Engineering 20, 1 (2015), 176–205.

[15] Raimund Moser, Witold Pedrycz, and Giancarlo Succi. 2008. A Comparative
Analysis of the Efficiency of Change Metrics and Static Code Attributes for
Defect Prediction. In Proceedings of the International Conference on Software
Engineering. ACM, 181–190.

[16] Nachiappan Nagappan and Thomas Ball. 2005. Use of Relative Code Churn
Measures to Predict System Defect Density. In Proceedings of the International
Conference on Software Engineering. ACM, 284–292.

[17] Malanga Kennedy Ndenga, Ivaylo Ganchev, Jean Mehat, Franklin Wabwoba, and
Herman Akdag. 2019. Performance and cost-effectiveness of change burst metrics
in predicting software faults. Knowledge and Information Systems 60, 1 (2019),
275–302.

[18] Hoan Anh Nguyen, Anh Tuan Nguyen, Tung Thanh Nguyen, Tien N Nguyen,
and Hridesh Rajan. 2013. A study of repetitiveness of code changes in software
evolution. In Proceedings of the International Conference on Automated Software
Engineering. IEEE, 180–190.

[19] Daniele Romano, Paulius Raila, Martin Pinzger, and Foutse Khomh. 2012. Ana-
lyzing the impact of antipatterns on change-proneness using fine-grained source
code changes. In Proceedings of the Working Conference on Reverse Engineering.
IEEE, 437–446.

[20] Tingyu Song, Xiaohong Li, Zhiyong Feng, and Guangquan Xu. 2019. Inferring
Patterns for Taint-Style Vulnerabilities With Security Patches. IEEE Access 7
(2019), 52339–52349.

ACM SIGSOFT Software Engineering Newsletter Page 23 July 2021 Volume 46 Number 3

