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Abstract—Understanding source code changes and their im-
pact on other code entities is a crucial skill in software de-
velopment. However, the analysis of code changes and their
impact is often performed manually and therefore is time-
consuming. Recent advancements in AI, and in particular large
language models (LLMs) show promises to help developers in
various code analysis tasks. However, the extent to which this
potential can be utilized for understanding code changes and
their impact is underexplored. To address this gap, we study
the capabilities of GPT-5 and GPT-5-mini to predict the code
entities impacted by given source code changes. We construct a
dataset containing information about seed-changes, change pairs,
and change types for each commit. Existing datasets lack crucial
information about seed changes and impacted code entities. Our
experiments evaluate the LLMs in two configurations: (1) seed-
change information and the parent commit tree and (2) seed-
change information, the parent commit tree, and the diff hunk
of each seed change. We found that both LLMs perform poorly
in the two experiments, whereas GPT-5 outperforms GPT-5-mini.
Furthermore, the provision of the diff hunks helps both models
to slightly improve their performance.

Index Terms—Code Change, Change Impact Prediction, LLM

I. INTRODUCTION

Modern software engineering is based on the frequent adap-
tation of source code to meet evolving requirements. To make
these adaptations, software engineers need to understand the
code, its changes, and the potential impact of those changes on
other entities. Tao et al. [1] found that over 43% of their inter-
viewed software engineers deal with code changes daily, and
36% even more often. Furthermore, they found that there is no
adequate tool support to assess the quality, understanding, or
decomposition of changes. A study by Bacchelli and Bird [2]
focused on modern code review and reported similar findings,
concluding that there is a need for tool improvement and that
it is important to understand changes to provide good reviews.
Recent studies explored the potential of using large language
models (LLMs) for automating several code-related [3] and
code-change related [4] tasks, such as vulnerability detection
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and repair [5] and secure code generation [6]. However, to the
best of our knowledge this potential has not been explored for
analysing the impact of code changes. According to Angerer et
al. [7], the change impact denotes the potential effects of a
software change.

In this work, we explore the capabilities of two state-of-the-
art LLMs, namely GPT-5 and its smaller version GPT-5-mini,
for code change-impact prediction. Furthermore, we extend
the dataset ALEXANDRIA from Yan et al. [8], as their dataset
contains only changed method pairs and does not consider
attribute or class changes. For our preliminary evaluation,
we performed two experiments. The first experiment, named
Basic, provides the LLM with the link to the parent commit
tree and the fully qualified names of the seed changes. A
seed change denotes the code changes that trigger changes
in other code entities. The second experiment, named Diff,
extends the first experiment by providing the diff hunks of the
seed changes. With the two experiments, we aim to answer
the following two resesearch questions:

• RQ1: What is the precision, recall and F1-score of GPT-5
and GPT-5-mini in code-change impact prediction?

• RQ2: To what extent does the inclusion of the diff
hunks of the seed change improve code-change impact
prediction?

The results with 40 commits randomly selected from pop-
ular Java projects on GitHub show that GPT-5 outperforms
GPT-5-mini in both experiments. LLMs benefit from know-
ing the commit that contains the changes. In addition, the
provision of the diff hunks helps both models to slightly
improve their performance. This paper makes the following
contributions:

1) The Alextend dataset, which contains detailed informa-
tion about code changes and their impact.

2) First results of the performance of GPT-5 and GPT-5-
mini for code-change impact prediction.

II. RELATED WORK

Hanam et al. [9] proposed a tool called SEMCIA, which
improves the code reviewing process for developers in terms
of time and performance. Furthermore, they defined semantic
change relations and performed a user study comparing tradi-
tional change impact analysis techniques with their proposed
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approach. In 2023, Lin et al. [10] proposed a model based
on the Text-To-Text-Transfer Transformer (T5) model. Their
model is pre-trained on five tasks. For evaluation, they fine-
tuned it for each of the five code-change related tasks. These
tasks are commit message generation, just-in-time comment
update, and defect prediction as well as code-change quality
and code review generation. They proposed and used a large-
scale dataset called CodeChangeNet. This dataset consists of
code-change and commit message pairs of six programming
languages. In their work [8], Yan et al. propose their impact
analysis approach ATHENA, which is based on GraphCode-
BERT and structural dependence graphs. They also provide a
novel code-change impact analysis dataset called ALEXAN-
DRIA. This dataset contains method-level Java production
code changes and meta-information. Compared to our dataset,
ALEXANDRIA indicates no clear seed method, therefore they
perform their impact analysis experiments treating all method-
level changes of a commit as query and impact. The paper also
states that this may not be a realistic scenario. This is a gap
that we address in this work.

In their work [4], Fan et al. compare various LLMs and
small-pretrained models (e.g. , CCT5 [10]) for code review
generation, commit message generation and just-in-time com-
ment update. They investigated whether in-context learning
(ICL) or parameter-efficient fine-tuning (PEFT) improves per-
formance, and compared two input formats, the code itself and
the code diff, aiming to find the best combinations per code-
change task. The authors state that LLMs offer potential for
code-change related tasks, but did not evaluate this potential
for code-change impact analysis.

III. FINE-GRAINED CHANGE IMPACT DATASET

Our dataset Alextend is an extension of the ALEXANDRIA
dataset proposed by Yan et al. [8]. The original dataset
contains method-level changes and corresponding information,
such as the repository name, commit hash, parent commit
hash, file path, etc. per changed method.
From ALEXANDRIA, we randomly selected 40 commits from
all Java projects that satisfied the following criteria:

• A minimum of one and a maximum of five changed Java
source code files

• A minimum of two changes, that are not comment,
import, or systematic changes (identical modifications
across multiple code entities)

Table I lists the number of selected commits (#Commit)
and the number of manually identified change pairs (#Change
pair) per project. In total, our dataset contains 40 commits
with 192 code-change pairs that spread among 14 projects.

For each commit, our dataset stores the attributes repo,
commit hash, and parent commit hash, that list the repository
name and the hash of the commit and its parent commit. The
github link attribute provides the URL of the repository at the
current commit on GitHub. Furthermore, the dataset contains
the field java class count, which represents the amount of
changed Java source code files per commit.

TABLE I: Descriptive statistics of the 40 commits.

Project #Commit #Change pair
apache/ant-ivy 12 66
apache/commons-codec 1 4
apache/commons-compress 3 4
apache/commons-configuration 4 23
apache/commons-io 1 2
apache/commons-lang 1 2
apache/commons-math 3 12
apache/commons-net 3 15
apache/commons-scxml 1 1
apache/commons-vfs 4 10
apache/giraph 2 6
apache/gora 1 8
apache/opennlp 3 6
apache/parquet-mr 1 33
Total 40 192

Compared to ALEXANDRIA, we include not only method,
but also class and attribute changes. We first extracted all Java
source code changes that do not alter comments or imports
per commit. We use the fully qualified names1 to make our
code entities uniquely identifiable. For example, the changed
method foo(int) is identified as org.test.Class1.foo(int). We
do not use fully qualified names for method parameters for
improved readability and reduced token count. If a nested
class declaration or body was changed, the fully qualified
name includes both the enclosing and the nested class, e.g.
org.test.Class1$nestedClass.method1().

Furthermore and compared to ALEXANDRIA, for each com-
mit, our dataset contains the type of each change, the change
pairs, the seed changes, and the diff hunk for the seed changes.
Regarding the change types, change pairs, and seed changes,
two co-authors independently and manually annotated the code
changes of each commit. Thereafter, they met and discussed
the results until they reached agreement on all annotations.
In the initial phase, seed changes were often misinterpreted,
therefore we defined them as the primary logical changes that
trigger the remaining changes.

For the annotation of the change types, the two co-authors
used the change type taxonomy introduced by Fluri and
Gall [11]. Their taxonomy distinguishes between declaration
and body changes. The main categories for classes are Class
Declaration Changes and Class Body Changes. Class body
changes can be split up into Method Declaration Changes,
Method Body Changes, and Attribute Declaration Changes.
We skipped the types Access Modifier Changes and Final
Modifier Changes. A method body change is also a class body
change, but we recorded it solely as method body change as we
classified changes only by their most specific type. The results
are stored in the column change categories of our dataset.

For the annotation of the seed changes and change pairs, the
two co-authors analysed each code change for its relationship
to the other changes. Listing 1 shows an example of a
change in Java code. The class attribute loadCounter has been
changed from int to AtomicInteger. Because an AtomicInteger

1https://docs.oracle.com/javase/specs/jls/se17/html/jls-6.html#jls-6.7
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must be initialised before it can be used, the constructor
creates a new instance. loadCounter and PropertiesConfig-
urationLayout(PropertiesConfigurationLayout) form a change
pair, whereas loadCounter is a seed-change, i.e., the change
that triggers the change in the constructor. This dependency is
of semantic nature rather than of syntactic nature, making it
hard for existing approaches to capture. Our dataset stores the
change pairs of each commit as a semicolon-separated list in
change pairs and the seed changes in seed changes.

Listing 1: Code-change impact example
@@ -133,7 +134,7 @@ public class

↪→ PropertiesConfigurationLayout
...
- private int loadCounter;
+ private final AtomicInteger loadCounter;
...
public PropertiesConfigurationLayout(

↪→ PropertiesConfigurationLayout c)
{
+ loadCounter = new AtomicInteger();

Our dataset also contains the minimal diff hunk of each seed
change of a commit. The minimal diff hunk is exported from
GitHub and consists of:

• An identifier of the changed entitiy;
• Lines starting with + that show added code;
• Lines starting with - that show removed code;
We removed any further diff information to save input

tokens when using the diff hunk in our prompts. The git diff
hunk is stored in the column seed changes diff. Finally, we
also stored the commit message of each commit in the column
commit message.

IV. PROMPT DEFINITION

Listing 2 shows the basic prompt created for our experi-
ments. We followed guidelines and best practices from other
research papers and OpenAI [12]. In their work [13], Salewski
et al. found that telling an LLM to act as a domain-expert can
lead to better results. Therefore, all our prompts start with the
impersonation of the LLM as an intelligent assistant that helps
with the analysis of Java source code changes and their impact
on other code entities. The prompt then states instructions
and rules, as LLMs benefit from precise information. The
specified input variables github link parent and seed changes
are dynamically updated during the experiments. Finally, we
define the JSON output format and provide two examples,
one with an impacted method and attribute and one with no
impacted entities.

Wang et al. [3] tested prompt engineering techniques for
code-related tasks on various models. They provided guide-
lines for the choice of LLM and prompt engineering technique
and highlighted the importance of adapting the prompt to the
strengths and weaknesses of the chosen LLMs. To optimize
our prompt for the use with GPT-5 and GPT-5-mini, the
prompt optimizer from OpenAI was used2.

2https://platform.openai.com/chat/edit?models=gpt-5&optimize=true

Listing 2: Basic prompt optimized for GPT-5 models
You are an intelligent assistant designed to help

↪→ developers and code reviewers analyze Java
↪→ source code changes and assess their impact
↪→ on related code entities.

## Instructions
You will be provided with:
- A link to a parent commit in a GitHub repository.
- A list of seed changes made to the code.
Your task is to:
- Identify every Java code entity affected by these

↪→ seed changes; specifically, those entities
↪→ that must be modified as a direct result of
↪→ the seed changes.

Follow these rules strictly:
1. For each impacted code entity, list its fully

↪→ qualified name (FQN). For nested or inner
↪→ classes, use the fully qualified name of the
↪→ outer class, followed by a dollar sign (‘$‘),
↪→ then the inner class name, and then the
↪→ changed entity (e.g., ‘com.example.Outer$
↪→ Inner.changedEntity‘).

2. Do not use fully qualified names for method
↪→ parameters; only for Java classes, interfaces
↪→ , methods, attributes, and variables.

3. Do not include the seed changes themselves in the
↪→ output; any entity listed as a seed change
↪→ must be excluded.

4. Exclude any changes to test files, ‘.md‘ files,
↪→ or ‘.xml‘ files; your analysis should focus
↪→ exclusively on Java source code files.

5. You must only view and analyze the parent commit
↪→ provided; reviewing or utilizing information
↪→ from any follow-up or subsequent commits is
↪→ strictly forbidden.

6. If a code entity is renamed due to the seed
↪→ changes, list only the new fully qualified
↪→ name in your output.

7. Impacted entities must be those that must change
↪→ *because of* the seed change, not the seed
↪→ change itself.

If ambiguity or uncertainty occurs, do not ask for
↪→ clarification; choose and report the entities
↪→ most likely to be impacted.

## Inputs
- **Commit link:** {{github_link_parent}}
- **Seed changes:** {{seed_changes}}

## Output Format
Return a JSON object with a single property named "

↪→ impacted_entities", whose value is an array
↪→ of strings. Each string should be the fully
↪→ qualified name of an impacted code entity. If
↪→ there are no impacted code entities, return
↪→ an empty array for "impacted_entities".

**Example:**
‘‘‘json
{"impacted_entities": ["com.example.Foo.someMethod(

↪→ String, int)", "com.example.bar.attribute1"]}
‘‘‘

**Example with no impacted entities:**
‘‘‘json
{"impacted_entities": []}
‘‘‘

https://platform.openai.com/chat/edit?models=gpt-5&optimize=true


V. PRELIMINARY EVALUATION

This section describes the preliminary evaluation of our
proposed approach. We used our dataset Alextend and the
models GPT-5 and GPT-5-mini to evaluate their performance
in predicting the impact of given code changes. The precise
versions of the models are gpt-5-2025-08-07 (GPT-5) and
gpt-5-mini-2025-08-07 (GPT-5-mini). GPT-5 was trained on
information up until Sep 30, 2024 and GPT-5-mini up until
May 31, 2024. Both models have a context window of 400,000
tokens. As it is practically not feasible to equip our prompts
with the whole codebase of a Java project, we decided to
enable the tool web search3, such that the models can look
up the provided commit tree on GitHub.

The models’ responses are compared with our labelled
ground truth impact set computed from the change pairs in
our dataset. More specifically, the ground truth impact set
contains all direct and indirect dependent code entities of the
seed changes in a commit. For each response, we calculate
precision, recall, and F1-score per commit based on exact
matches of the fully qualified names of impacted code entities.
We implemented our experiments in a Python script using the
openai4 library.

A. Using the Basic Prompt

For answering RQ1, our Python script iterated over the 40
commits in our dataset and for each commit composed and
sent the Basic prompt shown in Listing 2 to GPT-5 and to GPT-
5-mini. This prompt contains the link to the parent commit
tree and the fully qualified names of the seed changes. The
responses were stored in a Hugginface dataset. In addition,
logs of responses were stored to files for subsequent analysis.

Figure 1 visualises the precision, recall, and F1-score of
experiment Basic for the 40 commits of the dataset.

Overall, the box plots show that both models perform poorly
in this setting, with median values of 0.0 for precision, recall,
and F1-score. Comparing the plots for GPT-5 and GPT-5-
mini, we see that GPT-5 outperforms GPT-5-mini in all three
metrics. The third-quartile scores (25% of the tested samples)
of GPT-5 show 0.27 for precision, 0.18 for recall, and 0.22 for
F1-score compared to 0.0 for all three metrics for GPT-5-mini

B. Adding Diff Hunks

The second experiment aims to answer RQ2 and extends the
Basic prompt with the minimal diff hunk of the seed changes
in a commit, as shown in Listing 3.

3https://platform.openai.com/docs/guides/tools-web-search?api-mode=
responses

4https://github.com/openai/openai-python

Listing 3: Adding the diff hunks of seed changes to the prompt
for experiment Diff.

- The code diff from git (just the minimal
↪→ hunk: identifier of changed entity and
↪→ changed lines (add is indicated via +; delete
↪→ via -)).

...
- **Code diff:** {{seed_changes_diff}}

Figure 2 shows the box plots of the F1-scores of GPT-
5 and GPT5-mini and compares them with the F1-scores
from experiment Basic. For experiment Diff, both models
again achieved a median F1-score of 0.00. But compared to
the Basic, the values for the third-quantile scores increased
for both models. GPT-5 achieved a Q3 F1-score of 0.4,
while GPT-5-mini achieved 0.04. In comparison, in experiment
Basic, GPT-5 achieved a F1-score of 0.22 and GPT-5-mini of
0.00. These results indicate that code-change impact prediction
improves when the LLM is not only provided with the fully
qualified name of the changed code entity but also with the
information about the code changes in the form of diff hunks.

C. Log Analysis

For each experiment, we analysed the logs, focusing on the
web search calls of the two models to gain further insight
into web information retrieval. Overall, the logs show that for
each prompt, both models performed various web search tool
calls to different websites. We also found that neither model
queried the current commit or the code changes in it. They
only accessed the source code denoted by the parent tree, i.e.,
they followed the instructions provided in the prompt.

For experiment Basic, GPT-5 always queried at least once
a folder at the parent tree and GPT-5-mini did so for 75% of
the tested commits. GPT-5 wrongly queried the parent commit,
which contains the code changes of the previous commit, in
two samples. For experiment Diff, GPT-5 always queried at
least once a folder at the parent tree except for one sample,
where it neither queried the parent tree nor any folder. GPT-
5-mini queried no parent tree for four commits, and did not
query any folder of the parent tree for 22 of the 40 tested
commits. This partially explains the poorer performance of
GPT-5-mini.

D. Costs

The costs per 1M tokens for GPT-5 are $1.25 for input,
$0.125 for cached input, and $10.00 for output. In comparison,
1M input tokens using GPT-5-mini cost $0.25, cached input
tokens $0.025, and output tokens $2.00. 1k web search tool
calls costs $10. Table II lists the costs of the two experiments
presented in this paper in US dollars ($).

We observe that the web search tool is the main cost factor,
with a total cost of $20.91 for 2,091 calls. Another observation
is that using GPT-5 costs almost twice the price of GPT-5-mini.
The two experiments resulted in a total cost of $29.75.

https://platform.openai.com/docs/guides/tools-web-search?api-mode=responses
https://platform.openai.com/docs/guides/tools-web-search?api-mode=responses
https://github.com/openai/openai-python


GPT-5 GPT-5-mini
Model

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

Precision

GPT-5 GPT-5-mini
Model

Recall

GPT-5 GPT-5-mini
Model

F1-score

Fig. 1: Precision, recall, and F1-score of all 40 commits per model for the experiment Basic

Basic Diff
Experiment

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

F1-score

Model
gpt-5-2025-08-07
gpt-5-mini-2025-08-07
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TABLE II: Total costs of the experiments per model in US
dollars ($)

Model Price ($)
Input Cached Input Output Web Search Total

GPT-5 4.41 0.04 3.30 11.79 19.54
GPT-5-mini 0.68 0.01 0.40 9.12 10.21
Total 5.09 0.05 3.70 20.91 29.75

E. Threats to Validity

There is a potential bias in the experiments due to the
uncertainty of the training data of the LLMs. We can not be
sure whether they already used the selected repositories in
their training. Similarly, our sample of 40 commits might not
be representative. We plan to address both threats in our future
work. Another threat of this approach is the use of the OpenAI
web search feature. We mitigated this threat by analyzing the

logs with a focus on the links queried by web search. Non-
determinism of LLMs is another potential threat to the validity
of our results. To mitigate the risk, we plan on repeating our
experiments ten times for evaluation. The dataset was labelled
by two co-authors, which could introduce bias. We mitigated
this bias by discussing all differences in the labeling until
consensus was reached. We used commits with a maximum
of five changed Java source code files. This can affect our
dataset, as we leave out certain commits. But on the other
hand, this reduced the bias introduced by very large changes
that span multiple change requests. Another potential threat
concerns the prompt itself, as slightly different instructions,
for example the change of one word in the prompt, can lead
to unforeseen results.

VI. CONCLUSIONS AND FUTURE WORK

We presented a preliminary study of the capabilities of GPT-
5 and GPT-5-mini for code-change impact prediction. For that,
we also curated the novel dataset Alextend, that is built upon
40 commits from the ALEXANDRIA dataset [8]. Compared to
ALEXANDRIA, our dataset provides code changes, their type,
change pairs, and information about the commit’s seed-change
as well as the corresponding commit message. Using our
dataset, we experimented with two prompts, whereas the Basic
prompt contains the fully qualified name of the seed change
and the Diff prompt adds the diff hunks. In both settings, the
results show that GPT-5 and GPT-5-mini performed poorly,
whereas GPT-5 outperformed GPT-5-mini. Furthermore, the
provision of the diff hunks showed to help both models to
slightly improve their performance.

In ongoing and future work, we first plan to perform our
experiments with recent coding agents, such as Claude Code5

or Codex6. Furthermore, we plan to integrate sophisticated
code analysis tools to provide the models with control and
data flow information. Finally, we plan to extend our dataset
to contain the information from more commits.

5https://www.claude.com/product/claude-code
6https://openai.com/codex/

https://www.claude.com/product/claude-code
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