
Analyzing the Evolution of Web Services using Fine-Grained Changes

Daniele Romano

Software Engineering Research Group
Delft University of Technology

Delft, The Netherlands
Email: daniele.romano@tudelft.nl

Martin Pinzger

Software Engineering Research Group
Delft University of Technology

Delft, The Netherlands
Email: m.pinzger@tudelft.nl

Abstract—In the service-oriented paradigm web service in-
terfaces are considered contracts between web service sub-
scribers and providers. However, these interfaces are continu-
ously evolving over time to satisfy changes in the requirements
and to fix bugs. Changes in a web service interface typically
affect the systems of its subscribers. Therefore, it is essential
for subscribers to recognize which types of changes occur in a
web service interface in order to analyze the impact on his/her
systems.

In this paper we propose a tool called WSDLDiff to extract
fine-grained changes from subsequent versions of a web service
interface defined in WSDL. In contrast to existing approaches,
WSDLDiff takes into account the syntax of WSDL and extracts
the WSDL elements affected by changes and the types of
changes. With WSDLDiff we performed a study aimed at
analyzing the evolution of web services using the fine-grained
changes extracted from the subsequent versions of four real
world WSDL interfaces.

The results of our study show that the analysis of the fine-
grained changes helps web service subscribers to highlight the
most frequent types of changes affecting a WSDL interface.
This information can be relevant for web service subscribers
who want to assess the risk associated to the usage of web
services and to subscribe to the most stable ones.

Keywords-SOA; web services; software evolution; fine-
grained changes;

I. INTRODUCTION

Over the last decades, the evolution of software systems

has been studied in order to analyze and enhance the

software development and maintenance processes. Among

other applications, the information mined from the evolution

of software systems has been applied to investigate the

causes of changes in software components [13] [7] [10].

Software engineering researchers have developed several

tools to extract information about changes from software

artifacts [5] [16] [19] and to analyze their evolution.

In service-oriented systems understanding and coping

with changes is even more critical and challenging because

of the distributed and dynamic nature of services [9]. In

fact, service providers do not necessarily know the service

subscribers and how changes on a service can impact the

existing service clients. For this reason service interfaces

are considered contracts between providers and subscribers

and they should be as stable as possible [3]. On the other

hand, services are continuously evolving to satisfy changes

in the requirements and to fix bugs. Recognizing the types

of changes is fundamental for understanding how a service

interface evolves over time. This can help service subscribers

to quantify the risk associated to the usage of a particular

service and to compare the evolution of different services

with similar features. Moreover, detailed information about

changes allow software engineering researchers to analyze

the causes of changes in a service interface.

In order to analyze the evolution of WSDL1 interfaces,

Fokaefs et al. [6] propose a tool called VTracker. This

tool is based on the Zhang-Shashas tree-edit distance [20]

comparing WSDL interfaces as XML2 documents. However,

VTracker does not take into account the syntax of WSDL

interfaces. As consequence, their approach outputs only the

percentage of added, changed and removed XML elements.

We argue that this information is inadequate to analyze the

evolution of WSDL interfaces without manually checking

the types of changes and the WSDL elements affected by

changes. Moreover, their approach of transforming a WSDL

interface into a simplified representation can lead to the

detection of multiple changes while there has been only one

change.

In this paper we propose a tool called WSDLDiff that

compares subsequent versions of WSDL interfaces to auto-

matically extract the changes. In contrast to VTracker, WS-
DLDiff takes into account the syntax of WSDL and XSD,3

used to define data types in a WSDL interface. In particular,

WSDLDiff extracts the types of the elements affected by

changes (e.g., Operation, Message, XSDType) and the types

of changes (e.g., removal, addition, move, attribute value

update). We refer to these changes as fine-grained changes.

The fine-grained changes extraction process of WSDLDiff
is based on the UMLDiff algorithm [19] and has been

implemented on top of the Eclipse Modeling Framework
(EMF).4

With WSDLDiff we performed a study aimed at analyzing

the evolution of web services using the fine-grained changes

1http://www.w3.org/TR/wsdl
2http://www.w3.org/XML/
3http://www.w3.org/XML/Schema
4http://www.eclipse.org/modeling/emf/

2012 IEEE 19th International Conference on Web Services

978-0-7695-4752-7/12 $26.00 © 2012 IEEE

DOI 10.1109/ICWS.2012.29

392

2012 IEEE 19th International Conference on Web Services

978-0-7695-4752-7/12 $26.00 © 2012 IEEE

DOI 10.1109/ICWS.2012.29

392

extracted from subsequent versions of four real world WSDL

interfaces. We address the following two research questions:

• RQ1: What is the percentage of added, changed and

removed elements of a WSDL interface?

• RQ2: Which types of changes are made to the elements

of a WSDL interface?

The study shows that different WSDL interfaces are affected

by different types of changes highlighting how they are

maintained with different strategies. While in one case

mainly Operations were added continuously, in the other

three cases the data type specifications were the most

affected by changes. Moreover, we found that in all four

WSDL interfaces under analysis there is a type of change

that is predominant. From this information web service

subscribers can be aware of the frequent types of changes

when subscribing to a web service and they can compare

the evolution of web services that provide similar features

in order to subscribe to the most stable web service.

The remainder of this paper is organized as follows.

In Section II we report the related work and we discuss

the main differences with our work. Section III describes

the WSDLDiff tool and the process to extract fine-grained

changes implemented into it. The study and results are

presented in Section IV. We draw our conclusions and

outline directions for future work in Section V.

II. RELATED WORK

The most recent work on web services evolution has been

developed by Fokaefs et al. [6] in 2011. They analyzed

the evolution of web services using a tool called VTracker.

This tool is based on the Zhang-Shasha’s tree edit distance

algorithm [20], which calculates the minimum edit distance

between two trees. In this study the WSDL interfaces are

compared as XML files. Specifically the authors created an

intermediate XML representation to reduce the verbosity

of the WSDL specification. In this simplified XML rep-

resentation, among other transformations, the authors trace

the references between messages parameters (Parts) and

data types (XSDTypes) and they replace the references with

the data types themselves. The output of their analysis

consists of the percentage of added, changed and removed

elements among the XML models of two WSDL interfaces.

There are two main differences between our work and the

approach proposed by Fokaefs et al. First, we compute

the changes between WSDL models taking into account

the syntax of WSDL and XSD and, hence, extracting the

type of the elements affected by changes (e.g., Operation,

Message, XSDType) and the types of changes (e.g., removal,

addition, move, attribute value update). For example, WS-
DLDiff extracts differences in the order of the elements

only if it is relevant, such as changes in the order of Parts
defined in a Message. Our approach is aware of irrelevant

order changes, such as changes in the order of XSDTypes
defined in the WSDL types definition. This allows us to

analyze the evolution of a WSDL interface only looking at

the changes without manually inspecting the XML coarse-

grained changes. Second, WSDLDiff does not replace the

references to data types with the data types themselves. This

transformation can lead to the detection of a change in a data

type multiple times while there has been only one change.

In 2009 Wang et al. [17] proposed an impact analysis

model based on service dependency. The authors analyze

the service dependencies graph model, service dependencies

and the relation matrix. Based on this information they

infer the impact of the service evolution. However, they

do not propose any technique to analyze the evolution of

web services. In 2005 Aversano et al. [1] proposed an

approach to understand how relationships between sets of

services change across service evolution. Their approach is

based on formal concept analysis. They used the concept

lattice to highlight hierarchy relationships and to identify

commonalities and differences between services. While the

work proposed by Aversano et al. consists in extracting

relationships among services, our work focuses on the evo-

lution of single web services using fine-grained changes. As

future work the two approaches can be integrated to correlate

different types of changes with the different relationships.

In literature several approaches have been proposed to

measure the similarity of web services (e.g., [8] [12]).

However, these approaches compute the similarity amongst

WSDL interfaces to assist the search and classification of

web services and not to analyze their evolution.

Concerning the model differencing techniques, the ap-

proach proposed by Xing et al. [19] [18] is most relevant

for our work. In fact, their algorithm to infer differences

among UML5 diagrams has been implemented by the EMF
Compare6 that we used to implement our tool WSDLDiff.
The authors proposed the UMLDiff algorithm for detecting

structural changes between the designs of subsequent ver-

sions of object oriented systems, represented through UML

diagrams. This algorithm has been later adapted in the EMF
Compare to compare models conforming to any arbitrary

metamodel and not only UML models [2].

Several approaches have been proposed to classify

changes in service interfaces. For instance Feng et al. [4]

and Treiber et al. [15] have proposed approaches to classify

the changes of web services taking into account their impact

to different stakeholders. These classifications can be easily

integrated in our tool to classify the different fine-grained

changes extracted along the evolution of a web service.

As can be deduced from the overview of related work

there currently does not exist any tool for extracting fine-

grained changes amongst web services. In this paper, we

present such a tool based on the UMLDiff algorithm [19].

5http://www.uml.org/
6http://www.eclipse.org/emf/compare/

393393

III. WSDLDIFF

In this section, we illustrate the WSDLDiff tool used to

extract the fine-grained changes between two versions of

a WSDL interface. Since the tool is based on the Eclipse
Modeling Framework, we first present an overview of this

framework and then we describe the fine-grained changes

extraction process implemented by WSDLDiff. A first pro-

totype of WSDLDiff is available on our web site.7

A. Eclipse Modeling Framework

The Eclipse Modeling Framework (EMF) is a modeling

framework that lets developers build tools and other appli-

cations based on a structured data model. This framework

provides tools to produce a set of Java classes from a model

specification and a set of adapter classes that enable viewing

and editing of the models. The models are described by meta

models called Ecore.

As part of the EMF project, there is the EMF Compare
plug-in. It provides comparison and merge facilities for any

kind of EMF Models through a framework easy to be used

and extended to compare instances of EMF Models. The

Eclipse community provides already an Ecore meta model

for WSDL interfaces, including a meta model for XSD, and

tools to parse them into EMF Models. We use these features

to parse and extract changes between WSDL interfaces as

described in the following.

B. Fine-Grained Changes Extraction Process

Figure 1 shows the process implemented by WSDLDiff
to extract fine-grained changes between two versions of a

WSDL interface. The process consists of four stages:

• Stage A: in the first stage we parse the WSDL

interfaces using the APIs provided by the

org.eclipse.wst.wsdl and org.eclipse.xsd projects. The

output of this stage consists of the two EMF Models
(WSDL Model1 and WSDL Model2) corresponding

to the two WSDL interfaces taken as input (WSDL
Version1 and WSDL Version2).

• Stage B: in this stage we transform the EMF Models
corresponding to the XSD (contained by the WSDL

models) in order to improve the accuracy of the fine-

grained changes extraction process as it will be shown

in the Subsection III-D. The output of this stage consist

of the transformed models (WSDL Model1’ and WSDL
Model2’).

• Stage C: in the third stage we use the Matching Engine
provided by the EMF Compare framework to detect the

nodes that match in the two models.

• Stage D: the Match Model produced by the Matching
Engine is then used to detect the differences among

the two WSDL models under analysis. This task is

7http://swerl.tudelft.nl/twiki/pub/DanieleRomano/WebHome/
WSDLDiff.zip

�������	
��	���

�������	
������

����
����

�
����������

�	��������

���������	
��	���

�������	
������

����	��

��

�����������
 ��

�����������

������������� �������������

������������ ������������

���������	���� ���������	����

��
�
������

�������	
������������

�������	
�������

��
�
������

�������	
������������

�������	
�������

� � ��

���� ��

� �

��

��
�
������
�������	
�����������

�������	
������

��
�
������

�������	
�����������

�������	
������

� �� � ��

��

�����������
 ��

�����������

�������	
��	���

�������	
������

����
���

� � �� �

���������	
��	���
�������	
������

����	�

�

�

�

�

Figure 1: The process implemented by WSDLDiff to extract

fine-grained changes between two versions of a WSDL

interface.

accomplished by the Differencing Engine provided also

by EMF Compare. The output of this stage is a tree of

structural changes that reports the differences between

the two WSDL models. The differences are reported in

terms of additions, removals, moves and modifications

of each element specified in the WSDL and in the XSD.

In the next subsection we first illustrate the strategies

behind EMF Compare describing the matching (Stage C)

and differencing (Stage D) stages and then we describe the

XSD transformation (Stage B).

C. Eclipse EMF Compare

The comparison facility provided by EMF Compare is

based on the work developed by Xing et al. [19]. This

work has been adapted to compare generic EMF Models
instead of UML models as initially developed by Xing. The

comparison consists of two phases: (1) the matching phase

(Stage C in our approach) and (2) the differencing phase

(Stage D in our approach). The matching phase is performed

computing a set of similarity metrics. These metrics are

computed for two nodes while traversing the two models

under analysis with a top-down approach. In the generic

Matching Engine, provided in org.eclipse.compare.match
and used in our approach, the set of metrics consists of four

similarity metrics:

• type similarity: to compute the match of the types of

two nodes;

• name similarity: to compute the similarity between the

values of the attribute name of two nodes;

394394

����������	��
�� ��

��!�
�������
���������!�
����������������!�
����������������	��
�� �
�	�
���	��� �����	������!�
����������������	��
�� ��	����	��� �����	������!�
�����������������!�
��������
���������!�
�����������	!�

(a) Definition of an XSD element

��������	

�����

�����
����

��������������

���������
���

�����
����
�����
����

��������	

�����
��������	

	
�����

(b) Original EMF Model

��������	

�����

�����
����

��������������

���������
���

�����
����
�����
����

��������	

�����
��������	

	
�����

(c) Transformed EMF Model

Figure 2: An example that shows the XSD transformation

performed by the XSD Transformer in the Stage B of the

fine-grained changes extraction process.

• value similarity: to compute the similarity between the

values of other attributes declared in the nodes;

• relations similarity: to compute the similarity of two

nodes based on the relationships they have with other

nodes (e.g., children and parents in the model).

Once the matching phase has been completed, it produces

a matching model consisting of all the entities that are

matched in the two models. The matching model is then

used in the differencing phase to extract all the differences

between the two models. Specifically, the matching model

is browsed by a Differencing Engine that computes the tree

edit operations. These operations represent the minimum set

of operations to transform a model into an other model. They

are classified in added, changed, removed and moved opera-

tions. For more details about the matching and differencing

phases implemented by EMF Compare we refer the reader

to [2].

D. XSD Transformation

In an initial manual validation of EMF Compare on

WSDL models we found that in a particular case the set

of differences produced did not correspond to the mini-

mum set of tree edit operations. The problem was due

to the EMF Model used to represent the XSDs. For this

reason we decided to add the XSD Transformer. To better

understand the problem behind the original EMF Model
and the solution adopted, consider the example shown in

Figure 2. Figure 2a shows an XSDElement book that con-

sists of an XSDModelGroup (the element sequence) that

contains two XSDElements (the elements author and title).

Figure 2b shows the original EMF Model parsed by the

WSDL Parser (Stage A in Figure 1). The EMF Model
contains the nodes XSDParticle. These nodes are necessary

to represent the attributes minOccurs, maxOccurs and ref for

each XSDElement declared in an XSDModelGroup and for

the XSDModelGroup itself.

The XSDParticles in the original model are parents of the

elements to which they are associated. This structure can

lead to mistakes when the order of XSDElements within an

XSDModelGroup changes. In this case, when the Matching
Engine traverses the models, it can detect a match between

XSDParticles that are associated to different XSDElements
(e.g., a match between the XSDParticle of the element

author and the XSDParticle of the element title). This match

is likely because the values of the attributes minOccurs,

maxOccurs and ref are set to their default values. When

this match occurs the Matching Engine keeps traversing

the model and it detects a mismatch when it traverses

the children of the previously matched XSDParticles (e.g.,
a mismatch between the elements author and title). As

consequence, even if there are no differences among the

models the Differencing Engine can produce the added XS-
Delement title, the added XSDelement author, the removed
XSDelement title and the removed XSDelement author as

changes.

To overcome this problem, we decided to transform

the EMF Model inverting the parent-child relationship in

presence of XSDParticles as shown in Figure 2c. In the

transformed models, the Matching Engine traverses the

XSDParticles only when a match is detected between the

XSDElements to which they are associated.

Besides this problem, in one case, WSDLDiff reported

the removed Part and added Part changes instead of the

changed Part change when a Part was renamed. However

for this study the two set of changes are equivalent. For this

reason we have not considered it as a problem. Clearly, as

part of our future work we plan to validate the fine-grained

changes extraction process with a benchmark.

IV. STUDY

The goal of this study is to analyze the evolution of

web services through the analysis of fine-grained changes

extracted from subsequent versions of a WSDL interface.

The perspective is that of web services subscribers interested

in extracting the types of changes that appear along the

evolution of a web service. They can analyze the most

frequent changes in a WSDL interface estimating the risk

related to the usage of a specific element. The context of this

395395

study consists of all the publicly available WSDL versions

of four real world web services, namely:

• Amazon EC2: Amazon Elastic Compute Cloud is a

web service that provides resizable compute capacity in

the cloud. In this study we have analyzed 22 versions.

• FedEx Rate Service: the Rate Service provides the

shipping rate quote for a specific service combination

depending on the origin and destination information

supplied in the request. We analyzed 10 different ver-

sions.

• FedEx Ship Service: the Ship Service provides func-

tionalities for managing package shipments and their

options. 7 versions out of 10 have been analyzed in

this study.

• FedEx Package Movement Information Service: the

Package Movement Information Service provides op-

erations to check service availability, route and postal

codes between origin and destination. We analyzed 3

versions out of 4. For the sake of simplicity we refer

to this service as FedEx Pkg.

We chose these web services because they were previously

used by Fokaefs et al. [6]. The other web services analyzed

by Fokaefs et al. [6] (PayPal SOAP API8 and Bing Search9)

have not been considered because the previous versions of

the WSDL interfaces are not publicly available. For the same

reasons not every version of the web services has been

considered in our analysis. In Table I we report the size

of the WSDL interfaces in terms of number of Operations,

number of Parts, number of XSDElements and number of

XSDTypes declared in each version. The size of the WSDL

interfaces has been measured using the API provided by

the org.eclipse.wst.wsdl and org.eclipse.xsd Eclipse Plug-in

projects.

The results reported in Table I show that the web services

under analysis evolve differently. The number of Operations
declared in the AmazonEC2 service is continuously growing

and only in four versions does not change (version 5, 7,

22 and 23). The number of Operations declared in the

other web services is more stable. Specifically, the FedEx
Pkg service declares always 2 Operations. The FedEx Rate
service declares 1 Operation in 9 versions out of 10 and 2

Operations in 1 version (version 3). Concerning the FedEx
Ship service we can notice an increase in the number of

Operations from version 1 to version 5. Then, the number

of Operations decreases to 7 and it remains stable until the

current version (version 10).

To better understand the evolution of web services we

used the WSDLDiff tool to extract the fine-grained changes

from subsequent versions of the WSDL interfaces under

analysis. In the next subsections we first show the types

8https://www.paypalobjects.com/enUS/ebook/PPAPIReference/
architecture.html

9http://www.bing.com/developers

Table I: Number of Operations, Parts, XSDElements and

XSDTypes declared in each version of the WSDL interfaces

under analysis

WSDL Ver. Operations Parts XSDElements XSDTypes
AmazonEC2 2 14 28 28 60
AmazonEC2 3 17 34 34 75
AmazonEC2 4 19 38 38 81
AmazonEC2 5 19 38 38 81
AmazonEC2 6 20 40 40 87
AmazonEC2 7 20 40 40 85
AmazonEC2 8 26 52 52 111
AmazonEC2 9 34 68 68 137
AmazonEC2 10 37 74 74 151
AmazonEC2 11 38 76 76 157
AmazonEC2 12 41 82 82 171
AmazonEC2 13 43 86 86 179
AmazonEC2 14 65 130 130 259
AmazonEC2 15 68 136 136 272
AmazonEC2 16 74 148 148 296
AmazonEC2 17 81 162 162 326
AmazonEC2 18 87 174 174 350
AmazonEC2 19 91 182 182 366
AmazonEC2 20 95 190 190 390
AmazonEC2 21 118 236 236 464
AmazonEC2 22 118 236 236 465
AmazonEC2 23 118 236 236 467
FedEx Rate 1 1 2 2 72
FedEx Rate 2 1 2 2 80
FedEx Rate 3 2 4 4 88
FedEx Rate 4 1 2 2 124
FedEx Rate 5 1 2 2 129
FedEx Rate 6 1 2 2 178
FedEx Rate 7 1 2 2 202
FedEx Rate 8 1 2 2 223
FedEx Rate 9 1 2 2 228
FedEx Rate 10 1 2 2 235
FedEx Ship 2 1 2 2 124
FedEx Ship 5 9 16 16 178
FedEx Ship 6 9 16 16 177
FedEx Ship 7 7 12 12 199
FedEx Ship 8 7 12 12 221
FedEx Ship 9 7 12 12 246
FedEx Ship 10 7 12 12 254
FedEx Pkg 2 2 4 4 20
FedEx Pkg 3 2 4 4 20
FedEx Pkg 4 2 4 4 20

of changes extracted in this study and then we present the

results of the study answering our research questions.

A. Fine-Grained Changes

The output of WSDLDiff consists of the set of edit op-

erations. These operations are associated with the elements

declared in the WSDL and XSD specifications. Among all

the elements the following WSDL elements have been de-

tected as affected by changes: BindingOperation, Operation,

Message and Part. The XSD elements detected as affected

by changes are: XSDType, XSDElement, XSDAttributeGroup
and XSDAnnotation. These elements were affected by the

following fine-grained changes:

• XSD Element changes: consist of added XSDEle-
ments (XSDElementA), removed XSDElements (XS-

396396

DElementR) and moved XSDElements (XSDElementM)

within a declaration of an XSDType or an XSDElement.
• Attribute changes: changes due to the update of an

attribute value. Specifically we detected changes to the

values of the attributes name (NameUpdate), minOc-

curs (MinOccursUpdate), maxOccurs (MaxOccursUp-
date) and fixed (FixedUpdate).

• Reference Changes: consists of changes to a refer-

enced value (RefUpdate).

• Enumeration Changes: changes of elements declared

within an XSDEnumeration element. We detected added

enumeration values (EnumerationA) and removed enu-

meration values (EnumerationR).

For the sake of simplicity we have presented only the

changes detected in our study. However WSDLDiff is able

to detect changes to every element declared in the WSDL

and XSD specifications.

B. Research Question 1 (RQ1)

The first research question (RQ1) is:

What is the percentage of added, changed and removed
elements of a WSDL interface?

To answer RQ1, for each type of element declared in the

WSDL and XSD specifications, we counted the number of

times they have been added, changed, or removed between

every pair of subsequent versions of the WSDL interfaces

under analysis. We present the results in three different

tables. In Table II we report the number of added, changed

and deleted WSDL elements while the added, changed and

removed XSD elements are shown in Table III. Table IV

summarizes the results showing the total number and the

percentage of added, changed and deleted WSDL and XSD

elements for each web service. The raw data with the

changes extracted for each pair of subsequent versions is

available on our web site.10 In Table II we omitted the

number of added, changed and removed BindingOperations
because they are identical to the number of added, changed

and removed Operations. Moreover, the added and removed

Parts do not include the Parts that were added and removed

due to the additions and deletions of Messages. This choice

allows us to highlight the changes in the Parts of existing

Messages.

The results show that in all the web services the total

number of deleted elements is a small percentage of the

total number of changes (see Table IV). In particular, the

percentage of deleted elements is approximately 4% for

AmazonEC2, 12% for FedEx Rate and 6% for FedEx Ship.

This result demonstrates that web service providers do not

tend to delete existing elements in order to avoid breaking

their clients.

10http://swerl.tudelft.nl/twiki/pub/DanieleRomano/WebHome/
ICWS12RQ1.pdf

Table II: Number of added Operations (OperationA),

changed Operations (OperationC), deleted Operations (Op-
erationD), added Messages (MessageA), changed Messages
(MessageC), deleted Messages (MessageD), added Parts
(PartA), changed Parts (PartC) and deleted Parts (PartD)

for each WSDL interface.

Change Type AmazonEC2 FedEx Rate FedEx Ship FedEx Pkg
OperationA 113 1 10 0
OperationC 0 1 0 0
OperationD 9 1 4 0
MessageA 218 2 16 0
MessageC 2 0 2 0
MessageD 10 2 2 0

PartA 27 0 2 0
PartC 34 0 0 0
PartD 27 0 2 0
Total 440 7 38 0

Table III: Number of added XSDTypes (XSDTypeA), changed

XSDTypes (XSDTypeC), deleted XSDTypes (XSDTypeD),

added XSDElements (XSDElementA), changed XSDEle-
ments (XSDElementC), deleted XSDElements (XSDEle-
mentD), added XSDAttributeGroup (XSDAttributeGroupA)

and changed XSDAttributeGroup (XSDAttributeGroupC) for

each WSDL interface.

Change Type AmazonEC2 FedEx Rate FedEx Ship FedEx Pkg
XSDTypeA 409 234 157 0
XSDTypeC 160 295 280 6
XSDTypeD 2 71 28 0

XSDElementA 208 2 25 0
XSDElementC 1 0 18 0
XSDElementD 0 2 0 0

XSDAttributeGroupA 6 0 0 0
XSDAttributeGroupC 5 0 0 0

Total 791 604 508 6

Concerning the number of added elements, the FedEx

Rate and Ship services show approximately the same per-

centage (39% and 38%) while the AmazonEC2 service

shows a percentage of approximately 80%. These percent-

ages need to be interpreted taking into account the added,

changed and removed WSDL and XSD elements. In fact,

while the AmazonEC2 evolves continuously adding 113 new

Operations (see Table II), the FedEx services are more stable

with 1 new Operation added in FedEx Rate and 10 new

Operations added in FedEx Ship. However, despite the few

number of new Operations added in the FedEx services the

number of added, changed and removed XSDTypes is high

like in the AmazonEC2 service. This result lets us assume

that the elements added in the FedEx services modify old

functionalities and, hence, they are more likely to break the

clients. Instead the AmazonEC2 is continuously evolving

providing new Operations. This assumption is confirmed

by the percentage of changed elements, that is lower in

AmazonEC2 (about 16%) than in FedEx Rate and Ship

397397

Table IV: Number of added, changed and removed WSDL

and XSD elements for each WSDL interface under analysis

WSDL Type #Added #Changed #Deleted
AmazonEC2 WSDL 358 34 46
AmazonEC2 XSD 623 166 5
AmazonEC2 Total 981 (≈80%) 200 (≈16%) 51 (≈4%)
FedEx Rate WSDL 3 1 3
FedEx Rate XSD 236 295 73
FedEx Rate Total 239 (≈39%) 296 (≈49%) 76 (≈12%)
FedEx Ship WSDL 28 4 8
FedEx Ship XSD 182 298 28

FedEx Ship Total 210 (≈38%) 302 (≈55%) 36 (≈6%)
FedEx Pkg WSDL 0 0 0
FedEx Pkg XSD 0 6 0
FedEx Pkg Total 0 (0%) 6 (100%) 0 (0%)

(about 49% and 55%).

Based on these results we can answer RQ1 stating that in

all four web services the percentage of removed elements is

a small percentage compared to the total number of added,

changed and removed elements. Concerning the added el-

ements the AmazonEC2 showed the highest percentage

(≈80%) due to the high number of new WSDL elements

added along its evolution. Instead the FedEx Rate and Ship

services showed lower percentages (respectively about 39%

and 38%). The percentage of changed elements is higher in

the FedEx Rate and Ship services (respectively about 49%

and 55%) compared to the approximately 16% of changed

elements in AmazonEC2.

Answering RQ1 we decided to omit the analysis of the

FedEx Pkg service because the low number of changes and

versions do not allow us to make any assumption.

C. Research Question 2 (RQ2)

The second research question (RQ2) is:

Which types of changes are made to the elements of a
WSDL interface?

In order to address RQ2 we focused on the changes applied

to XSDTypes. In fact, among all the elements changed (802),

742 elements (approximately 92%) are XSDTypes (see Table

II and III). For each XSDType we extracted the fine-grained

changes and we report the results in Table V. We omitted to

report the number of XSDAnnotation changes because they

are not relevant for our study. The raw data with the changes

extracted for each pair of subsequent versions is available

on our web site.11

The results show that the most frequent change along

the evolution of the AmazonEC2 is the XSDElementA. In

fact, it accounts for around 80% (198 changes out of

247) of the total changes. Concerning the FedEx Rate and

FedEx Ship services, the EnumerationA changes are the most

11http://swerl.tudelft.nl/twiki/pub/DanieleRomano/WebHome/
ICWS12RQ2.pdf

Table V: Number of added XSDElements (XSDElementA),

deleted XSDElements (XSDElementR), moved XSDElements
(XSDElementM), updated attributes (NameUpdate, MinOc-
cursUpdate, MaxOccursUpdate and FixedUpdate), updated

references (RefUpdate), added enumeration values (Enumer-
ationA) and removed enumeration values (EnumerationR) in

the XSDTypes for each WSDL interface.

Change Type AmazonEC2 FedEx Rate FedEx Ship FedEx Pkg
XSDElementA 198 113 136 1
XSDElementD 11 47 49 3
XSDElementM 1 55 51 0
NameUpdate 11 20 8 0

MinOccursUpdate 17 33 39 0
MaxOccursUpdate 0 9 6 0

FixedValue 0 11 12 2
RefUpdate 9 80 273 0

EnumerationA 0 1141 926 2
EnumerationD 0 702 528 3

Total 247 2211 2028 11

frequent, accounting for approximately 51% (1141 changes

out of 2211) and for 45% (926 changes out of 2028) of

all changes. Adding the EnumerationD changes, we obtain

approximately 83% (1843 changes out of 2211) and 71%

(1454 changes out of 2028) of changes occurring in the enu-

meration elements. The results show that in 3 web services

out of 4 there is a type of change that is predominant. This

result demonstrates that fine-grained changes can help web

services subscribers to be aware of the most frequent types

of changes affecting a WSDL interface. Like for RQ1, the

small number of changes in the FedEx Pkg does not allow

any valid conclusion.

D. Summary and implications of the results

The changes collected in this study highlight how different

WSDL interfaces evolve differently. This study with the WS-
DLDiff tool can help services subscribers to analyze which

elements are frequently added, changed and removed and

which types of changes are performed more frequently. For

example, a developer who wants to integrate a FedEx service

into his/her application can learn that the specification of

data types changes most frequently while Operations change

only rarely (RQ1). In particular, the enumeration values are

the most unstable elements (RQ2). Instead, an AmazonEC2
subscriber can be aware that new Operations are contin-

uously added (RQ1) and that data types are continuously

modified adding new elements (RQ2).

V. CONCLUSION & FUTURE WORK

In this paper we proposed a tool called WSDLDiff to

extract fine-grained changes between two WSDL interfaces.

With WSDLDiff we performed a study aimed at understand-

ing the evolution of web services looking at the changes

detected by our tool. The results of our study showed that the

fine-grained changes are a useful means to understand how a

398398

particular web service evolves over time. This information is

relevant for web services subscribers who want 1) to analyze

the most frequent changes affecting a WSDL interface and

2) to compare the evolution of different web services with

similar features. From this information they can estimate the

risk associated to the usage of a web service.

The study presented in this paper is the first study on

the evolution of web services and we believe that our tool

provides an essential starting point. As future work, first

we plan to classify the changes retrievable with WSDLDiff,
integrating and possibly extending the works proposed by

Feng et al. [4] and Treiber et al. [15]. Next, we plan to

investigate metrics that can be used as indicators of changes

in WSDL elements. For instance in our previous work [13],

we found an interesting correlation between the number of

changes in Java interfaces and the external cohesion metric

defined for services by Perepletchikov et al. [11]. With our

tool to extract fine-grained changes and our previous work

to extract dependencies among web services [14] we plan to

perform similar studies with WSDL interfaces. Finally, we

plan to investigate the co-evolution of the different web ser-

vices composing a service oriented system. With WSDLDiff
we can highlight web services that evolve together, hence,

violating the loosely coupling property. This analysis can

help us to investigate the causes of web services co-evolution

and techniques to keep their evolution independent.

ACKNOWLEDGMENT

This work has been partially funded by the NWO-

Jacquard program within the ReSOS project.

REFERENCES

[1] L. Aversano, M. Bruno, M. D. Penta, A. Falanga, and
R. Scognamiglio. Visualizing the evolution of web services
using formal concept analysis. In IWPSE, pages 57–60, 2005.

[2] C. Brun and A. Pierantonio. Model differences in the eclipse
modelling framework. UPGRADE The European Journal for
the Informatics Professional, IX(2):29–34, 2008.

[3] T. Erl. SOA Principles of Service Design (The Prentice
Hall Service-Oriented Computing Series from Thomas Erl).
Prentice Hall PTR, Upper Saddle River, NJ, USA, 2007.

[4] Z. Feng, K. He, R. Peng, and Y. Ma. Taxonomy for evolution
of service-based system. In SERVICES, pages 331–338, 2011.

[5] B. Fluri, M. Wuersch, M. PInzger, and H. Gall. Change dis-
tilling: Tree differencing for fine-grained source code change
extraction. IEEE Trans. Softw. Eng., 33:725–743, November
2007.

[6] M. Fokaefs, R. Mikhaiel, N. Tsantalis, E. Stroulia, and
A. Lau. An empirical study on web service evolution. In
ICWS, pages 49–56, 2011.

[7] F. Khomh, M. Di Penta, and Y.-G. Gueheneuc. An ex-
ploratory study of the impact of code smells on software
change-proneness. In Proceedings of the 2009 16th Working
Conference on Reverse Engineering, WCRE ’09, pages 75–
84, Washington, DC, USA, 2009. IEEE Computer Society.

[8] F. Liu, Y. Shi, J. Yu, T. Wang, and J. Wu. Measuring similarity
of web services based on wsdl. In ICWS, pages 155–162,
2010.

[9] M. P. Papazoglou. The challenges of service evolution. In
Proceedings of the 20th international conference on Advanced
Information Systems Engineering, CAiSE ’08, pages 1–15.
Springer-Verlag, 2008.

[10] M. D. Penta, L. Cerulo, Y.-G. Guéhéneuc, and G. Antoniol.
An empirical study of the relationships between design pat-
tern roles and class change proneness. In ICSM, pages 217–
226, 2008.

[11] M. Perepletchikov and C. Ryan. The impact of service
cohesion on the analyzability of service-oriented software.
IEEE T. on Software Engineering, 37(4):449–465, 2011.

[12] P. Plebani and B. Pernici. Urbe: Web service retrieval based
on similarity evaluation. IEEE Trans. on Knowl. and Data
Eng., 21:1629–1642, November 2009.

[13] D. Romano and M. Pinzger. Using source code metrics to
predict change-prone java interfaces. In ICSM, pages 303–
312, 2011.

[14] D. Romano, M. Pinzger, and E. Bouwers. Extracting dynamic
dependencies between web services using vector clocks. In
SOCA, pages –, 2011.

[15] M. Treiber, H. L. Truong, and S. Dustdar. On analyzing
evolutionary changes of web services. In ICSOC Workshops,
pages 284–297, 2008.

[16] N. Tsantalis, N. Negara, and E. Stroulia. Webdiff: A generic
differencing service for software artifacts. In ICSM, pages
586–589, 2011.

[17] S. Wang and M. A. M. Capretz. A dependency impact
analysis model for web services evolution. In ICWS, pages
359–365, 2009.

[18] Z. Xing and E. Stroulia. Analyzing the evolutionary history
of the logical design of object-oriented software. IEEE Trans.
Software Eng., 31(10):850–868, 2005.

[19] Z. Xing and E. Stroulia. Umldiff: an algorithm for object-
oriented design differencing. In Proceedings of the 20th
IEEE/ACM international Conference on Automated software
engineering, ASE ’05, pages 54–65, 2005.

[20] K. Zhang and D. Shasha. Simple fast algorithms for the
editing distance between trees and related problems. SIAM J.
Comput., 18:1245–1262, December 1989.

399399

