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Abstract. We describe a mechanism to create fair and explainable in-
centives for software developers to reward contributions to security of
a product. We use cooperative game theory to model the actions of
the developer team inside a risk management workflow, considering the
team to actively work against known threats, and thereby receive micro-
payments based on their performance. The use of the Shapley-value pro-
vides natural explanations here directly through (new) interpretations of
the axiomatic grounding of the imputation. The resulting mechanism is
straightforward to implement, and relies on standard tools from collab-
orative software development, such as are available for git repositories
and mining thereof. The micropayment model itself is deterministic and
does not rely on uncertain information outside the scope of the developer
team or the enterprise, hence is void of assumptions about adversarial
incentives, or user behavior, up to their role in the risk management
process that the mechanism is part of. We corroborate our model with a
worked example based on real-life data.

Keywords: Incentive based security · Shapley-value · Cooperative game
· Software Security.

1 Introduction

Security has the unfortunate fate of not generating revenue by itself, but rather
preventing damage at additional cost. As such, it does not necessarily “add”
to the functionality of a system, but only protects it from malfunctions. Con-
sequently, people may take considerably less satisfaction from implementing a
security mechanism, since the system is working before and after, with no visible
improvement other than increased robustness and security.

The problem of reluctancy to design a product not only for functionality,
but also for safety has a long history of research, including sophisticated game
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theoretic analysis using signalling games. Past such work found that companies
may not necessarily have natural incentives to invest in security, for example, if
customers are unwilling to pay the higher price for the more secure product [9].

Investments in security may also be due to obligations of independent au-
diting, legal or (security) standard compliance. Frameworks like the Common
Criteria (CC) [7] or the ISO 27k family [23] provide well formalized workflows
along which security of a product, including its production process, can be es-
tablished.

These standards depend on developer teams to support the additional efforts
imposed by a security-by-design paradigm, which we propose a (monetary) in-
centivization mechanism in this work. This is a form of incentive-based security
[20, 26], and relies on the hypothesis that people act rational towards maximiz-
ing their own utility. Research has found strong evidence against such a general
utility maximization [33, 35, 34], which may be attributed not to a flaw in the
general logic of utility maximization, but rather to a mere mistake in how the
utilities are modeled. Indeed, research about bounded rationality has identified
a considerable lot of reasons why people do not maximize a presumed utility
expressed as a real-valued and continuous function, but rather consider multiple
dimensions and uncertainty in their decisions. Hence, to create an easily per-
ceptible incentive to maximize as one’s own utility, we propose a pragmatic and
straightforward mechanism, which is additional salary for people that implement
security on top of the product’s basic functionality.

Our mechanism employs cooperative game theory, specifically the Shapley-
value to measure how much a member of a team contributes to the team goals,
and from this, determines the additional payoffs to this person on top of the reg-
ular salary. For such a mechanism to work, we need mechanisms to keep track of
people’s contributions and to relate and assess them in light of security require-
ments to be (not) fulfilled by a person’s actions. We will rely on a combination
of code repository features and risk management processes for this purpose, to
define a coalitional payoff function that we can use to reward team members in
a fair manner. Our solution is cooked from the following ingredients:

– Risk management processes to systematically identify threats, countermea-
sures and implied conditions or test cases to verify the countermeasures as
being (correctly) implemented in a software.

– Repository mechanisms that allow an attribution of certain changes to indi-
vidual people, to verify which and whose contributions accomplished security
requirements as found in the risk management.

– Sharing of the gains that the whole developer team earned among the team
members in a systematic and “fair” way. To this end, the Shapley-value,
specifically its axiomatic characterization will play a central role, since we
can recognize several of its properties as naturally interpretable and useful
for our purpose of incentivization.

We remark that the usual assumption of a “grand coalition” to form, which un-
derlies the use of the Shapley-value in many instances, is automatically satisfied
in our setting: we consider the entire developer team of an application as one
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(big) coalition of players working together against another party, which is the
adversary. As such, we do not need to assume psychological or other mechanisms
to yield the formation of a grand coalition, since this group is naturally found
in the developer teams of software products.

2 Related Work

The challenge of incentivizing developers of software to care more for security
has long been recognized. The early work of [3] states that “the design of an
incentives-based approach to improve cybersecurity is a difficult task because
the level of risk that realizes on a given system or network is a complex out-
come of the behaviors of many stakeholders: government, critical infrastructure
providers, technology producers, malicious (‘black hat’) hackers, and users”. This
motivates a change to another, more intrinsic, mechanism that quantifies secu-
rity contributions exclusively on the actions of the developers, which we can
measure (unlike all the other “variables” mentioned above).

The idea of incentivizing developers to declare security as its own goal is
contrasted by the dual approach of transferring risk. In special contexts such as
IoT, this can mean traditional mechanisms of risk transfer to third parties (such
as insurances) [1], but early game-theoretic treatments of company liabilities for
insufficient security (modeled by signalling games) have shown that investments
into security can correlate with pricing in a way that can create even the opposite
incentive of not investing in security [9]. The work of [18] provides eloquent
discussions about the needs for the right incentives, and argues for incentivization
using transparency and liability mechanisms. In light of aforementioned research,
especially liabilities may game-theoretically induce unwanted effects, so that
the problem seems to require other mechanisms (one of which we propose in
this work). Possible negative effects of market-based incentives for security were
independently also found by [11].

Incentivization mechanisms for security do not need to rely on the developers
themselves, but can equally well root in the user group. Bug bounty programs are
a common instance here, offering rewards for the discovery of threats. Our work
addresses the aftermath thereof, creating incentives for those who contribute to
mitigating risks. The work of [4] provides such a treatment, discussing different
patching strategies, and [14, 16, 25, 20, 26] use incentivization mechanisms to en-
courage honest behavior in cryptographic protocols and blockchains. Similarly,
[27] use non-cooperative game theory to study incentives for attackers.

Applications of the Shapley-value have been described for software alliances
[28] and to share threat intelligence [37], which suggests using similar concepts
to incentivize developer teams as done in this work.
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3 Preliminaries

3.1 Collaborative Software Development

We assume that a software development team consists of a finite setN of persons.
Furthermore, let there be a collaboratively used code repository (e.g., git), to
which all developers can commit and push changes, possibly with mandatory pull
requests. The versioning mechanism and reviews of pull requests before merging
changes into a new version, are the mechanism that we can use to “quantify” peo-
ple’s contributions to security, and based on this, provide a payback mechanism
to reward people for contributions that improved the security.

3.2 Qualitative Risk Management

Let there be a risk management process, such as ISO 27k or similar, running
in the background, along which a set of threats was identified and quantified
in terms of likelihoods and impacts. Experience from practice has shown that
it is often not advisable to hope for much accuracy in either, the likelihoods or
damages, and categorical specifications of how likely an event may be, or giving
damage ranges instead of exact estimates is widely adopted practical method.

Speaking about damages, one may think of a certain threat Ti to cause
some practically unknown (and hard to accurately anticipate) damage di, which,
nonetheless, lies in some range that we are rather sure about. That is, we may
– with reasonable certainty – partition the entire range of possible damages
into a finite number4 of nonempty disjoint intervals Di = [di∗, d

∗
i+1) start-

ing from d1∗ = 0 (no damage) and for i = 1, 2, . . . until di+1 = ∞ after
a finite number of steps. This delivers an ordered set of damage categories
D = {D1 < D2 < . . . < Dimax = [dimax∗,∞)}. If we classify a threat to cause
“damage of categoryDi”, we then mean that the actual damage will lie within the
bounds that di∗ at least and d∗i at most, with both numbers being known. This
is practically convenient, since security risks do not necessarily have a “ground
truth” (like coming from a physically measurable process). Even if exact statis-
tical models exist, finding them is not necessarily feasible in practice. The use of
qualitative risk scales, here represented by intervals, has a twofold benefit: it (i)
saves us from complicated and hard to justify distributional assumptions about
the randomness of the damage, and (ii) avoids estimates for which no ultimate
precision is possible, since it is nonetheless a conjectured damage that may, but
not need to, happen in future.

Similarly, we can quantify likelihoods by partitioning the unit interval [0, 1] =⋃c
j=1[ℓj∗, ℓ

∗
j+1) into a finite number of c categories, with ℓ1∗ = 0 and ℓ∗c = 1. The

scale is thus again an ordered set of intervals L =
{
Lj = [ℓj∗, ℓ

∗
j+1)

}c

j=1
, where

a concrete likelihood Pr(T ) for some threat T being specified qualitatively as

4 generally, such partitions would be non-equidistant, since the perception of “low”
and “high” strongly depends on the context and even the person. This applies to
both, likelihood and impact scales; see [33] for a deeper discussion



Fair Micro-Payments for Writing Secure Code 5

Pr(T ) = Li, meaning that the actual probability is somwhere between ℓi∗ and
ℓ∗i .

Like with the damage, this saves from unreliable estimates for likelihoods
of events that were so rare or so little reported that no robust statistics about
relative incident frequencies can be compiled. Nonetheless, we must not ignore
security risks because we do not have information or data, and will need to
resort to subjective assessments in these cases. Qualitative scales are a convenient
method of assessment here, well justified in [31].

Practically, both scales, for impact and likelihood, are kept small, with typi-
cally 3 to 5 categories, named as “low”, “medium”, “high” or similar. For subjective
assessments, it is sometimes advised to work with an even number of categories
to do not let people choose the “middle” category (if the scale has 3 or 5 cat-
egories) in case that they do not know, so that they must specify at least a
tendency.

The interpretation of categories as intervals is particularly important as an
assumption for our upcoming incentivization mechanism in Section 4.

3.3 Coalitional Gains and Individual Rewards

For the developer team, represented as the set N , let us write v(N) for the
total gain in security that they can cooperatively accomplish. A core part of
this work is to describe how to define and compute v(N), but let us for the
moment assume that we have such a function. Taking its value directy as the
team gain, the Shapley-value provides a method of returning these profits to
group members.

Definition 1 (Shapley-Value). Given a function v : P(S) → R be a function
with v(∅) = 0, and with S as a set of players. Let a coalition C ⊆ N of players
be assigned the total gains v(C). The payback to an individual player i ∈ C is
the Shapley-value, given by

ϕi(v) =
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |!
(v(S ∪ {i})− v(S)) (1)

We propose using the Shapley-value for a fair revenue of efforts towards increased
security of a software product, based on the hypothesis that the coalitional payoff
v(S) measures how much the team S accomplished towards increasing security.
The inner term v(S ∪ {i}) − v(S) then corresponds to how much additional
revenue a new team member i would bring to the existing team S. Some code
repositories like git have useful features to aid the computation of v(S ∪ {i})−
v(S) rather directly, which we will describe in Section 3.6, Section 3.7 and a
worked example in Section 5. The Shapley-value has an even more appealing
axiomatic characterization. Let v(N) be what team N gains as bonus for efforts
towards making a product more secure. The incentivization mechanism is to pay
back the gains v(N) to the individual team members, each of which gets a share
ϕi(v), and the Shapley-value is provable to be the only such assignment with the
following properties:
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1. Efficiency : the entire value v(N) will be distributed among the team mem-
bers, i.e., ∑

i∈N

ϕi(v) = v(N).

That is, if N is the full developer team, there will be no “leftovers” that a
team megmber may claim in addition.

2. Symmetry : if two people contribute the same amount to the team, then they
get equal payments. Formally, if v(S ∪ {i}) = v(S ∪ {j}) for all subsets
S ⊆ N \ {i, j} that contain neither i nor j, then ϕi(v) = ϕj(v).

3. Null player : if a person contributes nothing to a team, irrespectively how the
team is set up, then this person receives nothing. Formally, if v(S ∪ {i}) =
v(S) for all sub-teams S ⊂ N that do not contain i, then ϕi(v) = 0.
This does allow the possibility that a person may receive some bonus if it
joins a particular team S0, for which then v(S0∪{i}) > v(S0), in which case
ϕi(v) > 0 will be paid to this person. However, only in case that a person
is “universally useless”, there will be no payment. From an incentivization
perspective, this creates a benefit for a person to either bring in something
to the current team, or find itself another team to which one can be an asset.

4. Linearity : for two functions v, w, we have ϕi(v + w) = ϕi(v) + ϕi(w).
For software security team work, this translates into the simple fact that if
a person’s contributed part to a product or a software is used and useful
in multiple projects, quantified by distinct functions v, w, then the bonuses
gained from these multiple contributions add up. Despite software engineer-
ing best practices typically advising people should not work on more than
one project at a time, this improves the incentive for people if their work
has wider applicability.
The case of a person contributing the same piece of source code to several
teams identically would, by linearity, mean that this person receives the re-
spective payment multiple times. Interpreting such a contribution as “more
important” because it helps several developer teams at the same time, pro-
portionally increasing the payment for it seems admissible.

Computing the Shapley-value is, today, made easy by a variety of tools support-
ing this, such as [5, 32].

3.4 Team Contributions via Risk Reductions

To define a function v that measures how much the team creates as revenue by
collaboration towards security, we continue the risk management process from
Section 3.2.

Once a list of threats like abstractly shown in Table 1 has been identified
and quantified according to pre-defined scales as described in Section 3.2. We
hereafter assume that the list of threats is to be covered entirely, i.e., all re-
spective controls have to be implemented. The creation of this list is part of an
(outer) risk management process, inside which our incentivation mechanism is
embedded. Along this process, excluded from the scope of this work, matters of
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mutual dependence between controls (ranging from independence up to mutual
exclusion or substitution) are all covered during the compilation of the threat
and countermeasures list.

Table 1. Threat enumeration for risk management

Threat Likelihood ∈ L Impact ∈ D Risk = Likelihood × Impact
T1 ℓT1 dT1 rT1 = ℓT1 × dT1

T2 ℓT2 dT2 rT2 = ℓT2 × dT2

...
Tn ℓTn dTn rTn = ℓTn × dTn

The overall risk is simply the sum of all individual risks, and reducing this
sum to zero is the most that the developer team can accomplish, although this
theoretical optimum is in most pratical cases unachievable. Still, the process
yields a quantity from which we can define the team contributions later,

n∑
i=1

ℓTi · dTi =

n∑
i=1

Pr(Ti) · dTi , (2)

in which Pr(Ti) is assumed to take ordinal values, according to risk management
best practices [31].

3.5 Systematic Risk Reductions as Team Goals

The actual team contribution is then defined as the amount by which the risk
reduces thanks to the team’s actions. For a verifiable such measurement, we
need controls that the developer team can implement verifiably. For example,
suitable controls are listed in companion catalogues to (many) risk management
standards, and the effect of implementing a control can be twofold:

– Reduction of damage dTi
in case that the threat Ti becomes real. This may

lead to some reduced damage d′Ti
< dTi

. If the modeling admits the spec-
ification of some damage X ∼ F with probability distribution F (e.g., an
extreme value distribution or similar), one may take dTi

= EF (X), respec-
tively the conditional expectation d′Ti

= EF (X | countermeasure), in a slight
abuse of notation.

Example 1 (Backups). For backups, the full value of the data dTi=data-loss is
reduced to only much smaller residue loss d′ after having recovered a perhaps
only slightly older version of the data.

– Reduction of the likelihood ℓTi : Without countermeasures, we may model ℓTi

as unconditional probability ℓTi
= Pr(Ti), or, in light of countermeasures, as

conditional probability Pr(Ti | countermeasure) with the additional assump-
tion that Pr(Ti | countermeasure) < Pr(Ti) (to be proven in practice, but
reasonably assumable since otherwise the countermeasure would be useless).
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Example 2 (Encryption). Encrypting data does not avoid the event of eaves-
dropping, but substantially reduces the chances of information to leak out.
Practically, under contemporary cryptographic security being correctly im-
plemented, we may thus assume Pr(Ti = plaintext information leakage) =
p > 0, but Pr(Ti = plaintext information leakage | encryption in place) ≈
0 ≪ p.

We remark that both, the (conditional) residual damage and conditional (resid-
ual) likelihood are to be understood as measures on an ordinal scale, and not
with the usual interpretation as continuous quantities. While the latter inter-
pretation is in no way incorrect from a theoretical perspective, risk management
best practices advise to not quantify likelihood or damages on a continuous scale,
but rather on ordinal scales [31].

Returning to our risk formula, and taking a countermeasure Ci,j (possibly
among others) to be correctly implemented, the values in (2) become accordingly
reduced, here denoted by the ′ annotations and conditional probabilities, and
called risk after mitigation (in the risk management literature)

risk after countermeasure =

n∑
i=1

Pr(Ti | Ci,j) · ℓ′i (3)

<

n∑
i=1

Pr(Ti) · ℓi = risk without precautions (4)

Remark 1. We herein do not consider new threats or vulnerabilities possibly
induced by changes that a team applies to the code. In that case, and on a
regular basis anyway, a reconsideration of the threat list (Table 1) is required.
Here, we assume that the changes of the developers will make the threat list
monotonously become shorter, until a re-assessment is made after which we re-
start with an updated new table. This table then contains possible new threats
induced by the changes made in previous cycles, that most risk management
standards prescribe anyway (such as ISO27k, for example).

Now, among the finite total of n threats, let the i-th threat have ki counter-
measures associated with it. These may be systematically identified by various
techniques, such as CC [7], secure coding guidelines [19] or catalogues of the ISO
27k standards [24].

Likewise, let the j-th countermeasure Ci,j be checked against a set of test
cases, which can (but not need to be) unit tests or manual reviews (e.g., as
described in standards like CC in the auditing guidelines [6]), here denoted
by Ui,j,r for the r-th among a total of mi,j checks conducted to verify that
risk control Ci,j was correctly implemented. The exact number of controls or
verifiable conditions thereto is of no further interest in this work, except for the
assumption that the numbers are finite and feasibly low to admit an automated
checking.
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Application

Threat Threat Threat 

Control Control Control 

Unit test Unit test Unit test 

... ...

... ...

... ...

 from risk
management

 from control's
catalogue

 verifiable as team
contributions

Fig. 1. Threat Tree: Threats, implying countermeasures, verifiable by certain required
conditions

Our incentivization mechanism will be based on how many (leaf) conditions
in the threat tree from Figure 1 have been addressed by the team member’s
commits. This number is upper bounded by the number of leaves in the threat
tree. The total contribution of a set S of people from the developer team is
thereby quantifiable as

v(S) =
number of requirements addressed by members of S

number of leaves in the threat tree
≤ 1. (5)

3.6 Computing (v(S ∪ {i}) − v(S)) by git Cherry Picking

To reward a team member i for individual contributions, we need to compute
the difference v(S∪{i})−v(S), which is almost directly supported by repository
mechanisms. Namely, we can cherry-pick commits of a certain set of authors
and carry over all these into a new branch, re-compile and verify the existing
test-cases. More specifically, a git repository would let us compute the sought
difference as follows: since we need to assume i ∈ S, as person i has, as all others,
contributed to the current status of the application, we put S′ := S \ {i} so that
S = S′ ∪ {i} and equivalently compute the difference v(S)− v(S \ {i}):

1. Take the current status of the repository and compute v1 = v(S) using (5).
2. Fix a point in time, represented by a certain commit (has) that we here call

<baseCommit> after which the new team contributions shall be quantified
for micropayments (e.g., along an annual team appraisal or in other cycles).

3. Create a branch starting from the starting point <baseCommit>
4. Cherry-pick all commits from the authors in the S \{i} into the new branch,

rebuild the application and re-evaluate the value v2 = v(S \{i}) accordingly.

Compute the expression v(S′ ∪ {i}) − v(S′) = v1 − v2 in (1) to quantify each
team member’s contribution.



10 S. Rass, M. Pinzger

Cherry picking may have difficulties in producing potentially dysfunctional
or even non-compiling code, if the commits are such that leaving some out will
leave other parts of a program not working. Although this is not necessarily a
problem for the value computation as such (see Example 3 for a case where a
team of two people have both made contributions which by themselves would
be not working, but jointly do contribute to security), reviewed pull requests or
manual checks of adherence to coding best practices may be another option.

3.7 Computing (v(S ∪ {i}) − v(S)) by git Pull Requests

Pull requests are usually undergoing a check, up to a code review, by some
authority that judges whether or not a feature has been correctly addressed and
hence will be merged into the main branch. This authority would need to do
decide if the pull request would still be accepted without certain commits by
certain persons. In a simplified setting, we can collect all names from people
who made commitments that were part of the pull request, let us call this set
P ⊆ N . Then, we may put v(P ) = v(P ′′) = v(N) = 1 for all P ′′ ⊇ P and
v(P ′) = 0 for all P ′ ⊊ P . Collecting this data from git repositories, such as
GitHub, is further facilitated by existing data sources, such as [17], or repository
mining tools, such as Perceval [10].

Example 3. Assume that, for example, two team members have jointly worked
on a security feature, which fails if either of the two’s contributions are omitted,
but the payments may still be distributed fair among the players. To showcase
this, let the team be only of three members N = {1, 2, 3}, and assume that only
person 1 and person 2 together contributed something to security, while neither’s
commits alone would be working. The value assignment is thus:

Coalition Value v Comment
∅ 0 security does not come from nothing (no team member in-

volved)
{1} 0 person 1 has made only partial contributions that did not by

themselves add anything to security
{2} 0 person 2 has made complementary contributions to person 1,

but also these were not enough for a working security feature
{1,2} 1 jointly, 1 and 2 have accomplished a security feature
{3} 1 person 3 has by oneself made a contribution to security

{3,1} 1 person 1 did not add anything to what person 3 did
{3,2} 1 person 2 was working together with person 1, but added noth-

ing to what person 3 has done
{3,1,2} 2 the entire team addressed two security features

The Shapley-values of the so-assigned coalitions are ϕ1(v) = 0.5 = ϕ2(v) and
ϕ3(v) = 1. This is in alignment with the above findings, since person 3 has –
alone – accomplished a certain security feature, while neither person 1 or person
2 can claim the credit for the second feature only for her/himself. However, their
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joint commitments satisfied another requirement that person 3 did not address,
so their payment is 0.5 each, and half of what person 3 receives, who addressed
the other feature alone.

4 Rewarding the Team Members

The “gain” from having implemented all countermeasures is just the reduction
of risk, namely value (4) minus value (3), i.e.,

∆ =

n∑
i=1

[Pr(Ti) · ℓi − Pr(Ti | after mitigation) · ℓ′i], (6)

where the sum runs over the list of threats, and ℓ′i is the residual damage despite
the countermeasure being correctly implemented.

The value ∆ is, according to best practices mentioned before, usually a cat-
egorical value, representable as integer (ranks), but by itself meaningless as it is
a mere score, and more precisely, a difference of scores.

A conversion of ∆ back into monetary savings is not generally possible, but
may in practice be based on the meaning of damage categories. However, since
we initially defined the categories to be intervals, we can directly apply in-
terval arithmetic to convert ∆ into an interval, based on the ranges in which
Pr(Ti),Pr(Ti | after mitigation), ℓi and ℓ′i lie.

Evaluating (6) in terms of interval arithmetic (very well tool supported, e.g.,
[30, 29]), we get a range for∆ = [δ∗, δ

∗] that now covers the expected improvement
by the actions of the team members. That is, recalling that (3) and (4) are just
expressions of probabilities multiplied by outcomes, both are expected damages,
and (6) is a difference of expectations. Since expectation is a linear operator, ∆
is itself an expectation of the improvement in terms of risk.

This improvement is now easily convertible into a revenue for the team mem-
bers, since their contribution saved the company from a loss of at least δ∗ and
at most δ∗, according to their own risk management processes and categories.

At this point, it is the company’s decision of how much of the savings, relative
to the range [δ∗, δ∗] they are willing to pay back to the team members as incentive
to put effort on security. Let this amount be B ∈ [δ∗, δ

∗], then, based on the
Shapley-value, each person of the team N receives a share of

ψ(i) ∝ ϕi(v) ·B (7)

as incentivization (or bonus) for person i, proportional to the cost savings that
the company thanks this person i for. The payments to all persons can (for
reasons to be discussed in Section 6) be made publicly and known to all team
members. The size of the budget B is here assumed to be “reasonably small”, so
that the company may not (want to) afford a designated person or team working
exclusively on security. Hence, the mechanism is mainly intended for cases (or
companies) who cannot afford extra staff designated to securing code, but has
some budget to reward the developers themselves to take care of writing secure
code.
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5 A Worked Example

To corroborate the model, we consider an example of a real-life project with
actual (now resolved) vulnerabilities, indicated by Common Vulnerabilities and
Exposures (CVE) numbers, rated by the Common Vulnerability Scoring Sys-
tem (CVSS), and put in the context of a hypothetical company to use the model
in their product development. This example is only intended to demonstrate
how the model can be instantiated, especially to show where to get the param-
eters from, and how to work with data and information available in a practical
environment.

Our software example is Apache Streampark [2], whose version 1.0.0 had
the followling reported vulnerabilities [21], with shortened descriptions given
in Table 2. We take these vulnerabilities as system conditions that enable the
same (single) threat T1 := “loss of customer data records”. As in Figure 1,
the three possibilities to mount an attack induced by threat T1 entail three
respective controls C1,1, C1,2 and C1,3, directly based on fixing the vulnerabilities
accordingly.

Table 2. Reported Vulnerabilities with Ratings

Vulnerability [22] Shortened description CVSSv3.1 Score
CVE-2022-46365 (→
control C1,1 := “ver-
ify user names”)

unverified user-name (this will allow ma-
licious attackers to send any username to
modify and reset the account)

9.1 (critical)

CVE-2022-45802 (→
control C1,2 := “ver-
ify file types”)

uploaded file types unverified (upload some
high-risk files, and may upload them to any
directory)

9.8 (critical)

CVE-2022-45801
(→ control C1,3 :=
“LDAP query sanati-
zation”)

LDAP injection vulnerability (upload
some high-risk files, and may upload them
to any directory)

5.4 (medium)

We simplify the risk management process in this example, by equating the
CVSS risk scoring directly to the business impact levels (although the two are
defined differently). The next table gives the definition of CVSS ratings and
business impact levels, both defined on the same scale. The ranges of loss are
based on the 2015 Verizon Data Breach Investigation Report [36, Fig. 23]: the
data given below is taken from this document, which in turn is based on a
statistical analysis of cyber-insurance data related to losses due to leakage of
customer records. Specifically, the ranges given in our example refer to the lower-
and upper bounds of the union of 95% confidence intervals around the average
losses that enterprises suffered due to the loss of customer data (in ranges of
up to 100 records (category “low”), 1000. . . 10 000 records (category “medium”),
100 000. . . 1 000 000 records (category “high”) and 10 million up to 100 million
records (category “critical”)). In our example, we will assume that any of the
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three vulnerabilities of the software could lead to loss of customer data, whose
losses can be quantified based on the data from the cited report5.

Table 3. Impact definitions (for our example company)

Level CVSSv3.1 condition [13] business impact condi-
tion

estimated losses (based
on [36])

none score 0.0 no loss of customer data none
low 0.1 ≤ score ≤ 3.9 up to 100 customer

records lost
between $18,120 and
$35,730

medium 4.0 ≤ score ≤ 6.9 up to 10 000 customer
records lost

between $52 260 and
$223 400

high 7.0 ≤ score ≤ 8.9 up to 1 mil. customer
records lost

between $ 366 500 and $
1 775 350

critical 9.0 ≤ score ≤ 10.0 up to 10 mil. customer
records lost

between $2 125 900 and
$15 622 700

Based on this data, let us now instantiate the variables to appear in the
computation of ∆ in (6):

For the impact assessment, we simply equate the CVSS ranking with the busi-
ness impact, assigning the vulnerabilities the same impact categories as noted in
the description table above, giving the loss range ℓ1 = [$ 2 125 900, $ 15 622 700].

For the likelihood assessment, since the vulnerabilities have been reported
over a publicly accessible database, we assign all vulnerabilities the exploit like-
lihood “high”, assuming that a known exploit will be used eventually, putting
Pr(T1) = 1.

The risk for the three vulnerabilities, by the usual “risk = impact × likeli-
hood” formula symbolically becomes max{“medium”, “critical”}×“high”= “crit-
ical”, applying the maximum principle of system security (letting the highest
impact determine the overall risk of the system).

As of version 2.0.0 of Apache Streampark, all three vulnerabilities are no
longer relevant, which we interpret as being verifiably fixed (hence implicitly
indicating that there have been respective test-cases, e.g., codes to demonstrate
the vulnerability in version 1.0.0, and showing that the same code6 no longer
works in version 2.0.0, which would be unit tests U1,1,1, U1,2,1 and U1,3,1 associ-
ated with the controls C1,1, . . . , C1,3; cf. Figure 1). Hence, the probability of an
exploit after mitigation is Pr(T1 | after mitigation) = 0.
5 We emphasize that, consistently with what the authors of [36] say, that these num-

bers are merely indicative and cannot accurately reflect any actual losses in reality;
nonetheless, they shall serve as an illustration of how losses may be quantified. Any
such quantification is, however, to be taken with at least a grain of salt. The 2022
version of the same report no longer contains likewise figures.

6 The CVSS scoring could indicate such a demo code to exist, although no such indi-
cation is given for the vulnerabilities reported here; still the attack complexity was
rated as “low” in all three cases
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Evaluating (6) leads to the following losses being avoided since the vulner-
abilities have been fixed. Using interval arithmetic [30], we compute ∆ = ℓ1 =
[$ 2 125 900, $ 15 622 700].

To answer how much of this range our example company would be willing
to pay back to the people having fixed the problems, we take a look at the
fine that our enterprise would face in case of customer data breaches. According
to the General Data Protection Regulation (GDPR) [12, Art.83(5)], up to 20
million Euros or, in the case of an undertaking, up to 4% of the worldwide
annual turnover of the preceding financial year (whichever is higher), would be
possible to pay. We assume that a (small) fraction of the minimum losses (not
even fines) would be allocated as budget to incentivize developers. So, let us take
a fraction of 1% of the minimum loss min ℓi = $ 2 125 900 to define the budget
B := 0.01 ·2 125 900 = $ 21 259 for the developer incentivization (the 1% fraction
is the proportionality factor appearing in (7)).

To share this budget according to our Shapley-value based model, assume
that the three vulnerabilities were collaboratively fixed by three developers,
named Alice, Bob and Carol, who worked together as follows, documented by
(here entirely hypothetical) respective git pull requests7:

– Alice: rectified CVE-2022-46365, and CVE-2022-45801
– Bob: rectified CVE-2022-45802
– Carol: rectified CVE-2022-45802, CVE-2022-45801

With this knowledge, it is straighforward to define the coalitional payoffs
as the number of vulnerabilities fixed per subset of {A,B,C} = {Alice, Bob,
Carol}, as listed in Table 4.

Computing the Shapley-value (with help of [32]) gives the following frac-
tions of how much Alice, Bob and Carol contributed to the avoidance of losses
accordingly:

– Alice: ϕA(v) = 7/6, normalized to 7/12

– Bob: ϕB(v) = 1/6, normalized to 1/12

– Carol: ϕC(v) = 2/3, normalized to 1/3

The final payments due to contributions to security made by Alice, Bob and
Carol, are then the normalized fractions of the Shapley-values, sharing the bonus
B to the three as follows:

– Alice receives ψA = ϕA ·B ≈ $ 12 401.08,
– Bob receives ψB = ϕB ·B ≈ $ 1 771.58,
– Carol receives ψC = ϕC ·B ≈ $ 7 086.33.

7 Any coincidental match to the real people responsible for the fixing of the vulnera-
bilites in reality are unintended; we stress that the real credit goes to real people and
their hard work on the project; our assumed pattern of who fixed what is entirely
artificial and for illustration only
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Table 4. Defining the coalitional payoffs based on the number of fixed vulnerabilities

Team addressed vulnerabilities accomplishment
v (= count)

∅ none 0
{A} CVE-2022-46365 1
{B} none (fixes completed only in collaboration

with Alice or Carol)
0

{C} none (fixes completed only in collaboration
with Alice or Bob)

0

{A,B} CVE-2022-46365 (Carol’s collaboration
was needed to fix any of the other two vul-
nerabilities)

1

{A,C} CVE-2022-46365, CVE-2022-45801 2
{B,C} CVE-2022-45802 (other vulnerabilities

would not be fixed without Alice)
1

{A,B,C} all 3

We conclude this example with the remark that all numbers given here are
derived from actual data, yet a real life use of the model may require other sources
of information. In light of this, the example is to be considered as artificial, and
to showcase how the model could be used in a real life context. In an actual risk
management process with developer incentivizations, design choices would have
to be reconsidered in the given context.

6 Discussion and Conclusion

This work builds upon the assumption that the host institution of a developer
team does allocate a certain budget for security, but does not adopt assumptions
on where this budget comes from. Retrieving this from increased pricing has, in
prior work (see Section 2) has found this to be a potentially undesirable strategy.
We do not tackle the problem of how to obtain the budget, but emphasize that
the bonus assign- and payment scheme described in Section 4 is agnostic of the
size of the budget B. This means that the budget B may come from any source,
and is not necessarily linked to the particular product (or portfolio of products)
that the developer team is concerned with.

Similarly, psychological factors are not covered yet, such as the possibility
of a team member to actively argue to postpone security implementations in
first place, only to later implement it alone to gain the full revenues. An a
posteriori mitigation of such anti-coalitional behavior is by making the security
revenues publicly announced among the team members, so that misbehavior
would become exposed (publicly blaming such action). The effects of such a
(psychological) precaution, as well as empirical studies on the intrinsic change
of motivation to work for security in anticipation of bonuses paid for measurable
efforts, merits its own research to be conducted and published as a follow-up
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work to this; the example from Section 5 may serve as an initial blueprint to
base this on.

From a practical perspective, the Shapley-value somewhat limits the scale
of teams that we can reasonably analyze, which makes approximations [8] and
alternative power indices [15] interesting to study. Especially the robustness
against malicious team members that seek to secretly increase their revenues
without increasing contributions is its own security problem inside the mecha-
nism proposed here. Overall, the mechanism laid out in this work is conceptually
simple to implement and offers explainability to (non-)receivers of bonuses, via
the direct axiomatic grounding of the Shapley-value.
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