Using Vector Clocks to Monitor Dependencies among
Services at Runtime

Daniele Romano
Software Engineering Research Group
Delft University of Technology
The Netherlands
daniele.romano@tudelft.nl

ABSTRACT

Service-Oriented Architecture (SOA) enable organizations
to react to requirement changes in an agile manner and to
foster the reuse of existing services. However, the dynamic
nature of Service-Oriented Systems and their agility bear
the challenge of properly understanding such systems. In
particular, understanding the dependencies among services
is a non trivial task, especially if service-oriented systems
are distributed over several hosts and/or using different SOA
technologies.

In this paper, we propose an approach to monitor dynamic
dependencies among services. The approach is based on the
vector clocks, originally conceived and used to order events
in a distributed environment. We use the vector clocks to
order service executions and to infer causal dependencies
among services. In our future work we plan to use this
information to study change and failure impact analysis in
service-oriented systems.

Categories and Subject Descriptors

D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—reverse engineering; D.2.11 [Software

Engineering]: Software Architectures—Service-oriented ar-

chitecture (SOA)

General Terms

Management

Keywords

SOA, monitoring, dynamic dependencies

1. INTRODUCTION

IT organizations need to maintain strategic advantages in
businesses in oder to stay competitive on the market. The
main means to achieve such a goal is the ability to deploy
updated or new applications before their competitors. In the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

QASBA ’11, September 14, 2011, Lugano, Switzerland

Copyright 2011 ACM 978-1-4503-0826-7/11/09 ...$10.00.

Martin Pinzger
Software Engineering Research Group
Delft University of Technology
The Netherlands
m.pinzger@tudelft.nl

IT world this capability is well known as agility. As a con-
sequence of this need IT organizations started to conceive
their software systems as Software as a Service SaaS, over-
coming the poor inclination of monolithically architected ap-
plications towards agility. Hence, the adoption of Service
Oriented Architecture (SOA) has become more and more
popular. Besides agility, SOA-based application develop-
ment also contributes to reduce development costs through
service reuse.

On the other hand, mining dependencies in a flexible ar-
chitecture such as a SOA has become increasingly relevant
to understand the entire system and its evolution over time.
The distributed and dynamic nature of those architectures
make this task particularly challenging. Moreover, mining
dependencies is even more expensive when dealing with ar-
chitectures, like SOAs, built up of connecting legacy sys-
tems. In such a scenario, having updated documentations
might be not always possible nor cost effective. Hence, a
robust approach is necessary to infer dynamic dependencies
among services.

To the best of our knowledge, the existing technologies
used to deploy a Service-Oriented system do not provide
such functionalities. There is still a lack of approaches to
detect the execution traces and, hence, the entire chain of de-
pendencies among services. For instance, open source Enter-
prise Service Bus systems (e.g., MuleESB' and ServiceMix?)
are limited to detect only direct dependencies (i.e., invoca-
tion between pair of services). Such monitoring facilities are
widely implemented through the wire tap and the message
store patterns described by Hohpe et al. [5]. Other tools,
like HP OpenView SOA Manager?, allow the exploration of
the dependencies, but they must explicitly be specified[1].

In this paper, we propose an approach based on vector
clocks to monitor the dependencies among services in a SOA
at run-time. The vector clocks have been originally con-
ceived and used to order events in a distributed environ-
ment. We use them to order service executions and to in-
fer causal dependencies. A dynamic analysis is necessary
to reach a better accuracy. In fact, the existing static ap-
proaches are inadequate when applied to SOAs, due to their
dynamic nature (i.e., the dynamic binding feature). More-
over, a dynamic approach is useful also to monitor a system
for debugging purposes.

"http://www.mulesoft.org/
’http://servicemix.apache.org/
3http://h20229.www2.hp.com/products/soa/

1.1 A motivating example

To highlight the relevance of this problem, consider the
simple application shown in Figure 1, where the services
are deployed in a distributed environment with two different
hosts.

Card

Figure 1: A simple service oriented system

Mining dependencies among services deployed on the same
machine (e.g., between services 3 and 6) might be straight-
forward through the facilities provided by a generic applica-
tion server. Detecting that the invocation from the Service 3
to the Service 6 is triggered by the invocation from the Ser-
vice 1 to the Service 2 can be a tricky problem [1]. Moreover,
imagine the Service 6 is triggered only when the Service 3 is
invoked by the service 2. Mining these dynamic dependen-
cies can help to build execution traces and, hence, to obtain
a better understanding of the service-oriented system.

This paper is structured as follows. In Section 2 we pro-
vide the background information on vector clocks and our
reference SOA. In Section 3 we introduce our approach, and
in Section 4 we present a possible implementation of it. Re-
lated work and conclusions are discussed in Section 5 and
Section 6.

2. BACKGROUND

Even though SOA has become a reference model to de-
sign distributed systems, the different terminologies used in
the modern world of IT can lead to significant misunder-
standings. In this paper we use the term SOA to refer to
an architectural model (1) that positions services as the pri-
mary means through which the solution logic is represented,
and (2) that is neutral to any technology platform [3]. In
this landscape, a service is a unit of solution logic that can
be built and implemented as a component, a web service or
a REST service.

In order to be as technology independent as possible, in
the remainder of the paper we refer to a generic SOA as
composed by an Enterprise Service Bus (ESB), as shown in
Figure 2. In this paper, the ESB is referred to as an ar-
chitectural pattern, which is an important part of a SOA,
and not as a software product. We consider an ESB as a
logical bus which eases the communication between services
of an application. We leave out details about its implemen-
tation (e.g., through a specific ESB software product or a
connection of multiple ESBs).

Ordering events in a distributed system, such as a Service-
Oriented System, is a challenging problem since the physical

Java BPEL

Se

Java

Enterprise Service Bus

RequestCredit .
BPEL ava

Figure 2: Enterprise Service Bus

clock of the different hosts may not be perfectly synchro-
nized. The logical clocks were introduced to deal with this
problem. Their original purpose was to give a consistent
temporal ordering of events, rather than for determining
cause and effect relationships. The first algorithm relying
on logical clocks was proposed by Lamport [7]. This algo-
rithm is used to provide a partial ordering of events, where
the term partial reflects the fact that not every pair of events
needs to be related. Lamport formulated the happens-before
relation as a binary relation over a set of events which is
reflexive, antisymmetric and transitive. According to his
work, the notation a — b is used to express that the event
a happens before the event b.

Lamport’s work is a starting point for the more advanced
vector clocks defined by Fidge and Mattern in 1988 [4, 8.
Like the logical clocks, they have been widely used for gen-
erating a partial ordering of events in a distributed system.
Given a system composed by N processes, a vector clock is
defined as a vector of N logical clocks, where the " clock
is associated to the " process. Initially all the clocks are
set to zero. Every time a process sends a message, it incre-
ments its own logical clock, and it attaches the vector clock
to the message. When a process receives a message, first
it increments its own logical clock and then it updates the
entire vector clock. The updating is achieved by setting the
value of each logical clock in the vector to the maximum
of the current value and the values contained by the vector
received with the message.

3. APPROACH

In our approach we use the vector clocks to order service
invocations. Giving an order to the invocations allows to
discover the execution traces and infer the dynamic depen-
dencies among services. We conceive a vector clock (VC)
as a vector/array of pairs (s,n), where s is the service’s id
and n is number of times the service s is invoked. When
the ESB receives an execution request for the service s, the
vector clock is updated according to the following rules:

e if the request contains a null vector clock (e.g., a re-
quest from outside the system), the vector clock is cre-
ated, and the pair (s,1) is added to it;

e otherwise, if a pair with service’s id s is already con-
tained in the vector clock, the value of n is incremented
by one; if not, the pair (s,1) is added to the vector.

Ve()=[(1.1)]

VC@)=[(1.1);2,1)]

2
getUserInfo

1
openAccount

YC(4)=[(1,1):(4.1)]

4
Deposit

5
Reques®

VC(@)'=[(1,1);(2,1):3,1)]

3
writeDB

VC(6)'=[(1,1):(2.1):(3,1):(6,1)]

VC(3)"=[(1,1);(4,1);(3,1)]

writeDB

Card

VCE)=[(1,1):(5,1)]

writeDB @

VC(3)"=[(1,1);(5,1):3,1)] VC(6)"=[(1,1):(5,1)(3,1);(6,1)]

Figure 3: Example of the execution flow and vector clocks when the service openAccount is invoked

Once the vector clock is updated, its value is associated to
the execution of service s and we label it VC(s). The vector
clock is attached to the messages sent to the other invoked
services, hence, it is propagated along the execution flow.

With the set of vector clocks, we can infer the partial
causal ordering of the service executions in a distributed
Service-Oriented System. Given the vector clocks associated
to execution of the service ¢ and the service j, VC(i) and
VC(j), we can state that the service ¢ depends on the service
J, if VO(i) < VC(j), according to the following equation:

V(i) < VC(H) & Ve [VC(i)e < VC(H)<]
Az’ [VC (i) e < VC(§)a] (1)

where VC(i), denotes the value of n in the pair (z,n) of
the vector clock VC(i). In other words, the execution of a
service i causes the execution of a service j, if and only if
all the pairs contained in the vector VC(i) have an n value
less or equal to the corresponding n value in VC(j), and at
least one n value is smaller. If all the n values are equal
except one value which is smaller, than we state that there
is direct causality from service i to service j. Whether a pair
(s,n) is missing in the vector the value n is considered equals
to 0. To infer the execution traces, and hence the dynamic
dependencies among services, we need to apply the binary
relation in (1) among each pair of vector clocks.

Consider our example system from Figure 1, where vec-
tor clocks with superscripts mark vector clocks associated to
different executions of the same service. The execution flow
caused by the invocation of the service openAccount is shown
in Figure 3, along with the vector clocks associated to each
execution event. When the openAccount service is invoked,
there is no vector clock attached to the message, since the
invocation request comes from outside. Hence a new vector
clock (VC(1)) is created with the only pair (1,1). Then the
execution of the service openAccount triggers the execution
of the service getUserInfo. When this service is invoked, a
new pair (2,1) is added to vector clock, obtaining the new
clock VC(2)=[(1,1),(2,1)]. When the service Deposit is in-
voked its vector clock is set to VC(4)=[(1,1),(4,1)].

Consider the execution of the service writeDB, and imag-
ine we want to infer all the services which depend on it. Since
we have multiple invocations of the service writeDB in the

execution flow, the dependent services are all the services
z whose vector clock VC(z) satisfy the following boolean
expression:

VC(x) < VCO3) vVC(z) < VC(3)" vVC(z) < VC(3)"”

These services are openAccount, getUserInfo, Deposit and
RequestCreditCard.

If we want to infer all the services that writeDB depends
on, we look for all the services z whose vector clock VC(z)
satisfy the following boolean expression:

VC(z) > VC(3) vVC(z)>VC(3) vVC(z) > VC(3)"

The sole service is notifyUser.

4. IMPLEMENTATION

A generic ESB provides a logical bus to assist the ser-
vices of an application communicate with each other. This
is achieved through the message broker architectural pat-
tern [5], which decouples the communicating endpoints and
maintains control over the flow of messages. The message
broker eases the implementation of functionalities such as
routing, transformation, and connectivity. In order to inte-
grate our approach into an ESB we can take advantage of
this pattern.

Consider the simplified message flow shown in Figure 4.
The inbound and outbound transformer are used to trans-
form inbound and outbound data if they are not in the cor-
rect format. The service invocation is used to invoke the
services. These 3 modules can easily be instrumented to im-
plement our approach, as illustrated in Figure 4. First, in
the inbound transformer we can implement the logic neces-
sary to insert the vector clock if it is not already present in
the message (e.g., when the service is invoked from a source
outside the system). Then, when the service is invoked, the
vector clocks are updated according to the rule presented
before. Finally, the outbound transformer is responsible to
attach the updated vector clock to the outgoing message.

S. APPLICATIONS

The approach presented in this paper is the first attempt
to assess the quality of Service Oriented Architectures. In

I

|
Vo | e _ "
Inbound | __ 1 add |
Transformer 7 vectorclock |
h
\L. T T T TS T T 1
Service l__12 update |
Invocation] vector clock i
i
\L T T T T T T T 1
Outbound l__12 attach !
Transformer | vectorclock i
i

I

v

Instrumentation

Figure 4: Simplified message flow in a message bro-
ker pattern and possible instrumentation to imple-
ment the approach

our experience we have found this task particularly challeng-
ing because of the lack of documentation. This is mainly due
to the dynamic nature of the Service-Oriented systems (e.g.,
dynamic binding). In fact, it is complex and difficult to an-
alyze and understand Service-Oriented systems because the
documentation does not exist or is incomplete. In this sce-
nario, our approach can help to obtain a better understand-
ing of the system through a complete dependency graph cap-
tured at runtime. This graph will help us to investigate the
interaction between services and, hence, to define usage pat-
terns and antipatterns that can affect the quality of SOAs.
For instance, we plan to use our approach to measure various
coupling and cohesion metrics for assessing the quality of the
composition and orchestration of Service-Oriented systems.

6. RELATED WORK

The most recent work on mining dynamic dependencies
has been developed by Basu et al. [1] in 2008. Basu et
al. infer the causal dependencies through three dependen-
cies identification algorithm, respectively based on the anal-
ysis of 1) occurrence frequency of logged message pairs, 2)
distribution of service execution time and 3) histogram of
execution time differences. However, the approach has been
validated with simple scenarios. In 2004 Briand et al. [2]
proposed a methodology and an instrumentation infrastruc-
ture aimed at reverse engineering of UML sequence diagrams
from dynamic analysis of distributed java systems. Their
approach is based on a complete instrumentation of the sys-
tems under analysis that requires a complete knowledge of
the systems.

Winkler et al. [9] in 2009 proposed an approach to ana-
lyze dependencies between services in a composition. Their
approach consists in detecting the dependencies at design
time and it is aimed at validate the negotiate SLAs (service
level agreements).

Finally it is necessary to cite the work developed by Hrischuk

et al. [6], who provided a series of requirements to reverse
engineer scenarios from even traces in a distributed system.
However, besides the requirements, this work does not pro-
vide any approach to monitor dependencies in a Service-
Oriented system.

7. CONCLUSIONS

In this paper, we have presented a novel approach to
monitor dynamic dependencies among services using vector-
clocks. They allow to reconstruct a more complete depen-
dency graph from a service-oriented system at run-time.
Such information is of great interest for both, researchers
and developers of service-oriented systems.

For instance, researchers can benefit from our approach
by using the information about dependencies to study ser-
vice usage patterns and anti-patterns more accurately. In
addition, researchers and developers can also use the infor-
mation to identify the potential consequences of a change or
a failure in a service, also known in literature as change and
failure impact analysis. Moreover, the possibility to moni-
tor the causal dependencies between services can be a useful
tool for debugging service-oriented systems.

As future work, we plan to implement and validate the
approach comparing the capability with the existing depen-
dency monitoring facility (e.g., the approach proposed by
Basu et al. [1]) and in presence of complex scenarios. With
this position paper, we are looking for constructive feedback
that can help us to further improve our approach.

8. REFERENCES

[1] S. Basu, F. Casati, and F. Daniel. Toward web service
dependency discovery for soa management. In
Proceedings of the 2008 IEEE International Conference
on Services Computing - Volume 2, pages 422—429,
Washington, DC, USA, 2008. IEEE Computer Society.

[2] L. C. Briand, Y. Labiche, and J. Leduc. Toward the
reverse engineering of uml sequence diagrams for
distributed java software. IEEE Trans. Softw. Eng.,
32:642-663, September 2006.

[3] T. Erl. Soa: principles of service design. Prentice Hall
Press, Upper Saddle River, NJ, USA, first edition, 2007.

[4] C. J. Fidge. Timestamps in message-passing systems
that preserve partial ordering. In Proceedings of the
11th Australian Computer Science Conference, pages
56-66, 1988.

[5] G. Hohpe and B. Woolf. Enterprise Integration
Patterns: Designing, Building, and Deploying
Messaging Solutions. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2003.

[6] C. E. Hrischuk and C. M. Woodside. Logical clock
requirements for reverse engineering scenarios from a
distributed system. IEEE Trans. Softw. Eng.,
28:321-339, April 2002.

[7] L. Lamport. Time, clocks, and the ordering of events in
a distributed system. Commun. ACM, 21(7):558-565,
1978.

[8] F. Mattern. Virtual time and global states of
distributed systems. In Parallel and Distributed
Algorithms, pages 215-226. North-Holland, 1989.

[9] M. Winkler, T. Springer, E. D. Trigos, and A. Schill.
Analysing dependencies in service compositions. In
Proceedings of the 2009 international conference on
Service-oriented computing, ICSOC /ServiceWave’09,
pages 123-133, 2009.

