
EQ-Mine: Predicting Short-Term Defects for
Software Evolution

Jacek Ratzinger1, Martin Pinzger2, and Harald Gall2

1 Distributed Systems Group
Vienna University of Technology, Austria

ratzinger@infosys.tuwien.ac.at
2 s.e.a.l. – software evolution and architecture lab

University of Zurich, Switzerland
{pinzger,gall}@ifi.unizh.ch

Abstract. We use 63 features extracted from sources such as versioning
and issue tracking systems to predict defects in short time frames of two
months. Our multivariate approach covers aspects of software projects
such as size, team structure, process orientation, complexity of existing
solution, difficulty of problem, coupling aspects, time constrains, and
testing data. We investigate the predictability of several severities of
defects in software projects. Are defects with high severity difficult to
predict? Are prediction models for defects that are discovered by internal
staff similar to models for defects reported from the field?

We present both an exact numerical prediction of future defect num-
bers based on regression models as well as a classification of software
components as defect-prone based on the C4.5 decision tree. We create
models to accurately predict short-term defects in a study of 5 applica-
tions composed of more than 8.000 classes and 700.000 lines of code. The
model quality is assessed based on 10-fold cross validation.

Keywords: Software Evolution, Defect Density, Quality Prediction, Ma-
chine Learning, Regression, Classification.

1 Introduction

We want to improve the evolvability of software by providing prediction models
to assess quality as soon as possible in the product life cycle. When software
systems evolve we need to measure the outcome of the systems before shipping
them to customers. Software management systems such as the concurrent ver-
sioning system (CVS) and issue tracking systems (Jira) capture data about the
evolution of the software during development. Our approach, EQ-Mine uses this
data to compute a number of features, which are computed for source file revi-
sions in the pre- and post-release phases. Based on these evolution measures we
then set up a prediction model.

To evaluate the defect density prediction capabilities of our evolution measures
we apply three data mining algorithms and test 5 specified hypotheses. Results

M.B. Dwyer and A. Lopes (Eds.): FASE 2007, LNCS 4422, pp. 12–26, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



EQ-Mine: Predicting Short-Term Defects for Software Evolution 13

clearly underline that defect prediction models have to take into account differ-
ent aspects and measures of the software development and maintenance [1]. In
extension to our previous work on predicting defect density of source files [2] we
use detailed evolution data from an industrial software project and include team
structure and process measures.

The remaining paper is structured as follows. It starts with the formulation
of our research hypotheses (section 2). Related work is discussed in section 3. In
section 4 we describe the evolution measures used to build our defect prediction
model. Our approach is evaluated on a case study in section 5. We finalize this
paper with our conclusions and intent for future work in section 6.

2 Hypotheses

To guide the metrics selection for defect prediction and our evaluation with a case
study, we set up several hypotheses. In contrast to previous research approaches
(e.g. [3]) EQ-Mine aims at a fine-grained level. Our hypothesis are used to focus
on different aspects of our fine grained analysis such as the severity of defects, the
timing of predictions around releases, and the type of defect discovered (internal
vs. external):

– H1: Defect density can be predicted based on a short time-frame. Previous
research focused on the prediction of longer time-frames such as releases [4,
5]. In our research we focus on months as time scale and use two months of
development time to predict defect densities for the following two months.

– H2: Critical defects with high severity have a low regularity. Prediction mod-
els build on the regularity of the underlying data and can predict events
better that correspond to this regularity. We expect that defects that are
critical are more difficult to detect as they ”hide better” during the testing
and product delivery.

– H3: Quality predictions before a release are more accurate than after a re-
lease. Project quality can be estimated in different stages of the development
process. Some stages are more difficult to assess than others. Previous studies
already indicated that the accuracy of data mining in software engineering
varies over time (e.g. [5]). We expect that defects that are detected before a
release date are easier to predict than defects that are reported afterwards.

– H4: Defects discovered by internal staff have more regularity than defects
reported by the customer. For prediction model creation it is an important
input to know where the defect comes from. Was it recognized by the inter-
nal staff (e.g. during testing) or does the defect report come from customer
sites? We expect that internally and externally detected defects have differ-
ent characteristics. As a result one group can be easier predicted than the
other one.

– H5: Different aspects of software evolution have to be regarded for an accurate
defect prediction. We use a large amount of evolution indicators for defect
prediction. These indicators can be grouped into several categories such as



14 J. Ratzinger, M. Pinzger, and H. Gall

size and complexity measures, indicators for the complexity of the existing
solution and team related issues. For defect prediction we expect that data
mining features from many different categories are important.

3 Related Work

Many organizations want to predict software quality before their systems are
used. Fenton and Neil provide a critical review of literature that describes several
software metrics and a wide range of prediction models [1]. They found out that
most of the statistical models are based on size and complexity metrics with the
aim to predict the number of defects in a system. Others are based on testing
results, the testing process, the ”quality” of the development process, or take a
multivariate approach.

There are various techniques to identify critical code pieces. The most com-
mon one is to define typical bug patterns that are derived from experience and
published common pitfalls in a certain programming language. Wagner et al. [6]
analyzed several industrial and development projects with the help of bug de-
tection tools as well as with other types of defect-detection techniques.

Khoshgoftaar et al. [7] use software metrics as input to classification trees to
predict fault-prone modules. One release provides the training dataset and the
subsequent release is used for evaluation purpose. They claim that the resulting
model achieved useful accuracy in spite of the very small proportion of fault-
prone modules in the system. Classification trees generate partition trees based
on a training data set describing known experiences of interest (e.g. characteris-
tics of the software). The tree structure is intuitive and can be easily interpreted.
Briand et al. [8] try to improve the predictive capabilities by combining the ex-
pressiveness of classification trees with the rigor of a statistical basis. Their
approach called OSR generates a set of patterns relevant to the predicted object
estimated based on the entropy H.

There are different reasons for each fault: Some faults exist because of errors
in the specification of requirements. Others are directly attributable to errors
committed in the design process. Finally, there are errors that are introduced
directly into the source. Nikora and Munson developed a standard for the enu-
meration of faults based on the structural characteristics of the MDS software
system [9]. Changes to the system are visible at the module level (i.e. proce-
dures and functions) and therefore this level of granularity is measured. This
fault measurement process was then applied to a software system’s structural
evolution during its development. Every change to the software system was mea-
sured and every fault was identified and tracked to a specific line of code. The
rate of change in program modules should serve as a good index of the rate
of fault introduction. In a study the application of machine learning (induc-
tive) technique was tested for the software maintenance process. Shirabad et
al. [10] present an example of an artificial intelligence method that can be used
in future maintenance activities. An induction algorithm is applied to a set of
pre-classified training examples of the concept we want to learn. The large size



EQ-Mine: Predicting Short-Term Defects for Software Evolution 15

and complexity of systems, high staff turnover, poor documentation and the long
periods of time these systems must be maintained leads to a lack of knowledge
in how to proceed the maintenance of software systems.

Only a small number of empirical studies using industrial software systems
are performed and published. Ostrand and Weyuker, for example, evaluated
a large inventory tracking system at AT&T [4]. They analyzed how faults are
distributed over different releases. They discovered that faults are always heavily
concentrated in a relatively small number of releases during the entire life cycle.
Additionally the number of faults is getting higher as the product matures and
high-fault modules tend to remain high fault in later releases. So it would be
worthwhile to concentrate fault detection on a relatively small number of high
fault-prone releases, if they can be identified early.

4 Data Measures

To mine software development projects we use the data obtained from versioning
system (CVS) and issue tracking system (Jira). CVS enable the handling of
different versions of files in cooperating teams. This tool logs every change event,
which provides the necessary information about the history of a software system.
The log-information for our mining approach—pure textual, human readable
information—is retrieved via standard command line tools, parsed and stored in
the release history database [11].

Jira manages data about project issues such as bug reports or feature requests.
This system give a historical overview of the requirements and their implemen-
tations. We extract the data based on its backup facility, where the entire issue
data can be exported into XML files. These files are processed to import the
information into our database. In a post-processing step we link issues from Jira
to log information from CVS using the comments of developers in commit mes-
sages by searching for issue numbers. In addition we distinguish between issues
created by developers and issues created by customers by linking issue reporters
to CVS authors. Issues are counted as reported by internal staff when the is-
sue reporter can be linked to a CVS author otherwise the issue is defined to be
external (e.g. hotline).

4.1 Features

From the linked data in the release history database we compute 63 evolution
measures that are considered as features for data mining. These features are
gathered on file basis, where data from all revisions of a file within a predefined
time period is summarized. To build a balanced prediction model we create fea-
tures to represent several important aspects of software development such as the
complexity of the designed solution, process used for development, interrelation
of classes, etc. As previous studies [2, 3] discovered that relative features provide
better performance in prediction than absolute ones, we decided that all our 63
features have to be relative. For EQ-Mina we set up the following categories of
features for each file containing changes within the inspection period:



16 J. Ratzinger, M. Pinzger, and H. Gall

Size. This category groups ”classical” measures such as lines of code from an
evolution perspective: linesAdded, linesModified, or linesDeleted relative to the
total LOC of a file. For example a file had three revisions within the learning
period adding 3, 5, and 4 lines and this file had 184 lines before the learning
period, we feed into the data mining: (linesAdded = (3+5+4)/184) => (

∑

defects).
Other features of this category are linesType, which defines if there are more

linesAdded or linesModified. Additionally, we regard largeChanges as double of
the LOC of the average change size and smallChanges as half of the average
LOC. We expect that this number is an important feature in the data mining,
as other studies have found out that small modules are more defect-prone than
large ones. [12, 13]

Team. The number of authors of files influences the way software is developed.
We expect that the more authors are working on the changes the higher is the
possibility of rework and mistakes. We define a feature for the authorCount rela-
tive to the changeCount. Further, the interrelation in people work is interesting.
We investigate work rotation between the authors involved in the changes of
each file as the feature authorSwitches. The number of people assigned to an
issue and the authors contributing to the implementation of this issue is another
feature we use for our prediction models.

Process orientation. In this category we assemble features that define how dis-
ciplined people follow software development processes. For source code changes
developers have to include the issue number in their commit message to the
versioning system. We define a feature regarding issueCount relative to change-
Count. The developer is requested to also provide some rationale in the commit
message. Thus, we use withNoMessage measuring changes without any commit
comment as a feature for prediction.

In each project the distribution between different priorities of issues should
be balanced. Usually, the number of issues with highest priority is very low. A
high value may indicate problems in the project that have effects on quality
and re-work amount. Accordingly, we investigate highPriorityIssues and mid-
dlePriorityIssues relative to the total number of issues. Also the time to close
certain classes of issues provides interesting input for prediction and we use
avgDaysHighPriorityIssues and avgDaysMiddlePriorityIssues in relation to the
average number of days that are necessary to close an issue.

To get an estimation for the work habits of the developers we inspect the
number of addingChanges, modifyingChanges, and deletingChanges per file. This
information provides input to the defect prediction of files.

Complexity of existing solution. According to the laws of software evolution [14],
software continuously becomes more complex. Changes are more difficult to add
as the software is more difficult to understand and the contracts between existing
parts have to retain. As a result we investigate the changeCount in relation to the
number of changes during the entire history of each file. The changeActivityRate



EQ-Mine: Predicting Short-Term Defects for Software Evolution 17

is defined as the number of changes during the entire lifetime of the file relative
to the months of the lifetime. The linesActivityRate describes the number of
lines of code relative to the age of the file in months.

We approximate the quality of the existing solution by the bugfixCountBefore
before our prediction period relative to the general number of changes before the
prediction period. We expect that the higher the fix rate is before the inspection
period the more difficult it is to get a better quality later on. The bugfixCount is
used as well as bugfixLinesAdded, bugfixLinesModified, and bugfixLinesDeleted in
relation to the base measures such as the number of lines of code added, modified,
and deleted for this file. For bug fixes not much new code should be necessary, as
most code is added for new requirements. Therefore, linesAddPerBugfix, lines-
ModifiedPerBugfix, and linesDeletedPerBugfix are interesting indicators, which
measure the average lines of code for bug fixes.

Difficulty of problem. New classes are added to object-oriented systems when
new features and new requirements have to be satisfied. We use the information
whether a file was newly introduced during the prediction period as feature
for data mining. To measure how often a file was involved during development
with the introduction of other new files we use cochangeNewFiles as a second
indicator. Co-changed files are identified as described in [15].

The amount of information necessary to describe a requirement is also an
important source of information. The feature issueAttachments identifies the
number of attachments per issue.

Relational Aspects. In object-oriented systems the relationship between classes
is an important metrics. We use the co-change coupling between files to estimate
their relationship. We use the number of co-changed files relative to the change
count as feature cochangedFiles.

Additionally, we quantify co-changed couplings with features based on com-
mit transactions similar to the size measures for single files: TLinesAdded, TLi-
nesModified, and TLinesDeleted relative to lines of code added, modified, and
deleted. The TLinesType describes if the transactions contained more lines added
or lines modified. TChangeType is a coarser grained feature that describes if
this file was part of transactions with more adding revisions or more modifying
revisions.

For file relations we also use bug fix related features: TLinesAddedPerBug-
fix and TLinesChangedPerBugfix are two representatives. Additionally, we use
TBugfixLinesAdded, TBugfixLinesModified, and TBugfixLinesDeleted relative to
the linesAdded, linesModified, and linesDeleted.

Time constraints. As software processes stress the necessity of certain activities
and artifacts, we believe that the time constrains are important for software pre-
dictions. The avgDaysBetweenChanges feature is defined as the average number
of days between revisions. The number of days per line of code added or changed
captured as avgDaysPerLine.



18 J. Ratzinger, M. Pinzger, and H. Gall

Peaks and outliers have been shown to give interesting events in software
projects [15]. For the relativePeakMonth feature we measure the location of the
peak month, which contains most revisions, within the prediction period. The
peakChangeCount feature describes the number of changes happening during the
peak month normalized by the overall number of changes. The number of changes
is measured based on the months in the prediction period with feature change-
ActivityRate. For more fine grained data the lines of code added and changed
relative to the number of months is regarded for feature linesActivityRate.

Testing. We use testing metrics as an input to prediction models, because they
allow estimating the remaining bug number. The number of bug fixes initiated
by the developers itself provides insight into the quality attentiveness of the team
and are covered by feature bugfixesDiscoveredByDeveloper.

4.2 Data Mining

For model generation and evaluation we use the data mining tool called Weka
[16]. It provides algorithms for different data mining tasks such as classification,
clustering, and association analysis. For our prediction and classification mod-
els we selected linear regression, regression trees (M5), and classifier C4.5. The
regression algorithms are used to predict the number of defects for a class from
its evolution attributes.

The following metrics are used to assess the quality of our numeric prediction
models:

– Correlation Coefficient (C. Coef.) ranges from -1 to 1 and measures the
statistical correlation between the predicted values and the actual ones in
the test set. A value of 0 indicates no correlation, whereas 1 describes a
perfect correlation. Negative correlation indicates inverse correlation, but
should not occur for prediction models.

– Mean Absolute Error (Abs. Error) is the average of the magnitude of indi-
vidual absolute errors. This assessment metrics does not have a fixed range
like the correlation coefficient, but is geared to the values to be predicted. In
our case the number of defects per file is predicted, which ranges from 1 to
6 and 16 respectively (see Table 1 and Table 2). As a result, the closer the
mean absolute error is to 0 the better. A value of 1 denotes that on average
the predicted value differs from the actual number of defects by 1 (e.g. 3,5
instead of 4).

– Mean Squared Error (Sqr. Error) is the average of the squared magnitude of
individual errors and it tends to exaggerate the effect of outliers – instances
with larger prediction error – more than mean absolute error. The range of
the mean squared error is geared to the ranges of predicted values, similar
to the mean absolute error. But this time the error metrics is squared, which
overemphasize predictions that are far away of the actual number of defects.
The quality of the prediction model is good, when the mean squared error
is close to the mean absolute error.



EQ-Mine: Predicting Short-Term Defects for Software Evolution 19

The quality of our prediction models is assessed through 10-fold cross vali-
dation. For this method the set of instances is splitt randomly into 10 sub-sets
(folds) and the model is build 10 times and validated 10 times. For each turn the
classification model is trained on nine folds and the remaining one is used for
testing. The resulting 10 quality measures are averaged to yield an overall quality
estimation. Therefore, 10-fold cross validation is a strong validation technique.

5 Case Study

For our case study with EQ-Mine we analyzed a commercial software system from
the health care environment. The software system is composed of 5 applications
such as a clinical workstation or a patient administration system. This object-
oriented system is built in Java consisting of 8.600 classes with 735.000 lines
of code. For the clinical workstation a plug-in framework similar to the one of
Eclipse is used and currently 51 plug-ins are implemented. The development is
supported by CVS as the versioning system for source files and Jira as the issue
tracking system. We analyzed the last two releases of this software system: One
in the first half of 2006 and the other one in the middle of 2005.

Table 1. Pre-release: Number of files distinguishing between the ones with defects of
all severities and files where defects with high severity were found

Number of defects Number Number of defects Number
per file of files per file of files

(all severities) (high severity)
1 46 1 10
2 11 2 2
3 5 3 1
4 7 4 0
5 2 5 0
6 1 6 0

5.1 Experimental Setup

For our experiments we investigated 8 months of software evolution in our case
study. We use two months of development time to predict the defects of the
following two months, which builds up a 4 months time frame. We compare the
predictions before the release date with the predictions after it, which results in
a period of 8 months. Before the release we create prediction models for defects
in general and for defects with high severity. These models can be compared to
the ones after. After the release date we additionally distinguish defects discov-
ered by internal staff vs. defects reported from the field (customer). With this
experimental set up we test our hypotheses from Section 2.



20 J. Ratzinger, M. Pinzger, and H. Gall

Table 2. Post-release: Number of files distinguishing different types of defects

Number of defects No. of files No. of files No. of files No. of files
with severity severity=all severity=all severity=all severity=high
reported by int. & ext. internal staff external customer int. & ext.

1 46 30 32 21
2 21 12 7 1
3 8 6 1 0
4 6 4 1 0
5 5 4 0 0
7 1 1 0 0
12 1 1 0 0
16 1 1 0 0

5.2 Results

Short Time Frames. Our analysis focuses on short time frames. To evaluate H1
of Section 2 we use two months of development time to predict the following
two months. Table 3 shows several models predicting defects before the release
where the two months period for defect counting are laid directly before the
release date and the other two months before this two target months are taken
to collect feature variables for the prediction models. In the first Table 3(a) we
can see that we obtain a correlation coefficient larger than 0.5, which is a quite
good correlation. The mean absolute error is low with 0.46 for linear regression
and 0.36 for M5 and the mean squared error is also low with 0.79 for linear
regression and 0.67 for M5. In order to assess these prediction errors, Table 1
describes the defect distribution of the two target months. As mean squared
error emphasizes outliers, we can state that the overall error performance of the
prediction of all pre-release defects is very good.

Table 3. Prediction pre-release defects

C. Coef. Abs. Error Sqr. Error
Lin. Reg. 0.5031 0.4604 0.7881
M5 0.6137 0.3602 0.6674
(a) All defects

C. Coef. Abs. Error Sqr. Error
Lin. Reg. -0.0424 0.1352 0.3173
M5 0.0927 0.0792 0.2589
(b) High severity defects

To confirm our first hypothesis Table 4(a) lists the quality measures for the
prediction of post-release defects. There the values are not as good as for pre-
release defects, but the correlation coefficients are still close to 0.5. Therefore,
we confirm H1:

We can predict short time frames of two months based on feature data
of two months.



EQ-Mine: Predicting Short-Term Defects for Software Evolution 21

High Severity. Table 3(b) shows the results for the prediction models on pre-
release defects with high severity. We get the severity level of each defect from
the issue tracking system, where the defect reporter assigns severity levels. The
quality measures for high severity defects differ from the prediction of all de-
fects, because the number and distribution of high severity defects have other
characteristics (see Table 1). It is interesting that linear regression has only a
negative correlation coefficient. But also M5 can only reach a very low correla-
tion coefficient of 0.10. The overall error level is low because of the small defect
bandwidth of 0 up to 3.

Table 4. Prediction post-release defects

C. Coef. Abs. Error Sqr. Error
Lin. Reg. 0.5041 0.9443 1.5285
M5 0.4898 0.7743 1.4152
(a) All defects

C. Coef. Abs. Error Sqr. Error
Lin. Reg. 0.4464 0.9012 1.5151
M5 0.5285 0.688 1.3194
(b) Defects discovered internally
(through test + development)

C. Coef. Abs. Error Sqr. Error
Lin. Reg. 0.253 0.3663 0.5699
M5 0.4716 0.2606 0.4574
(c) Defects discovered externally
(through customer + partner companies)

C. Coef. Abs. Error Sqr. Error
Lin. Reg. 0.1579 0.1973 0.3175
M5 0.087 0.1492 0.3048
(d) High severity defects

For the post-release prediction of high severity defects in Table 4(d) the cor-
relation coefficient of 0.16 is slightly better. The prediction errors are slightly
worse, but this is due to the fact that there are more post-release defects with
high severity than pre-release. However, we can conclude:

Defects with high severity cannot be predicted with such a precision
as overall defects.

Before vs. After Release. Our hypothesis H3 states that pre-release defects can
be better predicted than the post-release ones. When we compare Table 3(a) with
Table 4(a) we see that our hypothesis seems to be confirmed. The correlation
coefficients of linear regression are very similar, but the prediction errors are
higher for pre-release defects. This situation is even more remarkable for M5,
as the pre-release correlation coefficient reaches 0.61 whereas the post-release
remains at 0.49. For these prediction models also the two error measures are
much higher for post-release. While comparing the defect distribution between
pre-release in Table 1 with post-release in Table 2, we could believe that the high
error rate is due to the fact that we discovered more files with many defects that
occur post-release than pre-release. But when we repeat the model creation of
post-release defects with a similar distribution to pre-release, we get still a mean
absolute error of 0.68 and a mean squared error of 1.06, which is still clearly
larger than for pre-release.



22 J. Ratzinger, M. Pinzger, and H. Gall

What about high severity defects? Are they still better predictable before a
release than after? When we look at Table 3(b) and Table 4(d) we see a similar
picture for this subgroup of defects. Only the correlation coefficient for linear
regression is higher for post-release defects than for pre-release, because there
are many more high severity defects after the release. This could be because the
defects reported from customers are ranked higher than when they are discovered
internally, in order to stress the fact that the defects from customers have to
be fixed fast. When we repeat the model creation with similar distributions of
pre-release and post-release we get similar correlation coefficients but higher
prediction errors for post-release. Therefore, we can conclude that:

Predictions of post-release defects have higher errors than for models
generated for pre-release.

Discovered Internally vs. Externally. We show the difference between prediction
of defects discovered by internal staff (testers, developers) vs. defects discovered
externally (e.g. customer, partner companies) in Table 4(b) and Table 4(c). For
internal defects the correlation coefficient is larger than 0.5, which is produced
by the M5 predictor. Although it seems that the prediction error is lower for
external defects than for internal ones, this result may be caused by the fact
that there are no files with many externally discovered defects (see post-release
defect distribution in Table 2). However, when we redo the prediction for internal
defects with a similar distribution as for external defects, we get a mean absolute
error of 0.48 and a mean squared error of 0.86 with a correlation coefficient of
0.47. As a result, we can partly reject H4 and conclude that:

Defects discovered externally by customers and partner companies
can be predicted with lower absolute and squared error than defects
discovered internally by testers and developers.

Aspects of Prediction Models. To analyze the aspects of prediction models in
more detail we created two cases using the C4.5 tree classifier: The first model
distinguishes between files that are defect-prone vs. files without defects. The
second tree model separates the files with just one defect from the ones with
several defects. At each node in the tree, a value for the given feature is used
to divide the entities into two groups: files with a feature value large/smaller
than the threshold. The leafs of the decision trees provide a label for the entities
(e.g. predicted number of defects). For each file such a tree has to be traversed
according to its features to obtain the predicted class. If a node has no or only
one successor than it is defined to be a leaf node for a part of the tree.

Tree 1 describes that the feature bearing the most information concerning
defect-proneness is the location of the peak month, where the peak month is
defined as the one containing the most change events for the analyzed file. Fea-
tures on the second level are change activity rate and author count. Relative



EQ-Mine: Predicting Short-Term Defects for Software Evolution 23

peak month and change activity rate represent the category of time constraints.
Nevertheless, the tree is composed of features from many different categories.
Author count and author switches belong to the team category. The number of
resolved issues in relation to all issues referenced by source code revisions is an
indicator for the process category, similar to the number of source adding changes
in relation to the overall change count. Also the ratio of revisions without a com-
mit message describes the process orientation of the development. The number
of lines added per bug fix provides insight into the development process itself.
We conclude that not size and complexity measures dominate defect-proneness,
but many people-related issues are important.

tree root
relativePeakMonth
— changeActivityRate
— — resolvedIssues
— — — bugfixLinesAdded
— — — — withNoMessage
relativePeakMonth
— authorCount
— — addingChanges
— — — authorSwitches

Tree 1. Pre-release with/without defects

Tree 2 describes the prediction model evaluating the defect-prone files (one
vs. several defects). This classification tree is much smaller than the previous
one for prediction of defect-prone files. Nevertheless, it contains data mining
features from many categories. The top level and the bottom level both regard
lines edited during bug fixing, but on the first level the lines added to the file
are of interest whereas at the bottom the relational aspect is central with lines
deleted in all files of common commit transactions. Additionally, the team aspect
plays an important role, as the number of author switches is the feature on the
second level. The model is completed by features indicating the ratio of adding
and changing modifications.

tree root
linesAddPerBugfix
— authorSwitches
— — addingChanges
— — — modifyingChanges
— — — — TBugfixLinesDel

Tree 2. Pre-release one vs. several defects



24 J. Ratzinger, M. Pinzger, and H. Gall

From these classifications we conclude that:

Multiple aspects such as time constraints, process orientation, team
related and bug-fix related features play an important role in defect
prediction models.

5.3 Limitations

Our mining approach is strongly related with the quality of our data for the case
study. As a result, validity of our findings is related with the data of the version-
ing and issue tracking system. Versioning systems register single events such as
commits of developers, where the event recording depends on the work habits
of the developers. However, we could show that an averaging effect supports
statistical analysis [17] in general.

Our data rely strongly on automated processing. On one hand this ensures
constancy, but on the other hand it is a source of blurring effects. In our case
we extracted issue numbers from commit messages to map the two information
systems. To improve the situation we could try to map from bug reports to code
changes based on commit dates and issue dates as described in [5]. In our case
this approach does not provide any valuable mappings, which we discovered on
a random sample of 100 discovered matches.

We can only identify locations of defects corrections based on change data
from versioning systems and derive from this information prediction models for
components. Bug fixes can take place at locations different to the source of
defects. Similar approaches are used by other researchers [5, 4, 3]. With predicting
defect corrections, we provide insight into improvement efforts, as defect fixes
could be places being in urgent need of code stabilization.

For our empirical study we selected software applications of different types
such as graphical workstations, administrative consoles, archiving and commu-
nication systems, etc. We still cannot claim generalization of our approach on
other kinds of software systems. Therefore, we need to evaluate the applicability
of EQ-Mine on each specific software project. Nevertheless, this research work
contributes to the existing empirical body of knowledge.

6 Conclusions and Future Work

In this work we have investigated several aspects of defect prediction based on
a large industrial case study. Our research contributes to the body of knowledge
in the field of software quality estimation in several ways. We conducted one
of the first studies dealing with fine grained predictions of defects. We estimate
the defect proneness based on a short time-frame. With this approach project
managers can decide on the best time-frame for release and take preventive ac-
tions to improve user satisfaction. Additionally, we compare defect prediction
before and after releases of our case study and discovered that in both cases
an accurate prediction model can be established. In contrast to other studies,



EQ-Mine: Predicting Short-Term Defects for Software Evolution 25

we investigated the predictability of defects of different severity. We could show
that prediction of defects with high severity has lower precision. We also an-
alyzed customer perceived quality, where defects reported by customers need
other prediction models than defects discovered by internal staff such as testing.

In order to create accurate prediction models we inspected different aspects
of software projects. Although size was already used in many other studies it is
still an important input for prediction. We extend size measures with relational
aspects, where we use the data about evolutionary co-change coupling of software
entities. We can show that, for example, the number of lines added to all classes
on common changes is as important for defect prediction of a class as the number
of lines added to this particular class. Other aspects of our approach are the
complexity of the existing solution and the difficulty of the problem in general,
as they are causes of software defects. We include people issues of different types
in our analysis to cover another important cause of defects. When a developer has
to work on software that somebody else has initially written mistakes can occur,
because she has to understand the design of her colleague. Factors such as author
switches are covered by our team group of data mining features. The discipline
of a developer does also influence defect probability. As a result we use indicators
for process related issues. Finally, we include time constrains and testing related
features into our defect prediction models. The models were created based on 63
data mining features from the 8 categories described.

In our future work we focus on the following topics:

– Software Structure. As we currently use evolution measures for quality es-
timations, we intend to enrich our models with information about software
structures. Object-oriented inheritance hierarchies as well as data and con-
trol flow information provide many insights into software systems, which we
will include in our quality considerations.

– Automation. Our analysis relies on automated data processing such as in-
formation retrieval, mapping of defect and version information, and feature
computation. The model creation relies on scripts using the Weka data min-
ing tool [16]. Integrated tools providing predictions and model details such
as the most important features can help different stakeholders. On the one
hand, developers could profit from this information best, when it is available
in the development environment. On the other hand, project managers need
a lightweight tool separated from development environments to base their
decisions on.

Acknowledgments

This work is partly funded by the Austrian Fonds zur Frderung der
Wissenschaftlichen Forschung (FWF) as part of project P19867-N13. We thank
Peter Vorburger for his valuable input and thoughts to this research work. Spe-
cial thanks go to André Neubauer and others for their comments on earlier
versions of this paper.



26 J. Ratzinger, M. Pinzger, and H. Gall

References

1. Fenton, N.E., Neil, M.: A critique of software defect prediction models. IEEE
Transactions on Software Engineering 25(5) (1999) 675–689

2. Knab, P., Pinzger, M., Bernstein, A.: Predicting defect densities in source code
files with decision tree learners. In: Proceedings of the International Workshop on
Mining Software Repositories, Shanghai, China, ACM Press (2006) 119–125

3. Nagappan, N., Ball, T.: Use of relative code churn measures to predict system
defect density. In: Proceedings of the International Conference on Software Engi-
neering, St. Louis, MO, USA (2005) 284–292

4. Ostrand, T.J., Weyuker, E.J.: The distribution of faults in a large industrial soft-
ware system. In: Proceedings of the International Symposium on Software Testing
and Analysis, Rome, Italy (2002) 55–64

5. Schröter, A., Zimmermann, T., Zeller, A.: Predicting component failures at de-
sign time. In: Proceedings of the International Symposium on Empirical Software
Engineering, Rio de Janeiro, Brazil (2006) 18–27

6. Wagner, S., Jürjens, J., Koller, C., Trischberger, P.: Comparing bug finding tools
with reviews and tests. In: Proceedings of the International Conference on Testing
of Communicating Systems, Montreal, Canada (2005) 40–55

7. Khoshgoftaar, T.M., Yuan, X., Allen, E.B., Jones, W.D., Hudepohl, J.P.: Uncertain
classification of fault-prone software modules. Empirical Software Engineering 7(4)
(2002) 297–318

8. Briand, L.C., Basili, V.R., Thomas, W.M.: A pattern recognition approach for
software engineering data analysis. IEEE Transactions on Software Engineering
18(11) (1992) 931–942

9. Nikora, A.P., Munson, J.C.: Developing fault predictors for evolving software sys-
tems. In: Proceedings of the Software Metrics Symposium, Sydney, Australia (2003)
338–350

10. Shirabad, J.S., Lethbridge, T.C., Matwin, S.: Mining the maintenance history
of a legacy software system. In: Proceedings of the International Conference on
Software Maintenance, Amsterdam, The Netherlands (2003) 95–104

11. Fischer, M., Pinzger, M., Gall, H.: Populating a release history database from
version control and bug tracking systems. In: Proceedings of the International
Conference on Software Maintenance, Amsterdam, Netherlands, IEEE Computer
Society Press (2003) 23–32

12. Moeller, K., Paulish, D.: An empirical investigation of software fault distribution.
In: Proceedings of the International Software Metrics Symposium. (1993) 82–90

13. Hatton, L.: Re-examining the fault density-component size connection. IEEE
Software 14(2) (1997) 89–98

14. Lehman, M.M., Belady, L.A.: Program Evolution - Process of Software Change.
Academic Press, London and New York (1985)

15. Gall, H., Jazayeri, M., Ratzinger (former Krajewski), J.: CVS release history data
for detecting logical couplings. In: Proceedings of the International Workshop on
Principles of Software Evolution, Lisbon, Portugal, IEEE Computer Society Press
(2003) 13–23

16. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and tech-
niques. 2 edn. Morgan Kaufmann, San Francisco, USA (2005)

17. Ratzinger, J., Fischer, M., Gall, H.: Evolens: Lens-view visualizations of evolution
data. In: Proceedings of the International Workshop on Principles of Software
Evolution, Lisbon, Portugal (2005) 103–112


	Introduction
	Hypotheses
	Related Work
	DataMeasures
	Features
	Data Mining

	Case Study
	Experimental Setup
	Results
	Limitations

	Conclusions and Future Work
	References

