
Visualizing Evolution and Performance Metrics on

Method Level as Multivariate Data

Hagen Tarner1

hagen.tarner@paluno.uni-due.de
Veit Frick2

veit.frick@aau.at
Martin Pinzger2

martin.pinzger@aau.at
Fabian Beck1

fabian.beck@paluno.uni-due.de

1paluno, University of Duisburg-Essen, Germany 2University of Klagenfurt, Klagenfurt, Austria

Abstract

Visualizing the evolution of software metrics
helps understanding the project progress of
a software development team with respect
to code quality and related characteristics.
Blending this information with performance
information can provide relevant insights into
crucial changes in execution behavior and
their respective context from code changes.
We interpret this composition of evolution and
performance metrics as multivariate data and
map it to a fine-grained method level. This
is the basis for investigating a multivariate
visualization approach consisting of a visu-
ally enriched tabular representation that pro-
vides the method-level details for all the met-
rics across time, a projection view that shows
clusters and outliers among the methods on
a higher-level of abstraction, and a timeline
view to find relevant temporal changes. Inter-
actions connect the views and allow the users
to explore the data step by step.

Keywords: Software Visualization, Software Evo-
lution, Software Performance, Multivariate Data.

1 Introduction

Software metrics provide information about code qual-
ity and other technical or socio-technical character-
istics of a software system. Studying the evolution

Copyright © by the paper’s authors. Use permitted under Cre-
ative Commons License Attribution 4.0 International (CC BY
4.0).

In: A. Editor, B. Coeditor (eds.): Proceedings of the XYZ
Workshop, Location, Country, DD-MMM-YYYY, published at
http://ceur-ws.org

of metrics using temporal visualizations has been dis-
cussed in research in the past twenty years [5,8] and is
part of established code quality tools such as Sonar-
Qube or CQSE Teamscale. These analysis approaches
help better understand and track the project progress,
for instance, with respect to quality and technical debt.
However, the approaches are mostly limited to inves-
tigating static information, but not dynamic informa-
tion reflecting also the execution of the respective soft-
ware versions, a particular important dynamic prop-
erty being performance.

In contrast, there exist approaches and tools spe-
cialized on analyzing performance information [4].
State-of-the-art performance profiling tools, among
other views, show the executed methods of a program
as a list referencing a small number of performance in-
dicators per method. These lists can be sorted based
on one of the metrics to find the hottest methods.
However, code changes and other aspects of software
evolution are not considered. How did the perfor-
mance metrics change with respect to a previous ver-
sion? Which parts of the code did change and how did
they change? These are relevant questions for devel-
opers when trying to improve the runtime properties
or fixing performance bugs of a program.

These shortcomings of both software evolution and
performance analysis approaches led us to interpreting
the evolution and performance metrics as combined
multivariate data. Each of the methods of a software
system is described by multiple metrics, either provid-
ing absolute characteristics of the method or relative
characteristics comparing characteristics to a previous
version. These metrics also have a temporal dimen-
sion as they change with every code modification. We
show this evolving multivariate data and enable devel-
opers to identify clusters and outliers of methods with
respect to the metrics, find relationships between evo-

1



Figure 1: The main interface of our software consists of three components: (I) the Timeline View at the top,
visualizing various aggregated static metrics per uploaded commit, (II) the Projection View, showing the UMAP-
projection of the gathered metrics as a scatterplot, and (III) the Tabular View on the right side, showing both
static and dynamic metrics (columns) per method (rows).

lution and performance metrics, and note code changes
that affected runtime behavior and performance.

The specific approach we developed consists of three
views as shown in Figure 1. They comprise

• the Tabular View, a visually enriched tabular
representation with detailed method-level statis-
tics, also representing temporal changes as small-
scale bar charts,

• the Projection View arranging methods with
similar evolution and performance characteristics
into clusters while highlighting outliers, and

• the Timeline View providing an overview of
more versions and forming the basis to select the
most interesting ones for detailed analysis.

This is work in progress as—though we present first
examples for its applicability—it is yet unclear what
are further relevant questions that can be answered
with this approach in practical application. We will
exemplify some directions as part of Section 6 but also
hope to trigger a broader discussion.

2 Related Work

Since a single metric only provides a limited picture,
visualizing software metrics as multivariate data is a
common approach [1, 6, 7]. Such multivariate metrics
have also already been visualization along software
evolution [2, Section 5.3.2]. For instance, Evolution

Matrix [5] suggest to represent the evolution of class-
level metrics as rectangular glyphs on a timeline. Soft-
ware cities—extending the idea of a glyph to represent
the multivariate data to three dimensions and com-
bining it with a map-like layout—can be animated to
show software evolution [12, 14]. In contrast, multiple
variables of a code artifact can be visualized as a line
connecting values across multiple axes that are either
organized in a parallel (parallel coordinates) or radial
fashion (star/spider plot, Kiviat diagram). Pinzger et
al. [8] provide an example with radial charts using dif-
ferent colors to show evolutionary changes. These ap-
proaches, however, lack an integration of dynamic run-
time information. One exception is the work by Dal
Sasso et al. [3], where a visualization blends evolution
metrics with debugging information.

The visualization of software performance data is
also an established area [4] but only few approaches
consider the evolution of performance metrics. Per-
formance Evolution Blueprint [10] compares two ex-
ecuted software versions with respect to a small set
of performance and code change metrics in rectangu-
lar glyphs. Instead of discerning different software
artifacts, small glyph-based representations can also
augment the commit history of a project [11]. The
Performance Evolution Matrix [9] approach provides
a timeline showing multiple versions with expandable
packages and classes to investigate performance re-
gressions in detail including method call and activa-
tion pattern information. In contrast to our approach,

2



these works focus on a small set of predefined metrics.
Tarner et al. [13] discuss different general visualiza-
tion approaches for comparison of arbitrary method-
level multivariate performance metrics, but allow only
a comparison of two versions; still, this work informed
the design decisions of the multivariate visualization
techniques presented in the following.

3 Software Versions as Multivariate
Data

We study software projects as a sequence of versions of
method-level multivariate data consisting of software
metrics derived from static and dynamic analysis. In
the context of this work, the term version refers to a
specific commit in the master branch of each of the
projects.

Static data focuses on size and complexity met-
rics as two of the most important categories of static
metrics. It is collected using JavaNCSS 1 and com-
prises the number of non-commenting source state-
ments (ncss), and the Cyclomatic Complexity Number
(ccn) per method and version.

Dynamic data relates to different perspectives of
software performance in this work. It is gathered by
running all unit tests (JUnit) of a project and col-
lecting relevant metrics via VisualVM 2. To account
for inaccuracies in measurement we report the average
over five repeated measurements. For each method we
count the number of invocations (invocationCount)
and four temporal metrics in milliseconds: a method’s
self- and total time as wall-clock times (selfTime and
totalTime) and as CPU time measures (selfTimeCPU
and totalTimeCPU).

Metric changes for adjacent versions are calculated
as absolute differences (or short: diffs) for every met-
ric. To denote the diff variant of a metric, we use ∆
as a prefix to the variable name (e.g. ∆cnn). Diffs are
calculated between temporally consecutive versions in
a user selection. The diff metrics, hence, represent a
set of evolution metrics.

In addition, few project-level metrics are recorded
summarizing all code per version to give an overview of
the evolution of the whole project over time. They are
gathered by static analysis via JavaNCSS and include
the number of classes (#classes), the number of meth-
ods (#methods), and the number of non-commenting
source statements (ncss).

1http://www.kclee.de/clemens/java/javancss/
2https://visualvm.github.io/

4 Visualizing the Evolution of Multi-
variate Software Characteristics

Our visualization approach consists of the three main
views, as depicted in Figure 1, which are linked
through interactions. A prototype was implemented
as a Web application using D3.js and Angular.

The Tabular View is the main component of the
application, as it provides the most detail on method-
level. Each selected method in the dataset is repre-
sented by one row in the table, while each selected
metric forms one column. The selection of displayed
metrics is configurable via the drop-down list in the
upper right. Each table cell contains a small bar chart
visualization (also called sparkline), based on the se-
lected metric: (I) absolute metrics are displayed as
juxtaposed bar charts, whereas (II) diff metrics are vi-
sualized as diverging bar charts (e.g. selfTime and
∆selfTime in Figure 1). The bar charts for the ab-
solute metrics contain one bar per version. The di-
verging bar charts for diff metrics contain one bar per
diff, that is, per pair of adjacent versions in the selec-
tion. Table rows can be sorted by a single metric (by
clicking the respective column header). As a basis to
sorting, we identify the maximum absolute value of a
metric across all versions for each method. The max-
imum of these values is used to scale the bar heights
of a column, to allow for metric-wide comparison of
methods. Table rows are color-coded (circle in front of
the method name) according to package membership.

The Projection View (scatterplot on the lower
left side of Figure 1) is used for visual cluster and
outlier detection. It projects the methods described
by a set of metrics in an n-dimensional space to a
two-dimensional space trying to preserve the spatial
neighborhood. We decided to use UMAP as a state-
of-the-art projection algorithm because it provides sta-
ble results in short time. The input data for the pro-
jection algorithm consists of one vector per method,
constructed by chaining all selected metrics across all
selected versions together. Hence, for four versions
and three metrics, each method is described as a 12-
dimensional vector. The dimensionality of the data
is then reduced to two-dimensional space for plotting.
The selection of the metrics relevant for the projection
is interactive, and can include static, dynamic, and
diff metrics. It is done in the drop-down list below
the scatterplot. Each point in the scatterplot is col-
ored according to the package the method is contained
in, and follows the same color scale as the circles in
the Tabular View. Clicking an item in the scatterplot
legend selects all methods of the package for further
examination. When a single method is selected, the
Projection View also offers nearest neighbor search for
a user-defined number of k neighbors, either applied

3

http://www.kclee.de/clemens/java/javancss/
https://visualvm.github.io/


in the original high-dimensional space or the projected
two-dimensional space using Euclidean distance.

Selection and filtering of one or more methods is
linked across the Tabular View and the Projection
View. Clicking a row of the table or a point in the scat-
terplot selects that method and updates both views.
It is also possible to select more than one method by
holding down the Ctrl -key. Filtering of the selected
methods is done by typing parts of the method signa-
ture into the text field above the Tabular View.

The Timeline View (line chart in the top of Fig-
ure 1) orders versions by date from left to right and
enables the selection of relevant versions. The idea is
that more versions are shown in this view than be-
ing selected for further exploration with the two views
described above. Each version is visualized by three
project-level metrics: #classes, #methods, and ncss.
The visibility of each metric can be toggled via the
buttons on the right side of the line chart. The labels
on the x-axis serve as version selection: clicking a label
(de)selects the version for further analysis.

5 Interactive Exploration Process

To demonstrate the interactive analysis process, we
describe a typical visual data exploration scenario as
an application example illustrated in Figure 1.

We load eight pre-processed versions of the Com-
mons Lang3 project into our application to find si-
multaneously appearing changes in performance and
evolution metrics across methods. In the resulting
line chart of the timeline view, we select four versions
(based on the observed changes in displayed metrics)
for further exploration. After version selection, the
Projection View and the Tabular View get updated.
The table initially shows all methods ordered by their
signature. Ordering by ∆ccn and selecting only the
top row, yields the method with the highest change in
ccn (ThreadUtils.findThreadGroups()) and high-
lights a single point in the scatterplot. As the initial
projection is based on all absolute metrics, we have
to compute the projection again to find methods with
a similar change in ccn in the respective version. As
we are also interested in dynamic metrics, we run the
projection on selfTime, ccn, and ∆ccn (as seen in the
screenshot). In the resulting scatterplot we select the
nearest neighbors to the previously selected method
and inspect them in the table. Via the Displayed met-
rics selection (top right of the Tabular View), we show
only the metrics we are currently interested in. The
result of this exploration is the screenshot shown in
Figure 1.

The Tabular View now shows a set of methods with
a decrease in ccn for the last two versions. The meth-

3https://commons.apache.org/proper/commons-lang/

ods of the StringUtils class also show a decrease in
the other metrics for the same two versions. Further
investigation into the source code reveals: functional-
ity has been moved to a different class and methods
have become deprecated and are now only stubs that
call external methods. Furthermore, methods of the
classes ThreadBuiler, DiffBuilder, Fraction, and
ClassUtils show a decrease in ccn combined with an
increased totalTime. That means, while containing
less complex code, the time it took to execute these
methods increased. The source code reveals that func-
tionality has been replaced by a generalized (and thus
more complex) version that takes longer to execute.

6 Discussion and Future Work

We presented an approach to visualize a blend of static
and dynamic software metrics on method level along
software evolution. The above example already pro-
vides some hints how this can be leveraged for investi-
gating the interplay of code changes and software per-
formance. We have discovered relevant and significant
code modifications that led to changed runtime be-
havior and performance. Identifying performance re-
gressions in the code is also possible by examining the
recorded dynamic metrics, and especially their diffs, to
see how they change over time. The static metrics pro-
vide relevant context to interpret potential root causes
of these regressions. However, as there might be other
use cases and benefits of this approach, we want to
exemplify further possible directions for analysis and
extensions of the tool.

Visually exploring the history of an application
sooner or later leads to the point where the question of
Why? comes up: Why is there a change in metrics for
this method? While this might be trivial to answer for
static size and complexity metrics (e.g. ncss, cnn), it
gets harder to do for dynamic metrics. Our approach
currently does not answer these kind of questions, but
only provides a starting point for further research into
the source code. One way to mitigate this could be to
show source code and source code changes directly in
the application, e.g. clicking the diverging bar of a vi-
sualized diff metric could show the actual changes that
were made to the source code of the selected method in
the two corresponding versions (in a unified diff view,
similar to existing visualizations of version control sys-
tems).

As we have tested the approach so far only with
rather small projects, the scalability of the visual en-
codings still needs to be evaluated. We expect prob-
lems in the Tabular View and the Projection View as
their visual complexity increases with the amount of
methods. A solution could be to first show the data on

4

https://commons.apache.org/proper/commons-lang/


higher-level abstractions (e.g. class or package level),
before drilling down to method-level interactively.

A way to improve the Projection View would be
to also leverage the temporal aspect of the data more
clearly. Instead of aggregating the metrics across time,
the projection can be computed per version. Then, the
projection can be played as animation to show the soft-
ware evolution, the different projections can be plot-
ted side by side or overlaid. If challenges on stabilizing
the projection across the versions are addressed, one
might observe changing clusters of methods and dif-
ferent outliers in different versions.

One option to broaden the application of our pro-
gram is to extend the set of visualized metrics to other
aspects of software development. For example, adding
metrics from the software testing domain (e.g. code
coverage per line, number of passed/failed tests) would
support further analysis scenarios, such as relating
changes in runtime behavior to additional tests or bug
fixes. Other candidates are metrics related to static
properties such as code duplication, coding style qual-
ity, and dependencies or dynamic properties such as
memory allocation and I/O usage.

Acknowledgments

This work was made possible by the dedicated students
of the Master project group ViVaSD held in sum-
mer 2019 at the University of Duisburg-Essen—Daniel
van den Bongard, Nicklas Heuser, Cedric Krause, Jan
Reichl—who implemented the prototype. This work
has been partly funded by Deutsche Forschungsge-
meinschaft (DFG) and Austrian Science Fund (FWF)
as part of joint research grant 288909335 (DFG) and
2753-N33 (FWF).

References

[1] F. Beck. Software Feathers: Figurative visualiza-
tion of software metrics. In Proceedings of the 5th
International Conference on Information Visual-
ization Theory and Application, IVAPP, pages 5–
16. SciTePress, 2014.

[2] P. Caserta and O. Zendra. Visualization of the
static aspects of software: A survey. IEEE Trans-
actions on Visualization and Computer Graphics,
17(7):913–933, 2011.

[3] T. Dal Sasso, R. Minelli, A. Mocci, and M. Lanza.
Blended, not stirred: Multi-concern visualization
of large software systems. In 2015 IEEE 3rd
Working Conference on Software Visualization,
VISSOFT, pages 106–115. IEEE, IEEE, 2015.

[4] K. E. Isaacs, A. Giménez, I. Jusufi, T. Gamblin,
A. Bhatele, M. Schulz, B. Hamann, and P.-T. Bre-

mer. State of the art of performance visualization.
In EuroVis - STARs, EuroVis, pages 141–160. Eu-
rographics Association, 2014.

[5] M. Lanza. The Evolution Matrix: Recovering
software evolution using software visualization
techniques. In Proceedings of the 4th Interna-
tional Workshop on Principles of Software Evo-
lution, IWPSE, pages 37–42. ACM, 2001.

[6] M. Lanza and S. Ducasse. Polymetric Views —
a lightweight visual approach to reverse engineer-
ing. IEEE Transactions on Software Engineering,
29(9):782–795, 2003.

[7] H. Mumtaz, S. Latif, F. Beck, and D. Weiskopf.
Exploranative code quality documents. IEEE
Transactions on Visualization and Computer
Graphics, 26(1):1129–1139, 2020.

[8] M. Pinzger, H. Gall, M. Fischer, and M. Lanza.
Visualizing multiple evolution metrics. In Pro-
ceedings of the 2005 ACM Symposium on Soft-
ware Visualization, SoftVis, pages 67–75. ACM,
2005.

[9] J. P. Sandoval Alcocer, F. Beck, and A. Bergel.
Performance Evolution Matrix: Visualizing per-
formance variations along software versions. In
Proceedings of the 2019 Working Conference on
Software Visualization, VISSOFT, pages 1–11.
IEEE, 2019.

[10] J. P. Sandoval Alcocer, A. Bergel, S. Ducasse, and
M. Denker. Performance Evolution Blueprint:
Understanding the impact of software evolution
on performance. In Proceedings of the 1st IEEE
Working Conference on Software Visualization,
VISSOFT, pages 1–9. IEEE, 2013.

[11] J. P. Sandoval Alcocer, H. Jaimes Camacho,
D. Costa, A. Bergel, and F. Beck. Enhancing
commit graphs with visual runtime clues. In Pro-
ceedings of the 2019 Working Conference on Soft-
ware Visualization, VISSOFT. IEEE, 2019.

[12] F. Steinbrückner and C. Lewerentz. Understand-
ing software evolution with software cities. Infor-
mation Visualization, 12(2):200–216, 2013.

[13] H. Tarner, V. Frick, M. Pinzger, and F. Beck. Ex-
ploring visual comparison of multivariate runtime
statistics. In 9th Symposium on Software Perfor-
mance 2018, 2018.

[14] R. Wettel and M. Lanza. Visual exploration of
large-scale system evolution. In Proceedings of
the 15th Working Conference on Reverse Engi-
neering, WCRE, pages 219–228. IEEE, 2008.

5


	Introduction
	Related Work
	Software Versions as Multivariate Data
	Visualizing the Evolution of Multivariate Software Characteristics
	Interactive Exploration Process
	Discussion and Future Work

