
ExploitFlow, cyber security exploitation routes for Game

Theory and AI research in robotics

Víctor Mayoral Vilches 1,2, Gelei Deng3, Yi Liu3, Martin Pinzger1, and Stefan Rass4,1

1
Alpen-Adria-Universität Klagenfurt, Austria

2Alias Robotics, Spain
3Nanyang Technological University, Singapore

4Johannes Kepler University Linz, Austria

August 7, 2023

Abstract

This paper addresses the prevalent lack of tools to facilitate and empower Game Theory and Ar-
tificial Intelligence (AI) research in cybersecurity. The primary contribution is the introduction of
ExploitFlow (EF), an AI and Game Theory-driven modular library designed for cyber security ex-
ploitation. EF aims to automate attacks, combining exploits from various sources, and capturing
system states post-action to reason about them and understand potential attack trees. The motiva-
tion behind EF is to bolster Game Theory and AI research in cybersecurity, with robotics as the initial
focus. Results indicate that EF is effective for exploring machine learning in robot cybersecurity. An
artificial agent powered by EF, using Reinforcement Learning, outperformed both brute-force and hu-
man expert approaches, laying the path for using ExploitFlow for further research. Nonetheless, we
identified several limitations in EF-driven agents, including a propensity to overfit, the scarcity and
production cost of datasets for generalization, and challenges in interpreting networking states across
varied security settings. To leverage the strengths of ExploitFlow while addressing identified short-
comings, we present Malism, our vision for a comprehensive automated penetration testing framework
with ExploitFlow at its core.

1 Introduction

Robots are often insecure and fully unprotected. The rationale behind this is fourfold: first, defen-
sive security mechanisms for robots are still in their early stages, not covering the complete threat
landscape. Second, the inherent complexity of robotic systems makes their protection costly, both
technically and economically. Third, robot vendors are currently not taking responsibility in a timely
manner, extending the zero-days exposure window (time until mitigation of a zero-day) to several years
on average [1]. Fourth, contrary to the common-sense expectations and similar to Ford in the 1920s
with cars, most robot manufacturers oppose or difficult robot hardware repairs and software patching.
They employ planned obsolescence practices to discourage repairs and evade competition. In addition,
it is observed how most manufacturers keep forwarding the cyber security problems to the end-users
of these robotic machines, further obstructing the security landscape in robotics. Security is not a
product, but a process that needs to be continuously assessed in a periodic manner, as systems evolve
and new cyber-threats are discovered. Automation is crucial to tackle this problem. Specially, given
the lack of security professionals and how long it takes to train qualified security researchers.

Against the current overwhelming insecurity landscape in robotics, this research paper advocates
for offensive security methods for robots. These methods are necessary to understand attackers’ be-
havior, to train defensive mechanisms and ultimately, to help protect existing systems by discovering
flaws first. Building upon about a decade of robotics and empowering the use of Artificial Intelligence

1

ar
X

iv
:2

30
8.

02
15

2v
1 

 [
cs

.R
O

] 
 4

 A
ug

 2
02

3

https://aau.at/
https://aliasrobotics.com/
https://www.ntu.edu.sg/
https://www.jku.at/


(AI) and Game Theory to automate attacks, this line of research aims to study how offensive AI-driven
cyber security methods apply to robotics and allow to protect such systems in a feasible manner. In
particular, this work presents ExploitFlow (EF), a modular library to produce cyber security exploita-
tion routes (exploit flows). ExploitFlow aims to combine and compose exploits from different sources
and frameworks, capturing the state of the system being tested in a flow after every discrete action
which allows learning attack trees that affect a given system.

ExploitFlow’s main motivation is to facilitate and empower Game Theory and Artificial Intelligence
(AI) research in cyber security. A secondary motivation is to put ExploitFlow in practice in an area
wherein exploitation routes can help significantly secure complex systems via offensive cyber security
mechanisms. Robotics is selected as the target area for this research, but other targets might be
included in the future. To facilitate adoption, ExploitFlow’s syntax and architecture is inspired by
TensorFlow[2].

1 import exploitflow as ef
2

3 flow = ef.Flow() # Create a simple exploit flow
4 a = ef.placeholder() # Instantiate a simple operation
5 print(flow.run(a)) # Run the flow and print results

Code listing 1 ExploitFlow usage example.

A more complex exploitation route example is depicted below which performs reconnaissance locating
multiple targets in the local area network and then conducts scans on each one of them to fill up the
state:

1 import exploitflow as ef
2

3 flow = ef.Flow()
4 init = ef.Init()
5 recon = ef.Targets() # Build MSF reconnaissance exploit
6 versions = ef.Versions(ports=ef.state.TARGET_PORTS_COMPLETE)
7

8 # initialize state and pass it over a recon action
9 # resulting flow should deliver a state annotated

10 # with the results from the reconnaissance step
11 state = flow.run(init * recon * versions, target="192.168.2.10")

Code listing 2 ExploitFlow example doing multi-target reconnaissance. A exploit flow is built that
performs reconnaissance locating multiple targets in the local area network and then conducts scans a
targeted scan to 192.168.2.10 to fill up a state object that can then be used for reasoning.

To simplify exploitation, ExploitFlow represents each action in an exploitation route with the su-
perclass Exploit, which includes reconnaissance and control actions1. Exploits are grouped into six
major categories, inspired by the security kill chain[3]. ExploitFlow is a modular, extensible library
that accepts connectors for other exploitation frameworks and/or individual exploits, and is compos-
able. ExploitFlow is not an exploitation framework, but a tool to produce cybersecurity exploitation
routes, which empowers research in Game Theory and Artificial Intelligence (AI) in cybersecurity.

With this understanding, ExploitFlow aims to contribute to unlocking the potential of modern machine
learning approaches and developing a fully automated penetration testing framework that helps pro-
duce cybersecurity cognitive engines. Our overall architecture is depicted in Figure 1, which shows
our work thus far and our planned contributions for the near future. Our proposed framework, Malism,
is designed to enable a user without in-depth security domain knowledge to create their own cyberse-
curity cognitive engine that helps conduct penetration testing over an extensive range of targets. This
framework comprises three primary components:

1We are well aware that, strictly speaking, reconnaissance scripts don’t meet the formal definition of an exploit. However, we
still insist on grouping all actions under the same common class (Exploit) to simplify the production of exploitation flows (routes).

2



1. ExploitFlow (this paper): A modular library to produce cyber security exploitation routes (ex-
ploit flows). ExploitFlow aims to combine and compose exploits from different sources and
frameworks, capturing the state of the system being tested in a flow after every discrete action
which allows learning attack trees that affect a given system. ExploitFlow’s main motivation is
to facilitate and empower Game Theory and Artificial Intelligence (AI) research in cyber security.
It provides a unique representation of the exploitation process that encodes every facet within it.
Its representation can be effectively integrated with various penetration testing tools and scripts,
such as Metasploit [4] to perform end-to-end penetration testing. Such a representation can be
further visualized to guide the human experts for the reproduction of the testing process.

2. PentestGPT: An automated penetration testing system that leverages the power of LLMs to pro-
duce testing guidance and intuition at every given discrete state. It functions as the core compo-
nent of the Malism framework, guiding the LLMs to efficiently utilize their domain knowledge in
real-world testing scenarios.

3. PentestPerf: A comprehensive penetration testing benchmark developed to evaluate the perfor-
mance of penetration testers and automated tools across a wide array of testing targets. It offers
a fair and robust platform for performance comparison.

The harmonious integration of these three components forms an automated, self-evolving penetration
testing framework capable of executing penetration tests over various targets, Malism. This framework
to develop fully automated penetration testing tools, which we name cybersecurity cognitive engines,

User 1. ExploitFlow

2. PentestGPT

3. PentestPerf

Target

exploit flow graph adapters models state

programatically in Python

goal description
in

text

ex
ch

an
ge

ex
pl

oi
t tr

ee

B
e
n

ch
m

a
rk

s
a
n

e
xp

lo
it

fl
o
w

4. Malism

User 1. ExploitFlow

2. PentestGPT

3. PentestPerf

Target

External entity

Other future papers

This paper

Inner Component

Figure 1: Architecture of our framework to develop a fully automated penetration testing tools, Malism.
Figure depicts the various interaction flows that an arbitrary User could follow using Malism to con-
duct penetration testing (pentest) a given Target. 1. (this paper) Corresponds with ExploitFlow,
a modular library to produce security exploitation routes (exploit flows) that captures the state of the
system being tested in a flow after every discrete action. 2. Corresponds with PentestGPT, a testing
tool that leverages the power of LLMs to produce testing guidance (heuristics) for every given discrete
state. 3. PentestPerfis a comprehensive penetration testing benchmark to evaluate the performances
of penetration testers and automated tools across a wide array of testing targets. 4. captures Malism,
our framework to develop fully automated penetration testing tools which we name cybersecurity cog-
nitive engines.

3



aims to revolutionize the field of penetration testing by significantly reducing the need for domain ex-
pertise and enabling more comprehensive and reliable testing.

Contributions of this article are two-fold: first, we present for the first time the implementation
and use of ExploitFlow as a tool to build security exploitation routes. Second, we present the results
obtained while creating an artificial agent powered by ExploitFlow , that is able to locate exploits
affecting the various robotic systems presented to the agent, while minimizing the amount of net-
work traffic and attacks generated (exploits attempted). Q-Learning is used as the learning model
and compared against two baselines: a) brute force and b) human expert. The source code including
both the ExploitFlow implementation as well as the machine learning experiments are available at
� https://github.com/vmayoral/ExploitFlow.

Results presented below in section 3 hint that ExploitFlow is usable and useful for exploring ML
use in the context of robot cybersecurity. Three actors are evaluated: the brute-force actor obtains
a -2680 cumulative reward (see 2.3 for an explanation of the reward structure), the human expert 8
and the autonomous agent using value-based Reinforcement Learning (RL) 100. Attacks graphs shown
hint that while the human expert iterates over reconnaissance exploits to introspect the networking
scenario, the agent directly learns to submit the exploit that triggers a favourable reward and then
iterates over an Idle action to maximize resulting reward (obtaining maximum possible, in fact). This
overfitting behavior is a shortcoming to tackle in future work, since it impedes generalization across
new testing environments. Overall, ExploitFlow is demonstrated by creating an artificial agent pow-
ered by ExploitFlow that is able to locate exploits affecting the target robotic systems presented to
the agent, using value-based Reinforcement Learning (Q-Learning ) and while minimizing the amount
of network traffic and attacks generated (exploits attempted). ExploitFlow also demonstrates how the
state of the system being tested is captured after every discrete action, which allows reasoning, keep-
ing track of action/state pairs, and producing attacks trees affecting a given system. Ultimately, we
present in Figure 1 the architecture of our framework to develop a fully automated penetration testing
tools, Malism, which we name cybersecurity cognitive engines, and which uses ExploitFlow at its core.

2 Methodology

This section describes the research approach, including the data used for the learning task and the
learning model. Subsection 2.1 will first set the context, the current state of the art and will highlight
the lack of available datasets for robot cybersecurity study. Section 2.2 will then discuss our approach
for data generation through CTF-like OS-virtualized environments to generate realistic robotics net-
working data and what kind of preprocessing and other manpulations were applied to it for the learning
task. Finally, Section 2.3 will present an overview of our learning approach and the model used.

4

https://github.com/vmayoral/ExploitFlow


2.1 Biographical cornerstones in machine learning applied methods to robot
cybersecurity

The following presents a summary of some of the most relevant and recent research articles related to
offensive cybersecurity approaches that leverage machine learning:

2005 2025

August 2022

Hierarchical reinforcement learning for efficient

and effective automated penetration testing of

large networks [5]

2020
Modeling penetration testing with reinforcement

learning using capture-the-flag challenges: trade-

offs between model-free learning and a priori knowl-

edge [6]

2005
MulVAL: A Logic-based

Network Security An-

alyzer [7]

2013
PEGASUS: A policy search method

for large MDPs and POMDPs [8]

2016
Intelligent, automated

red team emulation [9]

September 2019

NIG-AP: a new method for

automated penetration test-

ing [10]

December 2019
Reinforcement learning for efficient net-

work penetration testing [11]

2020
Automated penetration test-

ing using deep reinforce-

ment learning [12]

2021
Automating post-exploitation

with deep reinforce-

ment learning [13]

2023
GAIL-PT: An intelligent penetration testing framework

with generative adversarial imitation learning [14]

System complexity is the enemy of security. It is very difficult to assure no vulnerabilities in a
system that an attacker could exploit. In robotics, the reality is even more concerning, as robots
are complex systems, with wide attack surfaces and wherein there is no culture of security yet. As
studied in previous work [15, 16], except few vendors and selected actions, no real concern has been
shown for security in robotics. Offensive security methods (such as pentesting or red teaming) play
an important part in the security lifecycle. In these engagements, as introduced by Applebaum [17],
security teams try to break into an organization’s assets, identifying vulnerabilities along the way.
Red teams take this concept even further, trying to fully emulate what real adversaries do: instead of

5



just compromising the network and identifying vulnerabilities, they have a larger goal that requires
significant post-compromise work.

Various authors, including those summarized above took note of this, and started leveraging of-
fensive mechanisms to tackle the cybersecurity problem. In particular, [18, 19, 20] among others
started using machine learning to automate the penetration testing task, presenting different levels
of automation. Most of the authors use rather simple neural network architectures, many leverag-
ing Deep Q-Learning (DQN) and mostly involving few hidden layers, besides the input and output
ones. This hints about the fact that the tasks learned are rather simple, and a simplification of the
complete penetration testing activities. Something coherent across most of these studies is the lack
of consistency concerning the representation of the state space for cybersecurity research purposes
in ML. Connected to it, we found that most cited authors above use inconsistent datasets. Though
various popular security-oriented networking datasets exist (see � https://github.com/shramos/
Awesome-Cybersecurity-Datasets) most of the authors reviewed seem to discard these and instead
choose to generate their own data via either abstractions (simplified models) or simulated/emulated
environments. Further research hinted that rationale behind this is two-fold:

1. Capturing networking data in a scalable manner is non-trivial (and an open problem)

2. Cybersecurity environments are highly non-structured and interactive

In this work, we fail to locate a dataset that could serve the research goals. Deploying offensive
cybersecurity approaches in the complex robotics field presents quite a challenge, given its novelty.
Also, because the robotics realm is prohibitive: cost, repeatability, and expertise all make it difficult to
consistently produce offensive security datasets. Following from this, and similar to some of the cited
work above. To proceed with this research, we attempted addressing the two identified hurdles cited
above by collecting synthetic data directly from a realistic OS-virtualized scenario with multiple robotic
targets. The following sections discuss our approach.

2.2 Synthetic data generation through CTF-like OS-virtualized environments

2.2.1 Data generation

Obtaining a proper dataset is crucial and specially hard in certain areas, such as the unstructured
robotics or cybersecurity. The intersection of both presents an even more difficult challenge. In par-
ticular for security, automating offensive cyber security practices constitutes a non-trivial problem be-
cause of the range and complexity of actions that a human expert may attempt, which hampers putting
together representative datasets. The authors of [6] acknowledge this and focus their attention on
simplified penetration testing problems expressed in the form of Capture The Flag (CTF) hacking chal-
lenges. They tackle the dataset production problem by leveraging existing CTF environments, which
they modify to adapt to modern RL gyms which produce a reward after an agent performs an action.
This way, authors are able to produce relevant input data (which serves as datasets) for the learning
offensive cyber security practices in selected target scenarios. The research herein will reproduce
the approach followed at [6] with relevant extensions meant for modeling robots. The reader should
note that while pure networking (for security purposes) modeling can easily be done with virtualiza-
tion (e.g. OS-virtualization such as Docker, or VMs which are commonly used), robotic environments
require a significantly more complex abstraction set, which elevates the complexity of building such
CTF environments. To address this problem, the present work builds on top of some of [21], which
provides a toolbox for robot cybersecurity concerning. Altogether, we are able to build OS-virtualized
CTF environments with the target robots that allow performing RL on them.

Data is thereby generated as synthetic and directly from the simulated robotic environments, each
of which can fit a different challenge, or CTF game. The data corresponds to the simulated networking
interactions between peers. The following describes how such networking dataflow is abstracted away
for learning purposes.

6

https://github.com/shramos/Awesome-Cybersecurity-Datasets
https://github.com/shramos/Awesome-Cybersecurity-Datasets


2.2.2 Data pre-processing

Learning from computer networking data requires relevant data pre-processing, as the amount of infor-
mation is overwhelming. The following presents our initial assumptions while considering networking
data pre-processing.

Let’s assume the following:

• At each time-step, the network is captured by a State class. On its simplest form, each State is
represented by a dictionary, each key corresponding with an IP address and holding a sub-state
class which captures (for each IP) a) exploits launched against the network and b) port status
(open/closed, versions, cpe, etc.).

• One-hot encoding is used as the safest approach to interface with the learning model. Others
considered included label encoding and binary encoding. While the latter produced shorter rep-
resentations, binary encoding might not be suitable for all machine learning algorithms. In bi-
nary encoding, although categories are converted into numbers, there is an arbitrary ordering
introduced in the categories, which might mislead some algorithms into thinking that there is a
relationship between different categories. One-hot encoding instead doesn’t have this issue as
it uses binary vectors to represent categories, at the cost of increasing the dimensionality of the
dataset.

Given these assumptions, we considered initially the following:

• y = 255, number of IPs considered (a complete minor subnet)

• n = 424, number of ports monitored, each represented by l = 1 bit to capture its state (open/close)

• m = 12, number of exploits considered, each represented by b = 1 bits (launched/not-launched),
discarding capturing the success/failure of each exploit to model better the uncertainty often
encountered in cybersecurity.

• s = 0 bits capturing the system information for each IP (OS version, and other meta-data obtained
while doing reconnaissance)

These assumptions, which already introduce a significant simplification, while one-hot encoded al-
ready lead to the following number of elements while encoding the State:

y · [n · (n+ l) + ·(m+ b) + s] =

255 · [424 · (424 + 1) + 12 · (12 + 1) + 0] =

256 · 180, 356 = 46, 171, 136

This leads to a setup which is non-feasible computationally. These initial assumptions had to change.
We had to significantly increase abstractions (and reduce complexity in terms of network-scope) to
make computations tractable in modern general-purpose computers. In particular we used y = 7,
n = 9, l = 1, m = 12, b = 1 and s = 0 leading to:

y · [n · (n+ l) + ·(m+ b) + s] =

7 · [9 · (9 + 1) + 12 · (12 + 1) + 0] =

7 · 246 = 1, 722

Preserving the modularity principles of ExploitFlow, all the above is implemented by a State class
that can easily be extended, overwritten and/or modified per each experiment independently. The
listing 3 shows an example implementing a variant of State called State_v2:

7



2.3 Learning model

As described above, most of the prior art reviewed use rather simple neural network architectures for
cybersecurity automation and machine learning, many leveraging Deep Q-Learning (DQN) and mostly
involving few hidden layers, besides the input and output ones. In a way, this could be understood as
an indicator that the field is still mostly immature (from an ML-perspective) and that simple problems
are being explored, which don’t demand complex models. In light of this and particularly following
the trend established by [6] which focus on scalability, rather than complexity of the problem to solve
using a more explainable model, we adopt a similar approach and leverage reinforcement learning with
simple table-based Q-Learning as a model.

Besides Q-Learning, the following hyperparameters are used consistently across our machine learn-
ing efforts: learning rate (alpha, α) = 0.1, discount factor (gamma, γ) = 0.9, exploration factor (epsilon,
ϵ) = 0.1.

Finally, the following reward scheme was applied:

• Non-exploits, like idle (no action) and related were assigned a reward of 0, helping the agent to
learn that idle might be appropriate given certain networking conditions.

• reconnaissance (both fingerprinting and footprinting) actions were assigned a reward of −10 by
default, and an extra −1 for each IP target impacted while incurring in footprinting. This way, we
penalize the additional networking traffic generated, which can help Intrussion Detection Systems
(IDS) detect malicious activity.

• Formal offensive exploits were assigned a reward of 100 when successful, and −100 if failed.

3 Evaluation

Evaluation was performed in a simulated scenario involving the following robotic systems presented in
Figure 2. Target objective of the learning effort is to compromise the Universal Robots UR3 collabora-
tive manipulator using well known security vulnerabilities affecting this robotic system. In particular,
an exploit for compromising the robot using the RVD#672 (hard-coded public credentials for controller)
vulnerability will be used. Three situations were considered and described below:

3.1 Human-expert penetration tester

A human-expert was considered by using ExploitFlow programatically, and manually programming
an exploitation route for the best-case scenario. Exploitation route is achieved using the code snippet
at listing 5 (complete experiment available at � https://github.com/vmayoral/ExploitFlow/blob/
main/examples/9_exploitation_ur_human_expert.py).

The execution of this exploitation flow leads to the attack graph depicted in Figure 3 and led to a
cumulative reward of 8.

3.2 Autonomous agent powered by Q-Learning

An artificial agent powered by ExploitFlow is able to locate exploits affecting the target robotic sys-
tem, while minimizing the amount of network traffic and attacks generated (exploits attempted) using
its table-based Q-Learning model. Exploitation route is learned using the code snippet at listing 6 (com-
plete experiment available at � https://github.com/vmayoral/ExploitFlow/blob/main/examples/
11_exploitation_ur_qlearning_instances.py).

The execution of this exploitation flow leads to the attack graph depicted in Figure 4 and led to a
cumulative reward of 100.

8

https://github.com/aliasrobotics/RVD/labels/robot%20component:%20Universal%20Robots%20Controller?page=4&q=is%3Aopen+label%3A%22robot+component%3A+Universal+Robots+Controller%22
https://github.com/aliasrobotics/RVD/issues/672
https://github.com/vmayoral/ExploitFlow/blob/main/examples/9_exploitation_ur_human_expert.py
https://github.com/vmayoral/ExploitFlow/blob/main/examples/9_exploitation_ur_human_expert.py
https://github.com/vmayoral/ExploitFlow/blob/main/examples/11_exploitation_ur_qlearning_instances.py
https://github.com/vmayoral/ExploitFlow/blob/main/examples/11_exploitation_ur_qlearning_instances.py


Figure 2: CTF-like OS-virtualized robotic environments involving 4 robotic targets: a robotic brain
powered by ROS 2, another powered by ROS, a UR3 cobot manipulator and a PX4 drone. Source code
to reproduce this environment is available at � https://github.com/vmayoral/ExploitFlow/blob/
main/.devcontainer/docker-compose.yml

Implementation was performed in Python, as an extension of ExploitFlow (which is coded in Python
as well) and in a separate file with standardized interfaces for use. Models abstracted using these
interfaces can easily be swapped and tested. Our table-based Q-Learning model presents the form
depicted in listing 4. An extension of this implementation to use other models that leverage artificial
neural networks (e.g. DQN) is judged trivial if/when leveraging popular machine learning frameworks
such as TensorFlow.

3.3 Brute-force

A brute force baseline (which often the case relates to what many novel pentesters do) is generated by
launching all permutations of the selected available exploits against the scenario2. Exploitation route
is created using the code snippet available at listing 7 (complete experiment available at � https://
github.com/vmayoral/ExploitFlow/blob/main/examples/13_exploitation_ur_bruteforce.py). The
execution of this exploitation flow leads to a big attack graph (not shown here) and led to a cumulative
reward of −2680.

4 Conclusions and future work

In this article, we made notable contributions to the realm of robot cybersecurity by producing ExploitFlow
, a modular library to produce cyber security exploitation routes (exploit flows) that allows combining
and compose exploits from different sources and frameworks, and captures the state of the system

2In fact, a reduced "relevant" set was selected to make it computationally more tractable

9

https://github.com/vmayoral/ExploitFlow/blob/main/.devcontainer/docker-compose.yml
https://github.com/vmayoral/ExploitFlow/blob/main/.devcontainer/docker-compose.yml
https://github.com/vmayoral/ExploitFlow/blob/main/examples/13_exploitation_ur_bruteforce.py
https://github.com/vmayoral/ExploitFlow/blob/main/examples/13_exploitation_ur_bruteforce.py


Figure 3: Depiction of the attack graph produced by a human expert while executing the manually-
written best-case exploit flow.

being tested in a flow after every discrete action. This allows for further automated reasoning (by
means of ML and Game Theory), as well as learning attack trees that affect a given system. Firstly, we
introduced the novel implementation of ExploitFlow , an innovative tool devised for crafting security
exploitation routes. Furthermore, we successfully demonstrated ExploitFlow by developing an artifi-
cial agent with it, that capably identifies exploits in various robotic systems, significantly minimizing
both network traffic and the number of exploits attempted.

Using Q-Learning, we compared the efficiency of our model against two baselines: brute force and
human expert. Interested readers can delve into the source code and machine learning experiments
available at � https://github.com/vmayoral/ExploitFlow. ExploitFlow ’s ability to capture the
system state post every discrete action is paramount. It aids in logical reasoning, tracing action/state
combinations, and generating attack trees for a specific system. To encapsulate our endeavors, Figure 1
outlines the architecture of Malism, our automated penetration testing tool—termed as a cybersecurity
cognitive engine—with ExploitFlow as its foundational element.
Results of the three actors evaluated during this research are summarized in Figure 5, depicting the
cumulative reward of the exploit flow generated for each actor, respectively (see 2.3 for an explanation
of the reward structure). The brute-force actor obtains a -2680 cum. reward, the human expert 8 and
the autonomous agent using value-based Reinforcement Learning (RL) 100. While analyzing figures 3
and 4 it becomes apparent that while the human expert iterates over reconnaissance exploits to intro-
spect the networking scenario, the agent directly learns to submit the exploit that triggers a favourable
reward and then iterates over an Idle action to maximize the resulting reward (obtaining maximum

10

https://github.com/vmayoral/ExploitFlow


Figure 4: Depiction of the attack graph produced by an autonomous agent powered by Q-Learning
algorithm while executing the exploit flow that is derived from its learned value-function (table).

−2,500 −2,000 −1,500 −1,000 −500 0

Human expert

Autonomous agent (Q-Learning)

Brute-force

−2,500 −2,000 −1,500 −1,000 −500 0

8

100

−2,680

8

8

100

100

−2,680

−2,680

Cumulative reward

Figure 5: Cumulative reward obtained by three different actors (brute-force, Q-Learning, human ex-
pert) while attempting to compromise the target objective in the robot cybersecurity scenario of figure
2

11



possible, in fact). In light of results, we can conclude that the initial research objectives have been
fulfilled. ExploitFlow implementation was shown functional and demonstrated by creating an artifi-
cial agent powered by ExploitFlow that is able to locate exploits affecting the target robotic systems
presented to the agent, using value-based Reinforcement Learning (Q-Learning ) and while minimizing
the amount of network traffic and attacks generated (exploits attempted).

Though results meet the initial goals, we must be critical towards identified shortcomings. The fol-
lowing hint a few directions werein future work could be allocated for further improvements:

• First, current learned functions (value-based) overfit to the particular landscape of exploits avail-
able and would perform poorly the moment the networking configuration changes (e.g. IP ad-
dresses change). To overcome this, training should be performed without the use of heuristics
or simplifications and using changing networking setups. Though this can be automated (e.g.
creating varios CTF-like scenarios), it was beyond the scope of the current effort. A side-effect
of this would be the explosion of the state-space, which would probably require to leverage other
function representation models, such as artificial neural networks (as opposed to the current
table).

• Second, as part of this overfitting behavior mentioned, we acknowledge that it is unrealistic for
the current autonomous agent to perform properly in the wild, as offensive cybersecurity always
requires some level of (continued) reconnaissance. The current agent has not learned to do so.
Reward shaping and various scenarios could help addressing this limitation.

• Third, the current one-hot encoding is not scalable (computationally very expensive) and alterna-
tives must be explored if the networking State is to be better captured.

• Fourth, a better representation of the networking state at each timestamp is required to further
scale learning. Ideas in this direction include incorporating machine-related metadata (OS, library
versions extracted from finger- and foot-printing).

• Fifth and much relevance, there is a huge scalability problem (very costly engineering-wise) while
generating datasets that helps autonomous agents learn which action to take next. Creating us-
able (by ML agents) exploits and scenarios takes a lot of expertise and time. Building appropriate
scenarios requires qualified roboticists that understand the dynamics of robotic systems. Adapt-
ing exploits for use (or worse, creating new ones) requires cybersecurity experts to craft the right
interfaces for automated learning use. To overcome this limitation, modern and popular Large
Language Models (LLMs) can be utilized to produce both scenarios as well as exploits in the
form/format required, significantly simplifying the effort to produce usable datasets and actions.
Listing 8 shows a hint about how LLMs could be leveraged to tackle this shortcoming. We refer
interested readers to submodule 2. PentestGPT of Figure 1 for more details on this line of work.

• Sixth, and somewhat connected to the previous one, the heterogeneity of the security networking
environments seems to require heuristics to interpret the networking State and take initial ac-
tions while tackling new security challenges in unseen environments. This is somewhat connected
to the fact that it is unrealistic to capture all know-how concerning offensive attempts, as most is
non-disclosed or in a format that can easily be digested and converted into datasets. LLMs could
also help on this regard, which is a topic worth researching.

Ongoing efforts to tackle these shortcomings are being developed by the authors. Some available in-
the-open and publicly (e.g. at � https://github.com/GreyDGL/PentestGPT). We also refer interested
readers to Figure 1 to get a hint of the overall architecture of Malism, our framework to produce
cybersecurity cognitive engines.

12

https://github.com/GreyDGL/PentestGPT


References

[1] V. Mayoral-Vilches, L. U. S. Juan, U. A. Carbajo, R. Campo, X. S. de Cámara, O. Urzelai, N. García,
and E. Gil-Uriarte, “Industrial robot ransomware: Akerbeltz,” arXiv preprint arXiv:1912.07714,
2019.

[2] M. Abadi, “Tensorflow: learning functions at scale,” in Proceedings of the 21st ACM SIGPLAN
International Conference on Functional Programming, 2016, pp. 1–1.

[3] E. Hutchins, M. Cloppert, and R. Amin, “Intelligence-driven computer network defense informed
by analysis of adversary campaigns and intrusion kill chains,” Lockheed Martin Corporation White
Paper, 2011. [Online]. Available: https://www.lockheedmartin.com/content/dam/lockheed-martin/
rms/documents/cyber/LM-White-Paper-Intel-Driven-Defense.pdf

[4] H. D. Moore, “Metasploit framework,” 2003, available at: https://www.metasploit.com.

[5] M. C. Ghanem, T. M. Chen, and E. G. Nepomuceno, “Hierarchical reinforcement learning for
efficient and effective automated penetration testing of large networks,” Journal of Intelligent
Information Systems, pp. 1–23, 2022.

[6] F. M. Zennaro and L. Erdodi, “Modeling penetration testing with reinforcement learning using
capture-the-flag challenges: trade-offs between model-free learning and a priori knowledge,”
arXiv preprint arXiv:2005.12632, 2020.

[7] X. Ou, S. Govindavajhala, A. W. Appel et al., “Mulval: A logic-based network security analyzer.” in
USENIX security symposium, vol. 8. Baltimore, MD, 2005, pp. 113–128.

[8] A. Y. Ng and M. I. Jordan, “Pegasus: A policy search method for large mdps and pomdps,” arXiv
preprint arXiv:1301.3878, 2013.

[9] A. Applebaum, D. Miller, B. Strom, C. Korban, and R. Wolf, “Intelligent, automated red team
emulation,” in Proceedings of the 32nd Annual Conference on Computer Security Applications.
ACM, 2016, pp. 363–373.

[10] T.-y. Zhou, Y.-c. Zang, J.-h. Zhu, and Q.-x. Wang, “Nig-ap: a new method for automated penetration
testing,” Frontiers of Information Technology & Electronic Engineering, vol. 20, no. 9, pp. 1277–
1288, 2019.

[11] M. C. Ghanem and T. M. Chen, “Reinforcement learning for efficient network penetration testing,”
Information, vol. 11, no. 1, p. 6, 2019.

[12] Z. Hu, R. Beuran, and Y. Tan, “Automated penetration testing using deep reinforcement learning,”
in 2020 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW). IEEE, 2020,
pp. 2–10.

[13] R. Maeda and M. Mimura, “Automating post-exploitation with deep reinforcement learning,” Com-
puters & Security, vol. 100, p. 102108, 2021.

[14] J. Chen, S. Hu, H. Zheng, C. Xing, and G. Zhang, “Gail-pt: An intelligent penetration testing
framework with generative adversarial imitation learning,” Computers & Security, vol. 126, p.
103055, 2023.

[15] L. Alzola Kirschgens, I. Zamalloa Ugarte, E. Gil Uriarte, A. Muñiz Rosas, and V. Mayoral Vilches,
“Robot hazards: from safety to security,” ArXiv e-prints, Jun. 2018.

[16] V. M. Vilches, L. U. S. Juan, B. Dieber, U. A. Carbajo, and E. Gil-Uriarte, “Introducing the robot
vulnerability database (rvd),” arXiv preprint arXiv:1912.11299, 2019.

13

https://www.lockheedmartin.com/content/dam/lockheed-martin/rms/documents/cyber/LM-White-Paper-Intel-Driven-Defense.pdf
https://www.lockheedmartin.com/content/dam/lockheed-martin/rms/documents/cyber/LM-White-Paper-Intel-Driven-Defense.pdf
https://www.metasploit.com


[17] A. Applebaum, D. Miller, B. Strom, H. Foster, and C. Thomas, “Analysis of automated adversary
emulation techniques,” in Proceedings of the Summer Simulation Multi-Conference. Society for
Computer Simulation International, 2017, p. 16.

[18] M. C. Ghanem and T. M. Chen, “Reinforcement learning for intelligent penetration testing,”
in 2018 Second World Conference on Smart Trends in Systems, Security and Sustainability
(WorldS4). IEEE, 2018, pp. 185–192.

[19] S. Niculae, “Applying reinforcement learning and genetic algorithms in game-theoretic cyber-
security,” p. 58, 2018.

[20] J. Schwartz and H. Kurniawati, “Autonomous penetration testing using reinforcement learning,”
arXiv preprint arXiv:1905.05965, 2019.

[21] V. Mayoral-Vilches, I. Abad-Fernández, M. Pinzger, S. Rass, B. Dieber, A. Cunha, F. J. Rodríguez-
Lera, G. Lacava, A. Marotta, F. Martinelli et al., “alurity, a toolbox for robot cybersecurity,” arXiv
preprint arXiv:2010.07759, 2020.

14



A Code listings

1 class State_v2(State):
2 def __init__(self, *args):
3 self.states = {}
4

5 # initialize all states as empty
6 for ip in TARGET_IP_ADDRESSES:
7 self.add_new(ip)
8

9 def merge(self, newstate, target="127.0.0.1") -> None:
10 """
11 Merges the current object with a new State
12

13 Supports both State_v1 and State_v2.
14 """
15 if type(newstate) == State_v1:
16 self.states[target] = newstate # whether it exists or not
17 elif type(newstate) == State_v2:
18 aux_state = self + newstate # NOTE: overwrites self, with newstate
19 self.states = aux_state.states
20 else:
21 raise TypeError("Unknown state type")
22

23 # (...) various methods omitted
24

25 def one_hot_encode(self):
26 # one-hot encode all State_v1 objects in 'states'
27 states_encoded = [state.one_hot_encode() for state in self.states.values()]
28 flattened_states_encoded = [item for sublist in states_encoded for item in sublist]
29 # return states_encoded
30 return flattened_states_encoded

Code listing 3 Simplified listing of one of ExploitFlow ’s State abstractions. Complete source code
available at � https://github.com/vmayoral/ExploitFlow/blob/main/exploitflow/state.py

15

https://github.com/vmayoral/ExploitFlow/blob/main/exploitflow/state.py


1 class QLearn:
2 """Q-Learning class. Implements the Q-Learning algorithm."""
3

4 def __init__(self,
5 actions,
6 epsilon=0.1,
7 alpha=0.2,
8 gamma=0.9):
9 self.q = {}

10 self.epsilon = epsilon
11 self.alpha = alpha
12 self.gamma = gamma
13 self.actions = actions
14

15 def learnQ(self, state, action, reward, value, debug=False):
16 """Updates the Q-value for a state-action pair.
17

18 The core Q-Learning update rule.
19 Q(s, a) += alpha * (reward(s,a) + max(Q(s')) - Q(s,a))
20 """
21 oldv = self.q.get((state, action), None)
22 if oldv is None:
23 self.q[(state, action)] = reward
24 else:
25 self.q[(state, action)] = oldv + self.alpha * (value - oldv)
26

27 def chooseAction(self, state, return_q=False):
28 """An alternative approach for action selection."""
29 # Compute the Q values for each action given the current state
30 q = [self.getQ(state, a) for a in self.actions]
31 maxQ = max(q)
32 if random.random() < self.epsilon:
33 minQ = min(q)
34 mag = max(abs(minQ), abs(maxQ)) # Determine the magnitude
35 # range based on minQ and maxQ
36

37 q = [q[i] + random.random() * mag - .5 * mag for i in range(len(self.actions))]
38 maxQ = max(q)
39 count = q.count(maxQ)
40 if count > 1:
41 best = [i for i in range(len(self.actions)) if q[i] == maxQ]
42 i = random.choice(best)
43 else:
44 i = q.index(maxQ)
45 action = self.actions[i]
46 if return_q:
47 return action, q
48 return action
49

50 def learn(self, state1, action1, reward, state2, debug=False):
51 """Get the maximum Q-Value for the next state."""
52 maxqnew = max([self.getQ(state2, a) for a in self.actions])
53 self.learnQ(state1, action1, reward, reward + self.gamma * maxqnew, debug=debug)

Code listing 4 Q-Learning class implementing a common table-based Q-Learning algorithm. Simplified
implementation removes comments and non-crucial methods. Complete source code available
including comments and documentation at � https://github.com/vmayoral/ExploitFlow/blob/
main/exploitflow/models.py

16

https://github.com/vmayoral/ExploitFlow/blob/main/exploitflow/models.py
https://github.com/vmayoral/ExploitFlow/blob/main/exploitflow/models.py


1 import exploitflow as ef
2 from exploitflow.state import State_v2
3 State_default = State_v2
4

5 flow = ef.Flow()
6 init = ef.Init()
7 recon = ef.Targets()
8 versions = ef.Versions(ports=ef.state.TARGET_PORTS_COMPLETE)
9 state = flow.run(init * recon * versions, target="192.168.2.10")

10

11 for s in state.states.keys():
12 if any((port_state.port == 22 and port_state.open) for port_state in state.states[s].ports):
13 expl = ef.adapter_msf_initializer.get_name("auxiliary", "scanner/ssh/ssh_login")
14 msf_options = {
15 "RHOSTS": s,
16 "USERNAME": "root",
17 "PASSWORD": "easybot"
18 }
19 expl.set_options(msf_options)
20 if not expl.missing():
21 state = flow.run(state * expl, target=s, debug=False)

Code listing 5 Human-expert penetration tester using ExploitFlow programatically programming an
exploitation route for the best-case scenario. Complete experiment available at � https://github.
com/vmayoral/ExploitFlow/blob/main/examples/9_exploitation_ur_human_expert.py

17

https://github.com/vmayoral/ExploitFlow/blob/main/examples/9_exploitation_ur_human_expert.py
https://github.com/vmayoral/ExploitFlow/blob/main/examples/9_exploitation_ur_human_expert.py


1 import exploitflow as ef
2 from exploitflow.state import State_v4
3 State_default = State_v4
4

5 flow = ef.Flow()
6 flow.set_learning_model(ef.QLearn(actions=exploits_encoded, alpha=0.1, gamma=0.9, epsilon=0.1))
7

8 rollouts = 1000
9 episode = 10

10 age = 1
11 debug = False
12 last_10_actions = []
13 while age <= rollouts:
14 if flow.last_state():
15 flow._graph.learning_model.learn(
16 tuple(flow.last_state().one_hot_encode()),
17 flow.last_action().name,
18 flow.last_reward(),
19 tuple(flow.state().one_hot_encode()),
20 debug=False)
21

22 action = flow._graph.learning_model.chooseAction(tuple(flow.state().one_hot_encode()))
23

24 flow.run(flow.state() * action_expl, debug=debug)
25

26 if age % episode == 0:
27 # reset the flow
28 flow.reset()
29

30 # next rollout
31 age += 1

Code listing 6 Code snipped showing the training routine of an autonomous agent powered by Q-
Learning. Complete experiment available at � https://github.com/vmayoral/ExploitFlow/blob/
main/examples/11_exploitation_ur_qlearning_instances.py

18

https://github.com/vmayoral/ExploitFlow/blob/main/examples/11_exploitation_ur_qlearning_instances.py
https://github.com/vmayoral/ExploitFlow/blob/main/examples/11_exploitation_ur_qlearning_instances.py


1 import exploitflow as ef
2 from exploitflow.state import State_v4
3 State_default = State_v4
4

5 flow = ef.Flow()
6 exploits = [ef.idle, ef.metasploit, ef.versions, ef.targets]
7

8 # Get all permutations of the list
9 permutations = list(itertools.permutations(exploits))

10 state = flow.run(ef.init)
11 for perm in permutations:
12 for expl in perm:
13 state = flow.run(flow.state() * expl)

Code listing 7 Code snipped showing the brute-forcing effort of the scenario, trying all
possible permutations of the exploits (a reduced set for computational reasons). Complete
experiment available at � https://github.com/vmayoral/ExploitFlow/blob/main/examples/13_

exploitation_ur_bruteforce.py

19

https://github.com/vmayoral/ExploitFlow/blob/main/examples/13_exploitation_ur_bruteforce.py
https://github.com/vmayoral/ExploitFlow/blob/main/examples/13_exploitation_ur_bruteforce.py


B Large Language Models (LLMs) experiments to generate ex-
ploits in the desired format

1

2 # ChatGPT (GPT-4 model) PROMPT:
3 ##############################
4 #
5 # Select 10 exploits from the metasploit framework (MSF) and for each, produce an instances of it fillling

up the corresponding options required for each exploit while adhering to the following format:
6 #
7 # metasploit_1 = ef.adapter_msf_initializer.get_name("auxiliary", "scanner/ssh/ssh_login")
8 # metasploit_1.name = "scanner/ssh/ssh_login @ 192.168.2.5"
9 # msf_options = {

10 # "RHOSTS": "192.168.2.5",
11 # "USERNAME": "root",
12 # "PASSWORD": "easybot"
13 # }
14 # metasploit_1.set_options(msf_options)
15 # metasploit_1.target = "192.168.2.5"
16 # metasploit_1.reward = -100 # first time successful, will do "*(-1)" to get "+100
17 #
18 # Provide the code necessary to instantiate the 10 exploits. For each exploit, at the beginning, provide a

small comment of documentation describing what each exploit is expected to do.
19 ##############################
20

21 # 1. This auxiliary module will attempt to login to a SSH service with a specific username and password.
22 metasploit_1 = ef.adapter_msf_initializer.get_name("auxiliary", "scanner/ssh/ssh_login")
23 metasploit_1.name = "scanner/ssh/ssh_login @ 192.168.2.5"
24 msf_options_1 = {
25 "RHOSTS": "192.168.2.5",
26 "USERNAME": "root",
27 "PASSWORD": "easybot"
28 }
29 metasploit_1.set_options(msf_options_1)
30 metasploit_1.target = "192.168.2.5"
31 metasploit_1.reward = -100
32

33 # 2. This module exploits a buffer overflow in Apache's mod_isapi for versions 2.2.14 and earlier.
34 metasploit_2 = ef.adapter_msf_initializer.get_name("exploit", "windows/http/apache_mod_isapi")
35 metasploit_2.name = "windows/http/apache_mod_isapi @ 192.168.2.6"
36 msf_options_2 = {
37 "RHOSTS": "192.168.2.6",
38 "TARGETURI": "/somepath/"
39 }
40 metasploit_2.set_options(msf_options_2)
41 metasploit_2.target = "192.168.2.6"
42 metasploit_2.reward = -100
43

44 # 3. This auxiliary module will scan for vulnerable open FTP servers.
45 metasploit_3 = ef.adapter_msf_initializer.get_name("auxiliary", "scanner/ftp/ftp_version")
46 metasploit_3.name = "scanner/ftp/ftp_version @ 192.168.2.7"
47 msf_options_3 = {
48 "RHOSTS": "192.168.2.7"
49 }
50 metasploit_3.set_options(msf_options_3)
51 metasploit_3.target = "192.168.2.7"
52 metasploit_3.reward = -100
53

54 # 4. This module exploits a directory traversal vulnerability in PHPMyAdmin.
55 metasploit_4 = ef.adapter_msf_initializer.get_name("exploit", "multi/http/phpmyadmin_3522_backdoor")
56 metasploit_4.name = "multi/http/phpmyadmin_3522_backdoor @ 192.168.2.8"
57 msf_options_4 = {
58 "RHOSTS": "192.168.2.8",

20



59 "TARGETURI": "/phpmyadmin/"
60 }
61 metasploit_4.set_options(msf_options_4)
62 metasploit_4.target = "192.168.2.8"
63 metasploit_4.reward = -100
64

65 # 5. This module exploits a buffer overflow in the Microsoft IIS FTP service.
66 metasploit_5 = ef.adapter_msf_initializer.get_name("exploit", "windows/ftp/ms09_053_ftpd_nlst")
67 metasploit_5.name = "windows/ftp/ms09_053_ftpd_nlst @ 192.168.2.9"
68 msf_options_5 = {
69 "RHOSTS": "192.168.2.9"
70 }
71 metasploit_5.set_options(msf_options_5)
72 metasploit_5.target = "192.168.2.9"
73 metasploit_5.reward = -100
74

75 # 6. This auxiliary module will scan the network for Oracle servers.
76 metasploit_6 = ef.adapter_msf_initializer.get_name("auxiliary", "scanner/oracle/oracle_login")
77 metasploit_6.name = "scanner/oracle/oracle_login @ 192.168.2.10"
78 msf_options_6 = {
79 "RHOSTS": "192.168.2.10"
80 }
81 metasploit_6.set_options(msf_options_6)
82 metasploit_6.target = "192.168.2.10"
83 metasploit_6.reward = -100
84

85 # 7. This module exploits a vulnerability in Microsoft's Server service.
86 metasploit_7 = ef.adapter_msf_initializer.get_name("exploit", "windows/smb/ms08_067_netapi")
87 metasploit_7.name = "windows/smb/ms08_067_netapi @ 192.168.2.11"
88 msf_options_7 = {
89 "RHOSTS": "192.168.2.11"
90 }
91 metasploit_7.set_options(msf_options_7)
92 metasploit_7.target = "192.168.2.11"
93 metasploit_7.reward = -100
94

95 # 8. This module exploits a vulnerability in Windows' handling of VCard files.
96 metasploit_8 = ef.adapter_msf_initializer.get_name("exploit", "windows/fileformat/ms10_026_dbldecode")
97 metasploit_8.name = "windows/fileformat/ms10_026_dbldecode @ 192.168.2.12"
98 msf_options_8 = {
99 "RHOSTS": "192.168.2.12"

100 }
101 metasploit_8.set_options(msf_options_8)
102 metasploit_8.target = "192.168.2.12"
103 metasploit_8.reward = -100
104

105 # 9. This module exploits a buffer overflow in the Samba service.
106 metasploit_9 = ef.adapter_msf_initializer.get_name("exploit", "unix/misc/distcc_exec")
107 metasploit_9.name = "unix/misc/distcc_exec @ 192.168.2.13"
108 msf_options_9 = {
109 "RHOSTS": "192.168.2.13"
110 }
111 metasploit_9.set_options(msf_options_9)
112 metasploit_9.target = "192.168.2.13"
113 metasploit_9.reward = -100
114

115 # 10. This module exploits a vulnerability in the Windows handling of HLP files.
116 metasploit_10 = ef.adapter_msf_initializer.get_name("exploit", "windows/fileformat/

ms10_042_helpctr_xss_cmd_exec")
117 metasploit_10.name = "windows/fileformat/ms10_042_helpctr_xss_cmd_exec @ 192.168.2.14"
118 msf_options_10 = {
119 "RHOSTS": "192.168.2.14"
120 }
121 metasploit_10.set_options(msf_options_10)
122 metasploit_10.target = "192.168.2.14"

21



123 metasploit_10.reward = -100

Code listing 8 Code snipped showing the results of using generative Large Language Models to
economically address the scalability problem of generating usable datasets and exploits for the training.
The snippet shows how ChatGPT (GPT-4) is able to easily provide exploits for direct use.

22


	Introduction
	Methodology
	Biographical cornerstones in machine learning applied methods to robot cybersecurity
	Synthetic data generation through CTF-like OS-virtualized environments
	Data generation
	Data pre-processing

	Learning model

	Evaluation
	Human-expert penetration tester
	Autonomous agent powered by Q-Learning
	Brute-force

	Conclusions and future work
	Code listings
	Large Language Models (LLMs) experiments to generate exploits in the desired format

