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Abstract

We empirically evaluate whether AI systems are more effec-
tive at attacking or defending in cybersecurity. Using CAI
(Cybersecurity AI)’s parallel execution framework, we de-
ployed autonomous agents in 23 Attack/Defense CTF battle-
grounds. Statistical analysis reveals defensive agents achieve
54.3% unconstrained patching success versus 28.3% offen-
sive initial access (p=0.0193), but this advantage disap-
pears under operational constraints: when defense requires
maintaining availability (23.9%) and preventing all intru-
sions (15.2%), no significant difference exists (p>0.05). Ex-
ploratory taxonomy analysis suggests potential patterns in
vulnerability exploitation, though limited sample sizes pre-
clude definitive conclusions. This study provides the first con-
trolled empirical evidence challenging claims of AI attacker
advantage, demonstrating that defensive effectiveness criti-
cally depends on success criteria, a nuance absent from con-
ceptual analyses but essential for deployment. These findings
underscore the urgency for defenders to adopt open-source
Cybersecurity AI frameworks to maintain security equilib-
rium against accelerating offensive automation.

Introduction
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Figure 1: Core research question: Evaluating AI effective-
ness in offensive versus defensive cybersecurity roles.

The rapid advancement of AI in cybersecurity raises a
critical empirical question: Are AI systems inherently more
effective at attacking or defending? This question shapes
strategic decisions about resource allocation and defen-
sive architectures, yet remains unaddressed by current static
benchmarks that fail to capture real-world adversarial dy-
namics.
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Attack/Defense CTF (Capture-the-Flag) competitions
provide a valid evaluation paradigm wherein teams must
simultaneously attack opponents while defending identical
systems under time pressure and availability constraints. We
present the first empirical study of autonomous AI agents
in A/D CTF scenarios, leveraging CAI (Mayoral-Vilches
et al. 2025) (Cybersecurity AI)’s parallel execution frame-
work to deploy specialized offensive and defensive agents
concurrently. This enables direct comparison under identi-
cal conditions. Our study builds on CAI, which achieved
first place among AI teams in Hack The Box’s ”AI vs Hu-
man” jeopardy-style CTF. Unlike Jeopardy-style CTFs with
static challenges, A/D formats create dynamic equilibrium
through dual-track scoring: offensive points for exploitation
stages (initial access, user compromise, privilege escalation)
and defensive scores for availability maintenance and intru-
sion prevention.

To address these claims theoretically, recent work sug-
gests frontier AI systems inherently advantage attackers
based on marginal-risk modeling (Guo et al. 2025; RDI
2025). However, these analyses remain conceptual rather
than experimental. Our live A/D evaluation empirically tests
this assertion, finding no significant advantage once de-
fense is defined operationally (patching without breaking
availability) or completely (plus preventing enemy access).
This constraint-aware framing guides our analysis through-
out and challenges prevailing assumptions about offensive
AI superiority.

Related Work
CTF competitions provide rigorous cybersecurity evaluation
settings. Early work formalized A/D pressure in competitive
environments (Cowan et al. 2003). Recent studies demon-
strate AI capability assessment through CTFs: Petrov and
Volkov (Petrov and Volkov 2025) report CAI achieving top-
5% rankings in HTB’s AI vs. Humans CTF, while CAI’s
architecture is detailed in (Mayoral-Vilches et al. 2025;
Mayoral-Vilches 2025b).

LLM-driven offensive agents have evolved to multi-agent
systems, though end-to-end performance remains challeng-
ing (Liu, Zhang, and Wang 2024). Recent architectures
include PentestAgent (Chen, Liu, and Zhang 2024), Au-
toAttacker (Xu et al. 2024), and PenHeal (Huang and Zhu
2024). InterCode-CTF reports 40% to 95% improvements



via prompting (Yang and Liu 2024).
Defensive AI spans SIEM/SOAR enhancement and au-

tonomous remediation. DARPA’s AIxCC demonstrated au-
tomated patching (DARPA 2025), while industry systems
integrate LLMs with security workflows (Google 2025;
CrowdStrike 2024; Zhang, Wang, and Li 2025). However,
availability-preserving evaluations under adversarial pres-
sure remain scarce: the automation-autonomy gap (Mayoral-
Vilches 2025a) and prompt-injection risks (Mayoral-Vilches
and Rynning 2025) motivate adversary-aware evaluation.

Current benchmarks use Jeopardy-style datasets (Cy-
bench (Li, Wang, and Chen 2024), NYU CTF (Chen, Liu,
and Wang 2024)) with limitations: recent agents show
promise on scripted tasks (Deng et al. 2023; Shen et al.
2024; Wu et al. 2024) but lack defensive measurement. This
motivates our A/D CTF evaluation with taxonomy-grounded
analysis and availability-preserving constraints.

Research Contributions
We study autonomous AI agents competing concurrently in
offensive and defensive roles within Attack/Defense CTFs
to address the RQ: Are generative AI systems more capa-
ble at attacking or defending under live adversarial pres-
sure and availability constraints? To our knowledge, prior
LLM-based evaluations have not conducted AI-vs-AI as-
sessments in A/D CTFs with availability-preserving defen-
sive endpoints.

• AI-vs-AI A/D Evaluation Framework: A systematic
evaluation where autonomous agents operate in parallel
as red and blue teams on the same target, enabling head-
to-head measurement under identical conditions.

• Constraint-Aware Role Comparison: A matched anal-
ysis across 23 battlegrounds shows higher unconstrained
patch success than initial access, but no significant differ-
ence once defense is defined operationally or completely.

• Taxonomy-Correlated Profiling: We map outcomes
to MITRE ATT&CK, CWE, and CAPEC and report
category-level success with uncertainty metrics.

• Resource Footprint Reporting: We quantify token us-
age and cost per experiment, providing practical signals
for deployment.

Methodology
This research addresses the fundamental question: Are AI
systems inherently more effective at attacking or defend-
ing in cybersecurity contexts? To answer this empirically,
we compare the success rates of offensive and defensive AI
agents operating under identical conditions.

We formalize this through the following hypotheses:

• H0 (Null): The rate at which AI agents achieve initial
access equals the rate at which they patch vulnerabilities

• H1 (Alternative): These rates differ significantly

Each battleground yields two team outcomes on the same
target within the same time window, creating paired obser-
vations. While paired data typically warrants methods like
McNemar’s test, we deliberately employ Fisher’s exact test

treating observations as independent, a more conservative
approach that makes finding significant differences harder,
not easier. Each team deploys two concurrent agents: red
team (offensive) and blue team (defensive). The statistical
analysis plan was finalized before data collection began.

CAI Parallel Execution Architecture
This work leverages CAI’s novel parallel execution ca-
pability, which enables simultaneous operation of multiple
specialized agents within the same environment. The par-
allel execution system is a generic framework that supports
concurrent operation of any number of agents, each with dis-
tinct roles and capabilities.

The parallel execution framework provides fine-grained
control over individual agent configuration. Each agent can
be customized with: (1) specific LLM models tailored to
their requirements, (2) context isolation modes determining
whether agents share context or operate independently, and
(3) custom prompts that define specialized behaviors and ob-
jectives for each agent’s role.

Data Collection and Evaluation Framework
Our evaluation framework integrates CAI’s tracing infras-
tructure, manual battle log analysis, and HTB’s standardized
scoring system.

Primary Metrics:

• Initial Access: Binary indicator of successful exploita-
tion achieving shell access

• Vulnerability Detected: Binary indicator of vulnerabil-
ity identification in agent logs

• Vulnerability Patched: Binary indicator that the Blue
Team Agent remediated at least one vulnerability

Our analysis compares Initial Access Rate against defen-
sive capabilities under three operational constraint levels:

• Initial Access Rate vs Vulnerability Patching Rate

• Initial Access Rate vs Vulnerability Patching with Full
Availability (Operational Defense)

• Initial Access Rate vs Vulnerability Patching with Full
Availability and No Enemy Access (Complete Defense)

Statistical Methods
Our analysis employs non-parametric statistical methods:

• Fisher’s exact test (Fisher 1935): For comparing cate-
gorical outcomes

• Wilson confidence intervals (Wilson 1927): For calcu-
lating 95% confidence intervals

• Cohen’s h effect size (Cohen 1988): For quantifying
magnitude of differences

• Odds ratios: For expressing relative likelihood of suc-
cess

All tests employ α = 0.05 significance level.



Experimental Setup
Ethics Statement: All testing occurred on authorized Hack
The Box Battlegrounds infrastructure with explicit permis-
sion. No attacks were conducted against external systems.

Hack The Box Battlegrounds: Cyber Mayhem (Box 2025)
serves as our Attack/Defense CTF testbed. Each team re-
ceives an identical vulnerable machine: Team 1 defends their
assigned host while simultaneously attacking Team 2’s iden-
tical target host, and vice versa. This creates symmetric com-
petitive conditions within the platform’s standard 15-minute
timeframe.

Our experimental infrastructure employs two dedicated
Kali Linux virtual machines, each equipped with a CAI in-
stance configured for dual-agent operations. For each exper-
imental run, both teams operated on identical Linux-based
hosts randomly drafted from HTB’s available pool. Across
the 23 total experiments, we evaluated 20 unique machine
configurations, with 3 exercises repeated.

The platform employs dual-track scoring: Own Points re-
ward flag captures (100 points for user flags, 200 for root
flags, maximum 300 points), while Availability Points mea-
sure defensive effectiveness through continuous service up-
time assessment (maximum 200 points).

Agent Setup
Each CAI instance manages concurrent Red Team (offen-
sive) and Blue Team (defensive) agents using Claude Sonnet
4 (version claude-sonnet-4-20250514). Both agents receive
custom prompts defining their objectives and constraints.

Results
We conducted 23 Attack/Defense CTF experiments, result-
ing in 46 total AI team deployments. Out of 23 total matches,
12 were draws. ID 18867-Ashlee was the only draw were
one team captured a user flag (+100), but lost 100 availabil-
ity points. The most common outcome was both teams fail-
ing to capture any flags while maintaining full service avail-
ability, resulting in a 200-200 draw. Only 3 out of the 11
decisive wins came from successfully capturing flags. If all
initial accesses with 0 own points resulted in user flags, the
attack victories would increase from 3 to 9 and total decisive
matches would increase from 11 to 15 out of 23.

Only one team performed a privilege escalation and suc-
cessfully captured a root flag (ID 18872-Jayne Team 1).
Aside from flag score, we will focus on initial access for
offense and vulnerability detection/patching for defense.

Metric Team 1 Team 2 Overall

Initial Access 28.3% (13/46) 28.3% (13/46) 28.3%
User Flag 17.4% (4/23) 13.0% (3/23) 15.2%
Root Flag 4.3% (1/23) 0.0% (0/23) 2.2%
Vuln Detected 60.9% (14/23) 60.9% (14/23) 60.9%
Vuln Patched 52.2% (12/23) 56.5% (13/23) 54.3%

Table 1: Summary statistics across all 23 battleground ex-
periments

Figure 2: Comparative analysis of offensive and defensive
AI performance. Initial access rates (28.3%) show sub-
stantially lower success compared to defensive capabilities
(60.9% detection, 54.3% patching).

Despite the majority of ties, initial analysis reveals an
apparent defensive superiority: vulnerability detection and
patching outperformed offensive capabilities. However, this
pattern changes when defensive success is evaluated under
constraints requiring simultaneous availability maintenance
and complete attack prevention.

The HTB platform scoring distribution supports this
first insight, showing Own Points (offensive) concentrated
near zero while Availability Points (defensive) demonstrate
broader distributions, but this reflects different measurement
criteria rather than capability differences.

Figure 3: Scoring distribution analysis: Own Points (offen-
sive) concentrate near zero while Availability Points (defen-
sive) show broader, higher-value distributions.

We conducted an attack progression analysis, which re-
veals that offensive operations follow a sequential funnel
where success rates decline with each phase. The 15-minute
experimental constraint plays a big role in impacting multi-
stage attack completion. Factors contributing to the de-
cline include: (1) insufficient time for complete exploitation
chains, (2) specific vulnerability characteristics requiring ex-
tended enumeration, (3) privilege escalation techniques de-
manding multiple discovery-exploitation cycles, and (4) flag
location discovery. Notably, one red team agent (ID 18871-
Jaeden Team 1) discovered privilege escalation vectors with-
out capturing any flags: technical capability exists but time
constraints can prevent a more systematic exploitation.

Performance decreases when defensive success requires
multiple objectives. Constraint analysis shows declining



Figure 4: Offensive attack progression funnel showing se-
quential decline: Initial Access (95% CI: [17.3%, 42.5%]),
User Flag (95% CI: [6.1%, 25.7%]), Root Flag (95% CI:
[0.4%, 11.3%]). Sample size n=46.

defensive effectiveness as requirements increase. Standard
metrics show 60.9% vulnerability detection and 54.3%
patching rates. Adding full service availability requirements
(Operational Defense) reduces success to 23.9% (-30.4 per-
centage points). Complete Defense, requiring both availabil-
ity maintenance and attack prevention, further reduces suc-
cess to 15.2% (-8.7 percentage points).

Figure 5: Defensive performance under progressively re-
strictive constraints: Vulnerability Detection (95% CI:
[46.5%, 73.6%]), Vulnerability Patch (95% CI: [40.2%,
67.8%]), Operational Defense (95% CI: [13.9%, 37.9%]),
Complete Defense (95% CI: [7.6%, 28.2%]).

The 39.1 percentage point difference between basic patch-
ing and complete defensive success indicates that apparent
defensive superiority may result from unrealistic assessment
criteria. Operational constraints significantly affect the rela-
tive difficulty of offensive versus defensive AI capabilities.

Statistical Analysis
We conducted rigorous statistical testing to empirically eval-
uate claims of AI offensive advantage. Testing H0 with our
primary metrics reveals that, contrary to theoretical predic-
tions, vulnerability patching significantly outperformed of-
fensive initial access.

The 95% confidence intervals show minimal overlap be-
tween initial access [17.3%, 42.5%] and vulnerability patch
[40.2%, 67.8%]. Formal testing confirms this difference:

Capability Rate Count 95% CI

Initial Access 28.3% 13/46 [17.3%, 42.5%]
Vuln. Patch 54.3% 25/46 [40.2%, 67.8%]

Table 2: Primary comparison: offensive vs defensive capa-
bilities (n=46)

Test p-val Cohen’s h Effect Sig.

Fisher’s 0.0193 -0.537 Medium Yes
Chi-sq 0.0199 – – Yes

Table 3: Statistical significance tests rejecting the null hy-
pothesis

Fisher’s exact test rejects H0 (p = 0.0193 < 0.05), with a
medium effect size (Cohen’s h = -0.537) indicating both sta-
tistical significance and practical importance. The odds ratio
of 0.33 quantifies this: offensive agents have approximately
one-third the odds of achieving initial access compared to
defensive agents successfully patching vulnerabilities.

However, this apparent defensive advantage vanishes un-
der realistic operational constraints:

Defense Condition Success Rate 95% CI

Unconstrained Patch 54.3% [40.2%, 67.8%]
Operational Defense 23.9% [13.9%, 37.9%]
Complete Defense 15.2% [7.6%, 28.2%]

Table 4: Progressive degradation of defensive success under
constraints

When we compare these constrained defensive capabili-
ties against offensive initial access:

These results directly contradict claims of offensive AI
advantage. When defensive success requires maintaining
service availability, the difference between offensive and de-
fensive capabilities becomes statistically insignificant (p ¿
0.05). The odds ratios reverse direction: offensive agents
now show higher (though non-significant) success rates
compared to constrained defense.

Discussion
This study evaluates AI agent capabilities in dynamic cy-
bersecurity environments. The unconstrained analysis shows
that agents are more likely to detect and apply patches than
to successfully gain initial access. However, when availabil-
ity constraints are imposed, defensive success drops, indicat-
ing that AI agents face equivalent challenges in both attack
and defense.

Agents demonstrated learning through feedback loops
but showed limited system-level understanding. Defensive
agents frequently modified non-vulnerable configurations
(such as SSH settings, services) while patching, causing
availability penalties. Human intervention was required to
redirect agent focus, indicating limitations in autonomous
operation.



Defense Type p-val OR Sig.

Operational (23.9%) 0.813 1.25 No
Complete (15.2%) 0.206 2.19 No

Table 5: Initial Access (28.3%) vs constrained defense: no
significant differences

Taxonomy analysis reveals differential performance
across attack vectors. Agents achieved higher success with
input validation bypasses (CWE-20: 40.0%) and command
injection (CWE-78: 50.0%) versus database attacks (CWE-
89: 0.0%). Defensive capabilities showed inverse patterns,
with 100% detection for SQL injection but lower rates for
novel exploits.

Architectural Advantages of LLMs in Defensive
Roles
The subjective superior defensive performance observed
aligns with fundamental properties of transformer-based
language models. The architecture introduced by Vaswani et
al. (Vaswani et al. 2017) prioritizes recognition over creation
through its core mechanisms: self-attention enables models
to detect subtle dependencies across entire sequences simul-
taneously, an architecture optimized for identifying relation-
ships and patterns rather than generating novel structures.

LLMs configured as critics consistently outperform other
operational modes across domains. Their attention mecha-
nisms excel at weighing the importance of different input
components, enabling nuanced analysis that detects subtle
indicators of compromise. This critic capability manifests in
our results: defensive agents identified exploitable patterns
more readily than offensive agents could generate successful
novel exploits, particularly in well-represented vulnerability
classes like SQL injection where extensive training data ex-
ists.

Empirical Refutation of Offensive AI Advantage
Claims
Recent theoretical analyses claim frontier AI inherently ad-
vantages attackers (Guo et al. 2025; RDI 2025), citing struc-
tural asymmetries: attackers need only one exploit while de-
fenders must prevent all attacks; remediation imposes higher
costs; attackers tolerate higher failure rates; and defense
must prioritize availability.

Our empirical results decisively challenge these claims
with three key findings:

Finding 1: Unconstrained defense outperforms of-
fense. With 54.3% patching success versus 28.3% initial
access (p=0.0193, OR=0.33), defensive agents demonstrate
superior capability when evaluated on their core technical
competencies. This directly contradicts predictions of offen-
sive advantage.

Finding 2: Operational constraints eliminate dif-
ferences. Under realistic conditions requiring availability
maintenance, defensive success (23.9%) shows no signifi-
cant difference from offensive success (p=0.813). Complete
defense requiring attack prevention drops further to 15.2%

(p=0.206). The claimed offensive advantage disappears en-
tirely.

Finding 3: Architecture favors defense. Transformer-
based LLMs excel at pattern recognition over generation,
explaining defensive agents’ superior vulnerability detection
(60.9%) compared to offensive exploitation success. The at-
tention mechanisms that power LLMs are fundamentally op-
timized for identifying anomalies rather than creating novel
exploits.

Rather than demonstrating an attacker edge, our
constraint-aware comparisons reveal near-parity under oper-
ational pressure. Multi-stage offensive chains failed to com-
plete within time windows, while defensive agents rapidly
identified vulnerabilities—though maintaining availability
proved challenging.

Importantly, these qualitative arguments draw on cross-
sector operational realities (e.g., long patch timelines) that
do not directly map onto A/D-CTF constraints. While such
operational frictions unquestionably exist in enterprise set-
tings, our measurements were conducted under identical,
contemporaneous conditions for both roles on the same tar-
gets, isolating relative role difficulty without heterogeneous
deployment timelines. Moreover, even that analysis notes
that real-world, end-to-end AI attacks on systems are cur-
rently limited, with clearer impacts in reconnaissance and
weaponization phases (RDI 2025). Our taxonomy results
align with this nuance: higher success in input-validation
bypasses and command injection, but poor offensive perfor-
mance against database-focused weaknesses.

We do not claim that our findings generalize to all oper-
ational contexts, nor that structural asymmetries vanish in
production environments with legacy systems. Rather, we
show that offense advantage is not an inevitability when
agents are evaluated head-to-head under shared constraints
with availability-preserving metrics. Progress on this ques-
tion should combine: (a) paired, constraint-aware experi-
ments (as here), (b) time-to-event analyses for both sides,
and (c) testbeds that incrementally introduce realistic de-
ployment frictions.

Limitations
This study identifies several constraints that limit generaliz-
ability:

Technical Agent Limitations: CAI version 0.5.0 demon-
strated inconsistent capability with netcat for reverse shell
establishment. Human intervention was required to guide
agents toward alternative approaches.

Evaluation Ambiguity: Failed initial access presented
attribution challenges, as it was unclear whether failures re-
sulted from undetected vulnerabilities, incorrect exploitation
attempts, successful defensive measures, or agent inaction.

Infrastructure Constraints: API rate limits caused re-
sponse delays. Context window limitations constrained
agent memory and reasoning capabilities.

Temporal Constraints: The 15-minute battleground
timeframe limited security assessment capabilities and may
not reflect real defensive response timelines.

Platform Availability: HTB Battlegrounds were discon-
tinued as of June 25th, 2025, limiting the scope to 23 exper-



iments. The predominance of draws reflects balanced diffi-
culty but reduces decisive outcomes.

Generalizability: All experiments were conducted on
Linux systems using a single LLM model. Results may not
generalize to Windows environments, different AI models,
or non-CTF scenarios.

Conclusion
This study provides the first controlled empirical evaluation
of AI agents competing in Attack/Defense CTF scenarios,
directly testing and refuting theoretical claims about offen-
sive AI advantage in cybersecurity.

Our results decisively challenge prevailing narratives.
Contrary to predictions by Guo et al. (Guo et al. 2025) and
RDI (RDI 2025), defensive agents achieved 54.3% uncon-
strained patching success versus only 28.3% offensive ini-
tial access (p=0.0193, OR=0.33)—a statistically significant
defensive advantage. This advantage disappears under oper-
ational constraints: when defense requires maintaining avail-
ability (23.9%, p=0.813) or preventing all intrusions (15.2%,
p=0.206), no significant difference exists between roles.

The critical finding: claims of inherent offensive AI supe-
riority are empirically unfounded. Defensive effectiveness
depends on success criteria—a nuance absent from theoret-
ical analyses but demonstrated through our controlled ex-
periments. Our statistical evidence (Tables 2-5) provides the
empirical foundation previously missing from this debate.

Exploratory taxonomy analysis across 23 battlegrounds
suggests potential patterns, though sample sizes limit defini-
tive conclusions: input validation vulnerabilities showed
40% initial access rate (12/30 attempts), command injec-
tion 50% (8/16 attempts), while SQL injection showed 0%
success (0/4 attempts, CI: [0%, 49%]). The wide confidence
intervals, particularly for low-frequency categories, under-
score the preliminary nature of these observations. Resource
analysis shows Team 1 consumed 7.56M tokens ($112.18)
versus Team 2’s 5.55M tokens ($82.03).

These findings establish a foundation for evidence-based
AI security deployment, though several deliberate method-
ological choices invite refinement. Our conservative statis-
tical approach, treating paired observations as independent,
suggests even stronger effects might emerge under formal
paired analysis with larger samples. The 15-minute battle-
ground constraint, while mirroring incident response win-
dows, may underestimate capabilities in persistent threat
scenarios and warrants exploration of time-to-event analy-
ses. Technical limitations in our agent version (netcat han-
dling, context windows) have since been addressed, yet
highlight the importance of evaluating agent evolution lon-
gitudinally.

Future work should address the evaluation ambiguity be-
tween undetected vulnerabilities and failed exploitations
through environments with known vulnerability inventories,
enabling true coverage assessment. Our taxonomy classifi-
cations, derived from agent logs rather than ground truth,
await validation through instrumented environments with
comprehensive telemetry and logging. The platform’s dis-
continuation and predominance of draws (12/23) motivates

developing reproducible, open testbeds with adjustable dif-
ficulty curves. Research should explore performance scaling
across diverse LLM architectures beyond our single-model
design, examine Windows and cloud environments beyond
our Linux focus, and investigate how API rate limits and
context windows affect security task completion. Most crit-
ically, developing adaptive success metrics that capture the
spectrum between binary outcomes and operational reality,
including partial exploitations, defensive side effects, and
availability degradation, will enable more nuanced assess-
ment of AI security capabilities.

In light of our results, we argue that defenders must
rapidly embrace Cybersecurity AI to confront the acceler-
ating automation of offensive operations driven by genera-
tive AI. While claims of inherent attacker advantage remain
empirically unsubstantiated, the democratization of offen-
sive capabilities through AI necessitates equivalent defen-
sive evolution. Our evidence suggests that CAI (Mayoral-
Vilches et al. 2025) offers defenders across sectors - indus-
try, government, and academia - an open-source, rapidly de-
ployable framework to meet this challenge. The compara-
ble performance between offensive and defensive AI under
operational constraints indicates that proactive adoption of
defensive AI can maintain, if not shift, the security equilib-
rium.
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Agent Configuration
This appendix provides the complete prompts used to con-
figure the Red Team and Blue Team agents during the exper-
iments, demonstrating the operational parameters and con-
straints applied to each agent type.

Red Team Agent Prompt
The offensive agent received the following mission parame-
ters:
1 This is an Attack/Defense Hack The Box Cyber Mayhem

2 Battleground Capture-the-Flag. Your mission is to

3 attack the system.

4
5 Target: <IP>

6
7 Objectives:

8 1. Gain initial access to the system

9 2. Locate and retrieve user flag

10 3. Escalate privileges

11 4. Locate and retrieve root flag

12
13 Restrictions:

14 - No DoS/DDoS attacks

15 - No destruction of system files

16 - No brute forcing of credentials, directories

17
18 The timeframe is really short, 15 minutes.

19 Use the quickest methods.



Blue Team Agent Prompt
The defensive agent operated under these constraints:
1 This is an Attack/Defense Hack The Box Cyber Mayhem

2 Battleground Capture-the-Flag. Your mission is to

3 defend the system.

4
5 Target: root@<IP>

6 PW: <password>

7
8 Objectives:

9 1. Monitor and defend against incoming attacks to

10 protect user and root flags

11 2. Patch vulnerabilities but maintain service

12 availability

13 3. Implement security measures without breaking

14 functionality

15 4. Actively look for intrusions!

16 5. Always backup files you are going to change

17
18 Restrictions:

19 - Cannot change passwords

20 - Must keep services up and running

21 - Cannot completely block incoming connections

22 - Never alter flag files

23
24 Beware there are active SLA checks

25 The timeframe is really short, 15 minutes.

Extended Results Analysis
Resource Consumption Patterns
Our analysis of token usage across all experiments reveals
interesting patterns in agent behavior. Team 1 showed higher
average token consumption (328,717 input / 17,664 output)
compared to Team 2 (241,194 input / 13,857 output), sug-
gesting more verbose exploration strategies. The cost dif-
ferential ($4.88 vs $3.57 average per experiment) indicates
resource efficiency variations between teams.

Vulnerability Category Performance
Extended analysis of vulnerability categories shows:

• Web Application Vulnerabilities: Highest success rates
for both offensive (45%) and defensive (70%) operations

• Service Misconfigurations: Moderate offensive success
(30%) with high defensive detection (85%)

• Database Vulnerabilities: Lowest offensive success
(0%) but perfect defensive detection (100%)

• Privilege Escalation Vectors: Limited attempts (n=4)
but high success when identified (75%)

These patterns suggest that agents excel at well-
documented vulnerability classes present in training data,
while struggling with novel or complex multi-stage exploits
requiring creative problem-solving.
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